Händelser: Fysikhttp://www.chalmers.se/sv/om-chalmers/kalendariumAktuella händelser på Chalmers tekniska högskolaThu, 20 Feb 2020 14:14:44 +0100http://www.chalmers.se/sv/om-chalmers/kalendariumhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Masterpresentation-Marcus-Lassila-200221.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Masterpresentation-Marcus-Lassila-200221.aspxMarcus Lassila, Physics and Astronomy<p>N6115, seminar room, Kemigården 1, Fysik Origo</p><p>​Titel på masterarbetet: Holographic Duality and Strongly Interacting Quantum Matter</p><h2 class="chalmersElement-H2">​Sammanfattning: </h2> <div><span style="background-color:initial">This thesis is devoted to the applications of holographic duality to condensed matter physics. It</span></div> <div>is centered around a ’bottom-up’ approach where the starting point is the postulation of a reasonable</div> <div> </div> <div>gravitational bulk theory action, as opposed to the ’top-down’ models where a specific duality is derived</div> <div> </div> <div>from a string theory setting. The main advantage with the holographic approach to condensed matter</div> <div> </div> <div>physics is the potential ability to perform computations for strongly interacting many-body systems</div> <div> </div> <div>which does not have a quasiparticle description. The duality maps a strongly coupled quantum field</div> <div> </div> <div>theory to a weakly interacting gravitational theory which in principle can be solved perturabtively using</div> <div> </div> <div>ordinary general relativity. An introduction to some of the main topics of ’bottom-up’ holography is</div> <div> </div> <div>covered. This includes a brief introduction to large N field theories, the AdS/CFT correspondance, the</div> <div> </div> <div>holographic dictionary, the holographic renormalization group, holographic thermodynamics, and the</div> <div> </div> <div>Hawking-page transition and its interpretation in the light of AdS/CFT. Finally, a minimal bottom-up</div> <div> </div> <div>model for holographic superconductivity is studied. By imposing a mixed boundary condition at the</div> <div> </div> <div>boundary of AdS space, a dynamical photon is incorporated in the strongly coupled superconductor.</div> <div> </div> <div>This allows charged collective excitations, e.g. plasmons, to be studied. A linear response analysis of</div> <div> </div> <div>the minimal holographic superconductor is performed numerically in an attempt to compute plasmon</div> <div> </div> <div>dispersion relations.​</div> <div> </div>https://www.chalmers.se/sv/institutioner/fysik/kalendarium/Sidor/Disputation-Karin-Norling-200221.aspxhttps://www.chalmers.se/sv/institutioner/fysik/kalendarium/Sidor/Disputation-Karin-Norling-200221.aspxKarin Norling, Biovetenskap<p>Kollektorn, lecture room, Kemivägen 9, MC2-huset</p><p>​Titel på doktorsuppsatsen: &quot;Liposomes for mucosal vaccine delivery: physicochemical characterization and biological application</p><h2 class="chalmersElement-H2">Sammanfattning:</h2> <div><span style="background-color:initial">Liposomes are attractive vaccine carriers due to their potential to act as adjuvants, and to the fact that their composition and characteristics are virtually endlessly customizable. However, the precise physicochemical profile of an ideal carrier liposome for mucosal vaccines is still widely unknown, and how different properties affect key steps in the acquisition of protective immunity remains to be elucidated. Additionally, there is no consensus in the field regarding characterization of vaccine formulations, often with incomplete reporting of properties as a result. The focus of this work is therefore twofold: i) to contribute to a better understanding of how the physicochemical profile of vaccine carrier liposomes impacts the development of protective immunity using models at different levels of complexity, and ii) to improve and simplify the physicochemical characterization of liposomes through development and use of new analytical methods. </span></div> <span style="background-color:initial"><div> </div></span><div><span style="background-color:initial">The work in the first area consists of, firstly, an in vivo characterization of the biological response to vaccine liposomes carrying a