Exactness and geometric properties of inverse semigroups

Diego Martínez – WWU Münster
March 17th, 2022

Non-commutativity in the North – Göteborgs Universitet

Based on joint work with Chyuan and Szakács
Outline

(1) Inverse semigroups
(2) Proper and right sub-invariant metrics
(3) Exactness vs. Yu’s property A
(4) Asymptotic dimension 0 vs. local AF
1. Inverse semigroups
Inverse semigroups and Wagner-Preston

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$
Definition

S is an inverse semigroup if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- **Bicyclic monoid**: $B = \langle a, a^* \mid a^*a = 1 \rangle = \{a^i a^j \mid i, j \geq 0\}$
Inverse semigroups and Wagner-Preston

Definition

S is an *inverse semigroup* if for every \(s \in S \) there is a unique \(s^* \in S \) such that \(ss^* s = s \) and \(s^* ss^* = s^* \)

Remarks:

- *Bicyclic monoid:* \(B = \langle a, a^* \mid a^* a = 1 \rangle = \{ a^i a^j \mid i, j \geq 0 \} \)
- \(E = \{ e \in S \mid e^2 = e \} = \{ s^* s \mid s \in S \} \) is commutative
- \(D_{s^* s} = s^* s \cdot S \) is the *domain of s*
- \(s: D_{s^* s} \to D_{ss^*}, \) where \(x \mapsto sx \) is a bijection
Inverse semigroups and Wagner-Preston

Definition

S is an **inverse semigroup** if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$

Remarks:

- **Bicyclic monoid:** $\mathcal{B} = \langle a, a^* \mid a^* a = 1 \rangle = \{ a^i a^j \mid i, j \geq 0 \}$
- $E = \{ e \in S \mid e^2 = e \} = \{ s^* s \mid s \in S \}$ is commutative
- $D_{s^*} = s^* s \cdot S$ is the **domain of** s
- $s: D_{s^*} \to D_{ss^*}$, where $x \mapsto sx$ is a bijection

Induces the **Wagner-Preston** representation $v: S \to \mathcal{I}(S)$:
Inverse semigroups and Wagner-Preston

Definition

S is an *inverse semigroup* if for every $s \in S$ there is a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s$.

Remarks:

- *Bicyclic monoid*: $B = \langle a, a^* | a^*a = 1 \rangle = \{ a^i a^j | i, j \geq 0 \}$
- $E = \{ e \in S | e^2 = e \} = \{ s^*s | s \in S \}$ is commutative.
- $D_{s^*s} = s^*s \cdot S$ is the *domain of s*
- $s: D_{s^*s} \rightarrow D_{ss^*}$, where $x \mapsto sx$ is a bijection.

Induces the **Wagner-Preston representation $v: S \rightarrow \mathcal{I}(S)$:**

$$D_{(st)(st)^*} = s (D_{tt^*} \cap D_{s^*s})$$
Open bisections and partial order

Remark: the Wagner-Preston representation encapsulates the idea behind how we see these inverse semigroups:

<table>
<thead>
<tr>
<th>Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual use of inverse semigroups: $S \subset \text{Bis}(G)$</td>
</tr>
<tr>
<td>$\text{Bis}(G) := { u \subset G \mid \text{open and } r: u \to r(u) \text{ homeomorphism}}$</td>
</tr>
<tr>
<td>$s \in S$ is a label for an open bunch of arrows in a groupoid</td>
</tr>
</tbody>
</table>
Open bisections and partial order

Remark: the Wagner-Preston representation encapsulates the idea behind how we see these inverse semigroups:

<table>
<thead>
<tr>
<th>Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual use of inverse semigroups: (S \subset \text{Bis}(G))</td>
</tr>
<tr>
<td>(\text{Bis}(G) := {u \subset G \mid \text{open and } r: u \rightarrow r(u) \text{ homeomorphism}})</td>
</tr>
<tr>
<td>(s \in S) is a label for an open bunch of arrows in a groupoid</td>
</tr>
</tbody>
</table>

