Samar Hosseinzadegan, Elektroteknik

​Titel: Fast Microwave Tomography Algorithm for Breast Cancer Imaging 

​A​nslut till disputationen från PC, Mac, Linus, iOS elelr Android via zoom

The PhD defence can be accessed through Zoom, and it will open shortly before 15:00. We would kindly ask you to keep the video off and mute the microphone during the seminar. At the end of the session there will be an opportunity to ask questions through Zoom. In case there will be any updates about the event, these will be posted on this website.
Samar Hosseinzadegan är doktorand vid forskargruppen Biomedicinsk elektromagnetik
Opponent är Professor Ari Sihvola, Aalto University, Finland
Examinator är docent Andreas Fhager vid forskargruppen Biomedicinsk elektromagnetik

Microwave tomography has shown promise for breast cancer imaging. The microwaves are harmless to body tissues, which makes microwave tomography a safe adjuvant screening to mammography. Although many clinical studies have shown the effectiveness of regular screening for the detection of breast cancer, the anatomy of the breast and its critical tissues challenge the identification and diagnosis of tumors in this region. Detection of tumors in the breast is more challenging in heterogeneously dense and extremely dense breasts, and microwave tomography has the potential to be effective in such cases. The sensitivity of microwaves to various breast tissues and the comfort and safety of the screening method have made microwave tomography an attractive imaging technique.

Despite the need for an alternative screening technique, microwave tomography has not yet been introduced as a screening modality in regular health care, and is still subject to research. The main obstacles are imperfect hardware systems and inefficient imaging algorithms. The immense computational costs for the image reconstruction algorithm present a crucial challenge. 2D imaging algorithms are proposed to reduce the amount of hardware resources required and the imaging time.
Although 2D microwave tomography algorithms are computationally less expensive, few imaging groups have been successful in integrating the acquired 3D data into the 2D tomography algorithms for clinical applications.

The microwave tomography algorithms include two main computation problems: the forward problem and the inverse problem. The first part of this thesis focuses on a new fast forward solver, the 2D discrete dipole approximation (DDA), which is formulated and modeled. The effect of frequency, sampling number, target size, and contrast on the accuracy of the solver are studied. Additionally, the 2D DDA time efficiency and computation time as a single forward solver are investigated. The second part of this thesis focuses on the inverse problem. This portion of the algorithm is based on a log-magnitude and phase transformation optimization problem and is formulated as the Gauss-Newton iterative algorithm. The synthetic data from a finite-element-based solver (COMSOL Multiphysics) and the experimental data acquired from the breast imaging system at Chalmers University of Technology are used to evaluate the DDA-based image reconstruction algorithm. The investigations of modeling and computational complexity show that the 2D DDA is a fast and accurate forward solver that can be embedded in tomography algorithms to produce images in seconds. The successful development and implementation in this thesis of 2D tomographic breast imaging with acceptable accuracy and high computational cost efficiency has provided significant savings in time and in-use memory and is a dramatic improvement over previous implementations.

Kategori Disputation
Plats: online
Tid: 2021-03-08 15:00
Sluttid: 2021-03-08 18:00

Sidansvarig Publicerad: fr 19 feb 2021.