vaccine protein and characterized by varying surface hydrophilicity (PEGylation). This study showed that non-PEGylated vaccine liposomes more efficiently induced local cell- and antibody-mediated immune responses, as well as better protection against a lethal virus challenge than both PEGylated liposomes and free vaccine protein. Secondly, in vitro studies focused on how liposome stiffness influences dendritic cells, investigating effects on uptake, antigen presentation and cellular activation. These investigations demonstrated that stiff, gel phase liposomes were able to more efficiently activate dendritic cells and induce significantly higher levels of antigen presentation and co-stimulatory signaling compared to both soft, fluid phase liposomes, and free vaccine protein. <br /><br />The work in the second part comprises two studies: a surface plasmon resonance-based method to characterize the influence on liposome deformation from specific multivalent interactions with supported cell membrane mimics, and a waveguide microscopy technique for characterization of optical properties of individual liposomes. While the latter method might become valuable in the context of quantifying the efficiency of dye labelling of liposomes, the surface plasmon resonance study offered information on how liposome deformation depends on membrane stiffness and ligand-receptor pair density. Taken together, the work presented in this thesis demonstrate the value of multidisciplinary approaches to complex biological and medical challenges.</span></div> <div> </div>https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Quantum-many-body-localization-transition.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Quantum-many-body-localization-transition.aspxQuantum many-body localization transition<p>Nexus 4030, meeting room, Fysikgården 2B, Fysik Origo</p><p>​Välkommen till ett seminarium med Abolfazl Bayat (UESTC).</p><p></p> <h2 class="chalmersElement-H2">Sammanfattning:</h2> <div>Many-body localization has become an important phenomenon for illuminating a potential rift between non-equilibrium quantum systems and statistical mechanics. Unlike quantum phase transitions, the many-body <img src="/SiteCollectionImages/Centrum/Fysikcentrum/Blandade%20bilddimensioner/300_Seminarium%2026%20februari.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:300px;height:306px" /><br />localization is a property of the whole spectrum. However, the exact nature of the many-body localization transition remains an open question. An aspect which has been posited in various studies is the emergence of scale invariance around this point, however the direct observation of this phenomenon is still absent. Here we achieve this by studying the logarithmic negativity and mutual information between disjoint blocks of varying size across the many-body localization transition. The two length scales, block sizes and the distance between them, provide a clear quantitative probe of scale invariance across different length scales. We find that at the transition point, the logarithmic negativity obeys a scale invariant exponential decay with respect to the ratio of block separation to size, whereas the mutual information obeys a polynomial decay. The observed scale invariance of the quantum correlations in a microscopic model opens the direction to probe the fractal structure in critical eigenstates using tensor network techniques and provide constraints on the theory of the many-body localization transition.</div> <p></p>https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Licentiateseminar-Huaiqian-Yi-200228.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Licentiateseminar-Huaiqian-Yi-200228.aspxHuaiqian Yi, Nukleär teknik<p>PJ, lecture hall, Fysikgården 2B, Fysik Origo</p><p>​ Titel: A neutron noise solver based on a discrete ordinates method.