Partial order: \(s \geq t \iff \) there is some \(e \in E \) with \(se = t \),

\[\iff t \text{ is a} \text{ restriction} \text{ of } s \iff st^* t = t \]
Open bisections and partial order

Remark: the Wagner-Preston representation encapsulates the idea behind how we see these inverse semigroups:

<table>
<thead>
<tr>
<th>Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual use of inverse semigroups: $S \subseteq \text{Bis}(G)$</td>
</tr>
<tr>
<td>$\text{Bis}(G) := { u \subseteq G \mid \text{open and } r: u \rightarrow r(u) \text{ homeomorphism} }$</td>
</tr>
<tr>
<td>$s \in S$ is a label for an open bunch of arrows in a groupoid</td>
</tr>
</tbody>
</table>

Partial order: $s \geq t \iff$ there is some $e \in E$ with $se = t$,
$\iff t$ is a **restriction** of $s \iff st^* t = t$

Left regular representation: $\nu: S \rightarrow B(\ell^2(S))$, where
$$
\nu_s \delta_x = \begin{cases}
\delta_{sx} & \text{if } x \in s^* s \cdot S \\
0 & \text{otherwise}
\end{cases}
$$
Open bisections and partial order

Remark: the *Wagner-Preston* representation encapsulates the idea behind how we see these inverse semigroups:

<table>
<thead>
<tr>
<th>Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual use of inverse semigroups: $S \subset \text{Bis}(G)$</td>
</tr>
<tr>
<td>$\text{Bis}(G) := { u \subset G \mid \text{open and } r: u \to r(u) \text{ homeomorphism} }$</td>
</tr>
<tr>
<td>$s \in S$ is a label for an open bunch of arrows in a groupoid</td>
</tr>
</tbody>
</table>

Partial order: $s \geq t \iff$ there is some $e \in E$ with $se = t$,
$\iff t$ is a restriction of $s \iff st^*t = t$

Left regular representation: $\nu: S \to \mathcal{B}(\ell^2(S))$, where

$$
\nu_s\delta_x = \begin{cases}
\delta_{sx} & \text{if } x \in s^*s \cdot S \\
0 & \text{otherwise}
\end{cases}
$$

Reduced C*-algebra: $C^*_r(S) := C^*(\{\nu_s\}_{s \in S}) \subset \mathcal{B}(\ell^2(S))$
Recall: Cayley graph construction $\sim G = \langle g_1^{\pm 1}, \ldots, g_n^{\pm 1} \mid \text{relations} \rangle$:

- Graph $\sim \text{Cay}(G, \{g_1, \ldots, g_n\}) := (V, E)$,
- Vertices $\sim V := G$
- Edges $\sim E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \ldots, n\}$.
Recall: Cayley graph construction \(\sim G = \langle g_1^{\pm 1}, \ldots, g_n^{\pm 1} \mid \text{relations} \rangle \):

- Graph \(\sim \text{Cay}(G, \{g_1, \ldots, g_n\}) := (V, E) \),
- Vertices \(\sim V := G \)
- Edges \(\sim E := \{(x, g_i^{\pm 1}x) \mid x \in G \text{ and } i = 1, \ldots, n\} \).

\[
\begin{align*}
\ldots & \quad \circ \circ \circ \circ \circ \circ \quad \circ \circ \circ \circ \circ \circ \quad \ldots \\
\ldots & \quad \circ \circ \circ \circ \circ \circ \quad \ldots
\end{align*}
\]

\(\mathbb{Z} = \langle \pm 2, \pm 3 \rangle \)

\(\mathbb{Z} = \langle \pm 1 \rangle \)
Recall: Cayley graph construction $\sim G = \langle g_1^{\pm 1}, \ldots, g_n^{\pm 1} | \text{relations} \rangle$:

- Graph $\sim \text{Cay} (G, \{g_1, \ldots, g_n\}) := (V, E)$,
- Vertices $\sim V := G$
- Edges $\sim E := \{(x, g_i^{\pm 1} x) \mid x \in G \text{ and } i = 1, \ldots, n\}$.

\[\cdots \bullet \bullet \bullet \bullet \bullet \cdots \quad \mathbb{Z} = \langle \pm 2, \pm 3 \rangle \]

\[\cdots \bullet \bullet \bullet \bullet \bullet \cdots \quad \mathbb{Z} = \langle \pm 1 \rangle \]

Proposition (classical)

The large scale geometry of the Cayley graph of G does **not** depend on the generators.