</p><h2 class="chalmersElement-H2">Sammanfattning:</h2> <div><span style="background-color:initial">A n</span><span style="background-color:initial">eutron noise transport modelling tool is presented in this thesis. The simulator allows to determine the static solution of a critical system and the neutron noise induced by a prescribed perturbation of the critical system. The simulator is based on the neutron balance equations in the frequency domain and for two-dimensional systems. The discrete ordinates method is used for the angular discretization and the diamond finite difference method for the treatment of the spatial variable. The energy dependence is modelled with two neutron energy groups. The conventional inner-outer iterative scheme is employed for solving the discretized neutron transport equations. For the acceleration of the iterative scheme, the diffusion synthetic acceleration is implemented.</span></div> <div><br /></div> <div> </div> <div>The convergence rate of the accelerated and unaccelerated versions of the simulator is studied for the case of a perturbed infinite homogeneous system. The theoretical behavior predicted by the Fourier convergence analysis agrees well with the numerical performance of the simulator. The diffusion synthetic acceleration decreases significantly the number of numerical iterations, but its convergence rate is still slow, especially for perturbations at low frequencies.<br /><br /></div> <div> </div> <div>The simulator is further tested on neutron noise problems in more realistic, heterogeneous systems and compared with the diffusion-based solver. The diffusion synthetic acceleration leads to a reduction of the computational burden by a factor of 20. In addition, the simulator shows results that are consistent with the diffusion-based approximation. However, discrepancies are found because of the local effects of the neutron noise source and the strong variations of material properties in the system, which are expected to be better reproduced by a higher-order transport method such as the one used in the new solver. </div> <div> </div> <div><br /></div> <div> </div> <div>Keywords: Neutron noise, nuclear reactor modelling, deterministic neutron transport methods, discrete ordinates, diffusion synthetic acceleration, convergence analysis</div> <div> </div> <div><br /></div>https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Seminarium-200228.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Seminarium-200228.aspxSeminarium med Lai-Sheng Wang<p>Nexus 4030, meeting room, Fysikgården 2B, Fysik Origo</p><p>Välkommen till ett seminarium med professor Lai-Sheng Wang, Brown University, Rhode Island, USA Associate Editor of the Journal of Chemical Physics ​ Titel: Resonant Photoelectron Spectroscopy of Cyrogenically-Cooled Anions via Dipole-Bound Excited States</p><h2 class="chalmersElement-H2">​Sa​mmanfattning:</h2> <div><div>Research in the Wang lab focuses on the investigation of the electronic structure and chemical <span style="background-color:initial">bonding of <img src="/SiteCollectionImages/Centrum/Fysikcentrum/Blandade%20bilddimensioner/300_Lai-Sheng%20Wang.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:135px;height:176px" /><br />nanoclusters and anions from solution samples. We first introduced electrospray </span><span style="background-color:initial">i</span><span style="background-color:initial">onization</span><span style="background-color:initial"> into spectroscopy and developed an experimental apparatus integrating an electrospray </span><span style="background-color:initial">io</span><span style="background-color:initial">nization</span><span style="background-color:initial"> source with photoelectron spectroscopy, which allowed negatively-charged ions present in </span><span style="background-color:initial">solution to be studied in the gas phase, including multiply-charged anions, solvated anions, organic </span><span style="background-color:initial">and inorganic anions, and biological molecules. In this talk, I will first give a brief overview of our </span><span style="background-color:initial">r</span><span style="background-color:initial">esearch program. The main topic will be on our recent development of resonant photoelectron </span><span style="background-color:initial">spectroscopy. I will review our early effort in the studies of multiply-charged anions, followed by our </span><span style="background-color:initial">development of a cryogenic ion trap to create vibrationally-cold anions, which are important to obtain </span><span style="background-color:initial">high-resolution photoelectron spectra free of vibrational hot bands. I will describe our recent effort </span><span style="background-color:initial">in high-resolution photoelectron imaging of cryogenically-cooled anions using a tunable laser, </span><span style="background-color:initial">l</span><span style="background-color:initial">eading to the observations of dipole-bound excited states and vibrational autodetachment. I will </span><span style="background-color:initial">present resonantly-enhanced photoelectron imaging via vibrational levels of the dipole-bound states </span><span style="background-color:initial">that yields highly non-Franck-Condon photoelectron spectra and rich vibrational information. <br /><br />I will </span><span style="background-color:initial">show that resonant photoelectron spectroscopy via vibrational autodetachment of dipole-bound </span><span style="background-color:initial">excited states is an unique technique to obtain vibrational information of neutral radicals, including </span><span style="background-color:initial">conformation-selective vibrational information.</span></div></div>https://www.chalmers.se/sv/institutioner/ims/kalendarium/Sidor/Hur-vill-du-att-det-ska-fungera.aspxhttps://www.chalmers.se/sv/institutioner/ims/kalendarium/Sidor/Hur-vill-du-att-det-ska-fungera.aspxHur vill du att Campus Johannebergs nya mobilitetstjänst ska fungera?<p>Campus Johanneberg, campus, Göteborg</p><p>​Under våren 2020 och drygt ett år framåt ska anställda på Chalmers och andra företag verksamma på campusområdet i Johanneberg få möjlighet att testa en ny mobilitetstjänst. De övriga företagen är Chalmersfastigheter, HSB, Akademiska Hus och Johanneberg Science Park. En annan liknande tjänst testas på Lindholmen.</p>​<span style="background-color:initial">Det här är grundtanken: Via en och samma app skall du kunna boka elbilar och elcyklar samt söka och betala resor med kollektivtrafik för lokala tjänsteresor. Du skall nå bilarna och cyklarna på någon av de mobilitetshubbar som ska skapas på Johannebergs-området. De kommer att placeras i anslutning till hållplatser för kollektivtrafik. </span><div> </div> <div><span style="background-color:initial">Men vad är viktigt för dig som gör den här typen av tjänsteresor? Hur viktigt är det t.ex. att tjänsten erbjuder elcyklar? Vad är viktigt att tänka på för att göra appen användbar och enkel att använda? Det finns många frågor kvar att lösa och vi behöver dina synpunkter.</span><br /></div> <div> </div> <div><strong>Vill du vara med och påverka hur tjänsten utformas?</strong> Då är du välkommen till en av två workshops, antingen <strong>tisdag den 3 mars eller torsdag den 5 mars, 2020</strong>. Båda startar kl. 16 och vi håller på max 2 timmar. Platsen blir någonstans på campusområdet, Campus Johanneberg.</div> <div><br /></div> <div><a href="https://ui.ungpd.com/Surveys/7495f1af-17f9-4f1b-a6df-0a4198e6ae61"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Anmäl dig här</a></div> <div><br /></div> ​Mobilitetstjänsten erbjuds genom <span style="font-weight:700">samarbetsprojektet MoJo</span>. Här ingår Chalmers, Chalmersfastigheter, HSB, Akademiska Hus, Johanneberg Science Park samt Smart Resenär och EC2B/Trivector.​​<div><br /></div>https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Disputation-Gustav-Avall-200320.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Disputation-Gustav-Avall-200320.aspxGustav Åvall, Fysik<p>PJ, lecture hall, Fysikgården 2B, Fysik Origo</p><p>​ Titel på doktorsavhandlingen: &quot;Structure and dynamics in liquid battery electrolytes.</p><strong>Sammanfattning</strong>: Publiceras under februari 2020<br />https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Angelika-Humbert-200326.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Angelika-Humbert-200326.aspxPhysics of changing glaciers - processes and mechanisms of ice sheets<p>PJ, lecture hall, Fysikgården 2B, Fysik Origo</p><p>​Välkommen till ett fysikkollokvium med Angelika Humbert från Alfred Wegener Institute.