Goal: coarse geometry of inverse semigroups and its relation with C^*-properties of $C_r^* (S)$
2. Proper and right sub-invariant metrics
Remark: we need to consider extended metric spaces:

\[S := G \sqcup \{0\} \sim s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^* \]

and, hence, there is a directed edge \(s \rightarrow 0 \sim d(s, 0) = \infty \)
Infinite distances, and why they are necessary

Remark: we need to consider *extended* metric spaces:

\[S := G \cup \{0\} \sim s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^* \]

and, hence, there is a *directed* edge \(s \to 0 \sim d(s, 0) = \infty \)

Definition (Chung, M. and Szakács - 22)

Let \(d: S \times S \to [0, \infty] \). We say \(d \) *respects the components of \(S \) if*

\[d(s, t) < \infty \iff s^* s = t^* t \]
Infinite distances, and why they are necessary

Remark: we need to consider *extended* metric spaces:
\[S := G \sqcup \{0\} \sim s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^* \]
and, hence, there is a **directed** edge \(s \rightarrow 0 \sim d(s, 0) = \infty \)

Definition (Chung, M. and Szakács - 22)
Let \(d: S \times S \rightarrow [0, \infty] \). We say \(d \) **respects the components of** \(S \) if
\[d(s, t) < \infty \iff s^* s = t^* t \]

Remark:
- Automatic for groups
- \(s^* s = 0^* 0 = 0 \Rightarrow s = ss^* s = s0 = 0 \),
 and therefore \(\{0\} \subset S \) forms a component!
- \((S, d) = \sqcup_{e \in E} (L_e, d|_{L_e}) \) are the **connected** components
- This allows for uncountable \(S \)
Infinite distances, and why they are necessary

Remark: we need to consider extended metric spaces:

\[S := G \sqcup \{0\} \sim s \cdot 0 = 0 \cdot s = 0 = s^* \cdot 0 = 0 \cdot s^* \]

and, hence, there is a directed edge \(s \to 0 \sim d(s, 0) = \infty \)

Definition (Chung, M. and Szakács - 22)

Let \(d: S \times S \to [0, \infty] \). We say \(d \) respects the components of \(S \) if

\[d(s, t) < \infty \iff s^* s = t^* t \]

Remark:

- Automatic for groups
- \(s^* s = 0^* 0 = 0 \Rightarrow s = s s^* s = s0 = 0 \),
 and therefore \(\{0\} \subset S \) forms a component!
- \((S, d) = \sqcup_{e \in E} (L_e, d|_{L_e}) \) are the connected components
- This allows for uncountable \(S \)

Standing assumption: \(d \) respects the components of \(S \)
Proper and right sub-invariant metrics

Definition (Chung, M. and Szakács - 22)

Let \(d: S \times S \to [0, \infty] \) be a metric. We say \(d \) is:

- **right sub-invariant** if \(d(sr, tr) \leq d(s, t) \) for all \(s, t, r \in S \)
- **proper** if for all \(r \geq 0 \) there is a finite \(F \subseteq S \) such that \(t \in Fs \) for all \(s, t \in S \) such that \(d(s, t) \leq r \).
Proper and right sub-invariant metrics

Definition (Chung, M. and Szakács - 22)

Let $d: S \times S \to [0, \infty]$ be a metric. We say d is:

- **right sub-invariant** if $d(sr, tr) \leq d(s, t)$ for all $s, t, r \in S$
- **proper** if for all $r \geq 0$ there is a finite $F \subseteq S$ such that $t \in Fs$ for all $s, t \in S$ such that $d(s, t) \leq r$.