</p><h2 class="chalmersElement-H2">Sammanfattning:</h2> <img src="/SiteCollectionImages/Centrum/Fysikcentrum/Blandade%20bilddimensioner/Angelika.JPG" class="chalmersPosition-FloatRight" alt="" style="margin:5px;height:215px;width:165px" /><div><div><span style="background-color:initial">Ice sheets are complex systems with processes from the micro-scale to </span><span style="background-color:initial">the kilometer scale are interacting with many of those interactions </span><span style="background-color:initial">being non-linear. Two processes with major influence on the dynamics of </span><span style="background-color:initial">the entire system are still lacking physically based process </span><span style="background-color:initial">description: calving of icebergs and sliding of glaciers across the </span><span style="background-color:initial">bedrock. Both mechanisms are of crucial for simulating future change of </span><span style="background-color:initial">ice sheets in Greenland and Antarctica. After a brief introduction into </span><span style="background-color:initial">the continuum mechanics of ice sheets, we will be discussing climatic </span><span style="background-color:initial">forcing of ice sheets, the role of calving, sliding and ice sheet </span><span style="background-color:initial">simulations for projecting future sea level change.</span></div></div>https://www.chalmers.se/sv/institutioner/fysik/kalendarium/Sidor/Disputation-Mattias-Angqvist-200327.aspxhttps://www.chalmers.se/sv/institutioner/fysik/kalendarium/Sidor/Disputation-Mattias-Angqvist-200327.aspxMattias Ångqvist, Fysik<p>PJ, lecture hall, Fysikgården 2B, Fysik Origo</p><p>​Titel på doktorsavhandlingen: &quot;Atomic scale modeling of ordering phenomena</p>​<br />Sammanfattning:https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Thomas-Udem-200312.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Thomas-Udem-200312.aspxChallenging QED with atomic hydrogen<p>PJ, lecture hall, Fysikgården 2B, Fysik Origo</p><p>Välkommen till ett fysikkollokvium med professor​ Thomas Udem från Max-Planck Institut of Quantum Optics.</p><h2 class="chalmersElement-H2">​Sammanfattning:</h2> <div><span style="background-color:initial">Precise determination of transition frequencies of simple atomic systems are required for a</span></div> <div> </div> <div>number of fundamental applications such as tests of quantum electrodynamics (QED), the</div> <div> </div> <div>determination of fundamental constants and nuclear charge radii. The sharpest transition in</div> <div> </div> <div>atomic hydrogen occurs between the metastable 2S state and the 1S ground state with a</div> <div> </div> <div>natural line width of only 1.3 Hz. Its transition frequency has been measured with almost 15</div> <div> </div> <div>digits accuracy using an optical frequency comb and a cesium atomic clock as a reference [1].</div> <div> </div> <div>A measurement of the Lamb shift in muonic hydrogen is in significant contradiction to the</div> <div> </div> <div>hydrogen data if QED calculations are assumed to be correct [2]. In order to shed light on</div> <div> </div> <div>this discrepancy the transition frequency of one of the broader lines in atomic hydrogen has</div> <div> </div> <div>to be measured with very good accuracy [3].</div> <div> </div> <div><br /></div> <div> </div> <div>[1] C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011).</div> <div> </div> <div>[2] A. Antognini et al., Science 339, 417, (2013).</div> <div> </div> <div>[3] A. Beyer et al., Science 358, 79 (2017).</div> <div> </div> <div>​</div>https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Fysikens-dag-200425.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/Fysikens-dag-200425.aspxFysikens dag på Vetenskapsfestivalen<p>Vasa A, lecture hall, Vera Sandbergs Allé 8, Vasa Hus 2-3 entréhall</p><p>​​Fysikens dag är ​Fysikcentrums årliga bidrag på Vetenskapsfestivalens öppna program. Välkommen till en inspirerande temadag fullspäckad med intressanta föredrag. Du bjuds på en inblick i den senaste forskningen inom flera av fysikens områden och möjlighet att ställa dina kluriga frågor till våra forskare.</p><div class="text-normal page-content"><h2 class="chalmersElement-H2">​Program lördag 25 april, 2020</h2> <span style="font-weight:700"><br />Moderatorer</span><span style="font-weight:700">:</span> Christian Forssén och <span style="display:inline-block"></span>Fredrik Höök, professorer, institutionen för fysik, Chalmers.<span style="display:inline-block"></span><br /><span style="font-weight:700"></span><p style="margin-bottom:10px"><span style="font-weight:700"><br />10.00 – 10.