Remarks:

- Generalizes properness and right invariance for groups
Proper and right sub-invariant metrics

Definition (Chung, M. and Szakács - 22)

Let \(d: S \times S \to [0, \infty] \) be a metric. We say \(d \) is:

- **right sub-invariant** if \(d(sr, tr) \leq d(s, t) \) for all \(s, t, r \in S \)
- **proper** if for all \(r \geq 0 \) there is a finite \(F \subseteq S \) such that \(t \in Fs \) for all \(s, t \in S \) such that \(d(s, t) \leq r \).

Remarks:

- Generalizes **properness** and **right invariance** for groups
 - For instance, if \(S = \bigsqcup_{e \in E} G_e \), then \((S, d) = \bigsqcup_{e \in E} (G_e, d|_{G_e}) \)
- \(S = \langle s_1, \ldots, s_k \mid \text{relations} \rangle \nleftrightarrow d \) is the path metric in \(\{\Lambda_e\}_{e \in E} \)
Proper and right sub-invariant metrics

Definition (Chung, M. and Szakács - 22)

Let $d : S \times S \to [0, \infty]$ be a metric. We say d is:

- **right sub-invariant** if $d(sr, tr) \leq d(s, t)$ for all $s, t, r \in S$
- **proper** if for all $r \geq 0$ there is a finite $F \subseteq S$ such that $t \in Fs$ for all $s, t \in S$ such that $d(s, t) \leq r$.

Remarks:

- Generalizes properness and right invariance for groups

 For instance, if $S = \sqcup_{e \in E} G_e$, then $(S, d) = \sqcup_{e \in E}(G_e, d_{|G_e})$
- $S = \langle s_1, \ldots, s_k \mid \text{relations} \rangle \twoheadrightarrow d$ is the path metric in $\{\Lambda_e\}_{e \in E}$
- If d is proper, then (S, d) has bounded geometry

 However, the converse is false!
Existence and uniqueness of these metrics

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a *proper* and *right sub-invariant* metric. Moreover, such a metric is *unique* up to bijective coarse equivalence.
Existence and uniqueness of these metrics

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a **proper and right sub-invariant** metric. Moreover, such a metric is **unique** up to bijective coarse equivalence.

Remark: works for some **non-countable** semigroups…
as long as \(S = \langle F \cup E \rangle \), where \(F \) is **countable**

For instance: an action \(G \rhd \text{Cantor} \), where \(G \) is a discrete group, induces \(S = \text{Bis}(G \rhd \text{Cantor}) \) as **above**
Existence and uniqueness of these metrics

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a proper and right sub-invariant metric. Moreover, such a metric is unique up to bijective coarse equivalence.

Remark: works for some non-countable semigroups... as long as $S = \langle F \cup E \rangle$, where F is countable

For instance: an action $G \curvearrowright$ Cantor, where G is a discrete group, induces $S = \text{Bis}(G \curvearrowright \text{Cantor})$ as above

Question: what sort of metric spaces (S, d) can we get?
Existence and uniqueness of these metrics

Theorem (Chung, M. and Szakács - 22)

Every countable inverse semigroup has a **proper and right sub-invariant** metric. Moreover, such a metric is **unique** up to bijective coarse equivalence.

Remark: works for some non-countable semigroups… as long as $S = \langle F \cup E \rangle$, where F is **countable**

For instance: an action $G \simeq$ Cantor, where G is a discrete group, induces $S = \text{Bis}(G \simeq \text{Cantor})$ as **above**

Question: what sort of metric spaces (S, d) can we get?

Theorem (Chung, M. and Szakács - 22)

Any (X, d) of **bounded geometry** is a component of some inverse semigroup (that depends on X).
3. Exactness vs. Yu’s property A
Metric spaces and property A

Definition (Yu - 1999)

(X, d) has **property A** if for every $r, \varepsilon > 0$ there is
$\xi: X \to \ell^1 (X)_1^+$ and $c > 0$ such that $\text{supp} (\xi_x) \subset B_c (x)$ and
$\|\xi_x - \xi_y\|_1 \leq \varepsilon$ for every $x, y \in X$ such that $d(x, y) \leq r$
Metric spaces and property A

Definition (Yu - 1999)

\((X, d)\) has property A if for every \(r, \varepsilon > 0\) there is

\[\xi : X \to \ell^1(X)_1^+\] and \(c > 0\) such that \(\text{supp}(\xi_x) \subset B_c(x)\) and

\[\|\xi_x - \xi_y\|_1 \leq \varepsilon\] for every \(x, y \in X\) such that \(d(x, y) \leq r\)

Remarks:

- Property A generalizes amenability for groups (not in general)
- Non-property A groups are hard to come by
Metric spaces and property A

Definition (Yu - 1999)

(X, d) has **property A** if for every $r, \varepsilon > 0$ there is

$\xi: X \to \ell^1 (X)_1^+$ and $c > 0$ such that $\text{supp}(\xi_x) \subset B_c(x)$ and

$$\|\xi_x - \xi_y\|_1 \leq \varepsilon$$

for every $x, y \in X$ such that $d(x, y) \leq r$

Remarks:

- Property A generalizes amenability for groups (**not** in general)
- Non-property A groups are hard to come by

Theorem (Ozawa - 2000)

Let G be a countable group. TFAE:

1. (G, d) has property A, where d is proper and r.inv.
2. $\ell^\infty (G) \rtimes_r G$ is nuclear.
3. $C^*_r (G)$ is exact.
Theorem (Lledó, M. - 2021, and Alcides, M. - 2022)

Let S be a countable inverse semigroup. TFAE:

(i) (S, d) has property A, where d is proper and r.inv.
(ii) $\ell^\infty (S) \rtimes_r S$ is nuclear.
(iii) $C^*_r (S)$ is exact.
Theorem (Lledó, M. - 2021, and Alcides, M. - 2022)

Let S be a countable inverse semigroup. TFAE:

(i) (S, d) has property A, where d is proper and r.inv.
(ii) $\ell^\infty (S) \rtimes_r S$ is nuclear.
(iii) $C^*_r (S)$ is exact.

Proof: (i) \Rightarrow (ii) given $\xi: S \to \ell^1 (S)_1^+$ the diagram

$$\mathcal{R}_S \to \prod_{x \in S} M_{Bc(x)} \subset \ell^\infty (S) \otimes M_q \to \mathcal{R}_S$$

$$a \mapsto \left(p_{Bc(x)} \ a \ p_{Bc(x)} \right)_{x \in S} \leadsto (b_x)_{x \in S} \mapsto \sum_{x \in S} \xi_x^* b_x \xi_x$$

can be shown to be an approximation of $\text{id}: \mathcal{R}_S \to \mathcal{R}_S$

(ii) \Rightarrow (iii) is clear, while

(iii) \Rightarrow (i) is based on $\ell^\infty (S) \rtimes_r S \cong C^*_u (S, d)$
4. Asymptotic dimension 0 vs. local AF algebras
Semigroups of asymptotic dimension 0

Recall: \(\text{asdim}(X, d) = 0 \) is an analog for being a Cantor set

Definition

\[
\text{asdim}(X, d) = 0 \text{ if for every } r \geq 0, X \text{ has a partition } \mathcal{U} \text{ such that }
\inf_{U \neq V \in \mathcal{U}} d(U, V) \geq r \text{ and } \sup_{U \in \mathcal{U}} \text{diam}(U) < \infty
\]
Recall: \(\text{asdim}(X, d) = 0 \) is an analog for being a Cantor set.

Definition

\[\text{asdim}(X, d) = 0 \] if for every \(r \geq 0 \), \(X \) has a partition \(\mathcal{U} \) such that

\[
\inf_{U \neq V \in \mathcal{U}} d(U, V) \geq r \quad \text{and} \quad \sup_{U \in \mathcal{U}} \text{diam}(U) < \infty
\]

Question: when does \(S \) have asymptotic dimension 0?
Semigroups of asymptotic dimension 0

Recall: $\text{asdim}(X, d) = 0$ is an analog for being a Cantor set

Definition

$\text{asdim}(X, d) = 0$ if for every $r \geq 0$, X has a partition \mathcal{U} such that

$$\inf_{U \neq V \in \mathcal{U}} d(U, V) \geq r \quad \text{and} \quad \sup_{U \in \mathcal{U}} \text{diam}(U) < \infty$$

Question: when does S have asymptotic dimension 0?