<span style="display:inline-block"></span>40 </span><b>Exoplaneter - planeter i andra solsystem</b><br /><em>Carina Persson, forskare, Rymd- geo- och miljövetenskap, Chalmers</em><br /></p> <p style="margin-bottom:10px">25 år efter den första upptäckten av en planet som kretsar kring en annan stjärna har mer än 4 000 exoplaneter upptäckts. Flera rymdteleskop har skjutits upp och nya upptäckter görs dagligen. Men hur går det till? Och vad har upptäckts? Finns det jordlika planeter som är lämpliga för liv?<br /><br /></p> <p style="margin-bottom:10px"><span style="font-weight:700">10.45 – 11.25 </span><b>Kvantkemisk astrobiologi och livets byggstenar</b><br /><i>Martin Rahm, forskarassistent, Kemi och kemiteknik, Chalmers</i><br /></p> <p style="margin-bottom:10px">Livets ursprung är ett glödhett forskningsämne där frågorna är många: vilka miljöer och kemiska processer möjliggör för uppkomsten av liv? Hur hittar vi annat liv? Vi kommer att diskutera hur kvantkemiska beräkningar används för att testa några av livets gränser på Saturnus måne Titan.</p> <div><br /></div> <p style="margin-bottom:10px"><span style="font-weight:700">11.25 - 11.45 Fika<br /></span>Fysikcentrum Göteborg bjuder alla besökare på fika i pausen.<span style="display:inline-block"></span><br /><br /><span style="font-weight:700">11.45 – 12.25 </span><b>Panelsamtal om livets ursprung. Vad är liv?</b><br /></p> <p style="margin-bottom:10px"><i>Fredrik Höök, professor på Fysik, Chalmers <br /></i><i style="background-color:initial">Christian Forssén, professor på Fysik, Chalmers<br /></i><i style="background-color:initial">Carina Persson, forskare, Rymd- geo- och miljövetenskap, Chalmers<br /></i><i style="background-color:initial">Martin Rahm, forskarassistent, Kemi, Chalmers</i></p> <p style="margin-bottom:10px">Hur katalyserades livets första självkatalyserande kemiska reaktioner? Har livet på jorden ett gemensamt ursprung? Kommer liv, om det finns i andra delar av universum, ha samma kemiska byggstenar som det liv vi känner? Kommer människan att kunna skapa helt konstgjort liv?</p> <div><br /></div> <p style="margin-bottom:10px"><span style="font-weight:700">14.00 – 14.40 </span><b>Batterier som formar vår vardag och framtid</b><br /><i>Aleksandar Matic, professor, Fysik, Chalmers</i><br /></p> <p style="margin-bottom:10px">Batterier har blivit en del av vår vardag och har bland annat gett oss mobil kommunikation. En utmaning för en hållbar framtid är att all transport ska vara elektrifierad och drivas av grön el. Då behövs en ny batterirevolution!</p> <p style="margin-bottom:10px"><br /><span style="font-weight:700">14.45 – 15.25 </span><b>Jakten på mörk materia</b><br /><i>Emelie Olsson, doktorand på Fysik, Göteborgs universitet</i><br /></p> <span></span><p style="margin-bottom:10px">Det finns fem gånger mer mörk materia än vanlig materia i universum, trots detta är den mörka materian ett stort mysterium. Forskarna försöker skapa och detektera mörk materia vid CERN, världens ledande center för högenergifysik. Hur detta går till och några av utmaningarna presenteras.</p> <p style="margin-bottom:10px"><br /><span style="font-weight:700">15.<span style="display:inline-block"></span>30 – 16.10 Einsteinföreläsning</span><br /><em>Varje år håller en hemlig gäst ett föredrag till minne av Albert Einsteins Nobelföreläsning i Göteborg.<br /></em><br /></p> <p></p> <h2 class="chalmersElement-H2"><span>Välkomna!</span></h2> <p></p></div> <div class="separator"> </div> <span class="text-normal"><span style="font-weight:700">Campus Johanneberg<br />Hållplats:</span> Kapellplatsen, linje 7, 10, 16</span>https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Patrice-Simon-200514.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Patrice-Simon-200514.aspxFysikkollokvium med Patrice Simon<p>PJ, lecture hall, Fysikgården 2B, Fysik Origo</p><p>​Välkommen till ett föredrag med Professor​ Patrice Simon, University Paul Sabatier Toulouse, Frankrike Titel: Electrochemistry at nanoporous electrodes: 2- and 3-D electrodes for Electrochemical Capacitor applications</p><h2 class="chalmersElement-H2">​Sammanfattning:</h2> <div>This presentation will give an overview of the research work we achieved on capacitive (porous carbon) and pseudocapacitive materials and the challenges/limitations associated with the development of these materials. Starting with porous carbons, we will present the state-of-the art of the fundamental of ion adsorption mechanism in porous carbons and its practical applications. Moving from double layer to pseudocapacitive materials, we will show how the control of the electrodes structure can help in preparing high energy electrodes using 2-Dimensional MXene materials.