Answers:

- If S is finite then $\text{asdim}(S) = 0$
Semigroups of asymptotic dimension 0

Recall: \(\mathrm{asym}(X, d) = 0 \) is an analog for being a Cantor set

Definition

\(\mathrm{asdim}(X, d) = 0 \) if for every \(r \geq 0 \), \(X \) has a partition \(\mathcal{U} \) such that

\[
\inf_{U \neq V \in \mathcal{U}} d(U, V) \geq r \quad \text{and} \quad \sup_{U \in \mathcal{U}} \text{diam}(U) < \infty
\]

Question: when does \(S \) have asymptotic dimension 0?

Answers:

- If \(S \) is finite then \(\mathrm{asdim}(S) = 0 \)
- If \(S \) is fin. gen., then \(S \) finite iff \(\mathrm{asdim}(S) = 0 \)
Recall: \(\text{asym}(X, d) = 0 \) is an analog for being a Cantor set

Definition

\[\text{asdim}(X, d) = 0 \text{ if for every } r \geq 0, X \text{ has a partition } \mathcal{U} \text{ such that } \]
\[\inf_{U \neq V \in \mathcal{U}} d(U, V) \geq r \text{ and } \sup_{U \in \mathcal{U}} \text{diam}(U) < \infty \]

Question: when does \(S \) have asymptotic dimension 0?

Answers:

- If \(S \) is finite then \(\text{asdim}(S) = 0 \)
- If \(S \) is fin. gen., then \(S \) finite iff \(\text{asdim}(S) = 0 \)
- If we add new generators \(S = \langle \{t_1, \ldots, t_n\} \cup \{s_1, \ldots, s_m\} \rangle \) then \[
\sup_{j=1, \ldots, n} d(t_j^* t_j, t_j) < \inf_{i=1, \ldots, m} d(s_i^* s_i, s_i),
\]
and that doesn’t increase the asymptotic dimension
Semigroups of asymptotic dimension 0

Recall: \(\text{asdim}(X, d) = 0 \) is an analog for being a Cantor set

Definition

\[\text{asdim}(X, d) = 0 \text{ if for every } r \geq 0, X \text{ has a partition } \mathcal{U} \text{ such that} \]
\[\inf_{U \neq V \in \mathcal{U}} d(U, V) \geq r \text{ and } \sup_{U \in \mathcal{U}} \text{diam}(U) < \infty \]

Question: when does \(S \) have asymptotic dimension 0?

Answers:

- If \(S \) is **finite** then \(\text{asdim}(S) = 0 \)
- If \(S \) is fin. gen., then \(S \) finite iff \(\text{asdim}(S) = 0 \)
- If we add **new** generators \(S = \langle \{t_1, \ldots, t_n\} \cup \{s_1, \ldots, s_m\} \rangle \) then
 \[\sup_{j=1,\ldots,n} d(t_j^*t_j, tj) < \inf_{i=1,\ldots,m} d(s_i^*s_i, si), \]
 and that doesn’t increase the asymptotic dimension
- Hence, \(\text{asdim}(S) = 0 \) when \(S \) is **locally finite**
Theorem (Chung, M. and Szakács - 22)

Let S be an inverse semigroup. TFAE:

(i) S is locally finite.

(ii) $\text{asdim}(S, d) = 0$, where d is proper and r.inv.

(iii) $\ell^\infty(S) \rtimes_r S$ is local AF.

(iv) $\ell^\infty(S) \rtimes_r S$ is strongly quasidiagonal.

Remark: strongly quasidiagonal \Rightarrow quasidiagonal
Theorem (Chung, M. and Szakács - 22)

Let S be an inverse semigroup. TFAE:

(i) S is locally finite.
(ii) $\text{asdim}(S, d) = 0$, where d is proper and r.inv.
(iii) $\ell^\infty(S) \rtimes_r S$ is local AF.
(iv) $\ell^\infty(S) \rtimes_r S$ is strongly quasidiagonal.