​</div>https://www.chalmers.se/sv/institutioner/mc2/kalendarium/Sidor/LC-Michel-Devoret.aspxhttps://www.chalmers.se/sv/institutioner/mc2/kalendarium/Sidor/LC-Michel-Devoret.aspxCatching and reversing a quantum jump mid-flight<p>Kollektorn, lecture room, Kemivägen 9, MC2-huset</p><p>​Welcome to a joint Linnaeus and GPC Colloquium with Michel Devoret, Yale University, USA</p><div><b><img src="/SiteCollectionImages/Institutioner/MC2/Föreläsningar/M%20Devoret.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:200px;height:235px" />Abstrakt:</b></div> <div>Measurements in quantum physics, unlike their classical physics counterparts, can fundamentally yield discrete and random results. Historically, Niels Bohr was the first to hypothesize that quantum jumps occurred between two discrete energy levels of an atom. Experimentally, quantum jumps were only directly observed many decades later, in an atomic ion driven by a weak deterministic force under strong continuous energy measurement. The times at which the discontinuous jump transitions occur are reputed to be fundamentally unpredictable. Despite the non-deterministic character of quantum physics, is it possible to know if a quantum jump is about to occur? </div> <div>Our work<sup>1</sup> provides a positive answer to this question: we experimentally show that the jump from the ground state to an excited state of a superconducting artificial three-level atom can be tracked as it follows a predictable “flight” by monitoring the population of an auxiliary energy level coupled to the ground state. The experimental results demonstrate that the evolution of the jump — once completed — is continuous, coherent, and deterministic. Based on these insights and aided by real-time monitoring and feedback, we then pinpoint and reverse one such quantum jump “mid-flight”, thus deterministically preventing its completion. Our findings, which agree with theoretical predictions essentially without adjustable parameters, lend support to the modern formulation of quantum trajectory theory; most importantly, they may provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as the early detection of error syndromes.</div> <div><br /></div> <div>1.<span style="white-space:pre"> </span>Z. Minev et al., Nature 570, 200–204 (2019)</div> <div><br /></div> <div></div> https://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Markus-Janson-200604.aspxhttps://www.chalmers.se/sv/centrum/fysikcentrum/kalendarium/Sidor/COLL-Markus-Janson-200604.aspxHigh-contrast imaging of exoplanets<p>PJ, lecture hall, Fysikgården 2B, Fysik Origo</p><p>​Välkommen till ett föredrag med Markus Janson, Stockholms universitet.</p><h2 class="chalmersElement-H2">​Sammanfattning: </h2> <div>Since the first discoveries of plants in orbit around other stars in the early/mid-1990s, the field of exoplanet research has rapidly expanded, and now encompasses thousands of exoplanet detections, as well characterization of the detected systems to various degrees of depth. In this talk, I will discuss the different techniques used to detect and study exoplanets, with a particular emphasis on high-contrast imaging, which allows to probe both orbital, physical and atmospheric properties of the planet. High-contrast imaging also allows to study planets during their actual phase of formation, and their interactions with the surrounding protoplanetary disk in which they form. While the sensitivities with currently existing telescopes generally only allow for the detection of classes of planets quite unlike the Earth, improvements in technology are continuously enhancing these sensitivities. I will discuss the pathways toward the ability to detect and characterize true Earth analogs, which will (most likely) be required to assess the frequency and distribution of habitability and life in the universe.​</div>