Remark: strongly quasidiagonal \Rightarrow quasidiagonal
Local AF algebras and quasidiagonality I

Theorem (Chung, M. and Szakács - 22)

Let S be an inverse semigroup. TFAE:

(i) S is locally finite.
(ii) $\text{asdim}(S, d) = 0$, where d is proper and r.inv.
(iii) $\ell^\infty(S) \rtimes_r S$ is local AF.
(iv) $\ell^\infty(S) \rtimes_r S$ is strongly quasidiagonal.

Remark: strongly quasidiagonal \Rightarrow quasidiagonal

Theorem (Chung, M. and Szakács - 22)

Let S be an inverse semigroup. TFAE:

(i) S locally has finite components.
(ii) (S, d) is sparse, where d is proper and r.inv.
(iii) $\ell^\infty(S) \rtimes_r S$ is quasidiagonal.
(iv) $\ell^\infty(S) \rtimes_r S$ is finite.
A bit about the proof:
A bit about the proof:

\(S \text{ locally finite} \Rightarrow \text{asdym} (S) = 0 \): sketched before
A bit about the proof:

- S locally finite \Rightarrow $\text{asdym}(S) = 0$: sketched before
- S locally finite $\iff \text{asdym}(S) = 0$: S is quasidiagonal
A bit about the proof:

\(S \text{ locally finite} \Rightarrow \text{asdym}(S) = 0 \): sketched before

\(S \text{ locally finite} \iff \text{asdym}(S) = 0 \):

\(S \text{ sparse} \Rightarrow \ell^\infty(S) \rtimes_r S \text{ is quasidiagonal} \):
Sometimes these classes coincide, i.e.,

take $G \curvearrowright X$, where X is the Cantor set and G discrete group,
then: $\text{Bis}(G \curvearrowright X)$ is \underline{locally finite} \iff $\text{Bis}(G \curvearrowright X)$ is \underline{sparse}.

Remark: these classes are, however, not the same!

- This division is \underline{impossible for groups}, and
- already appeared in work of Li and Willett (2018)
Local finiteness vs. quasidiagonality

Sometimes these classes coincide, i.e., take $G \simeq X$, where X is the Cantor set and G discrete group, then: $\text{Bis}(G \simeq X)$ is locally finite \iff $\text{Bis}(G \simeq X)$ is sparse.

Remark: these classes are, however, not the same!

- This division is impossible for groups, and
- already appeared in work of Li and Willett (2018)

Locally finite: direct limits of finite semigroups, and hence fin. generated + locally finite \Rightarrow finite
Sometimes these classes coincide, i.e.,
take $G \vartriangleright X$, where X is the Cantor set and G discrete group,
then: $\text{Bis}(G \vartriangleright X)$ is locally finite \iff $\text{Bis}(G \vartriangleright X)$ is sparse.

Remark: these classes are, however, not the same!
- This division is impossible for groups, and
- already appeared in work of Li and Willett (2018)

Locally finite: direct limits of finite semigroups, and hence
fin. generated $+$ locally finite \Rightarrow finite

Sparse: only have finite components (not uniformly), and hence
there are infinite sparse inverse semigroups, e.g., $S = \langle a \rangle$
Local finiteness vs. quasidiagonality

Sometimes these classes coincide, i.e.,

take $G \curvearrowright X$, where X is the Cantor set and G discrete group,

then: $\text{Bis}(G \curvearrowright X)$ is locally finite \iff $\text{Bis}(G \curvearrowright X)$ is sparse.

Remark: these classes are, however, not the same!

- This division is impossible for groups, and
- already appeared in work of Li and Willett (2018)

Locally finite: direct limits of finite semigroups, and hence

fin. generated + locally finite \Rightarrow finite

Sparse: only have finite components (not uniformly), and hence

there are infinite sparse inverse semigroups, e.g., $S = \langle a \rangle$

Thank you for your attention! Questions?