LABORATION FM4

RÖNTGENDIFFRAKTION

Handledare: ..

Namn: .. Nr: Labplats

Laborationen utförd den

Laborationen inlämnad den

Godkänd den

av ..

RÖNTGENDIFFRAKTION

Apparaturen och dess handhavande

Den använda röntgendiffraktometern består av röntgenrör med högspänningsgenerator, goniometer, detektor med spänningskälla och förstärkare samt signalbehandlings- och presentationsutrustning.

I allmänhet utmatas den uppmätta intensiteten på en potentiometerskrivare, varvid intensiteten avsättes mot avböjningsvinkeln (θ). Registreringsens utseende berör av ett flertal faktorer, av vilka följande kan påverkas genom manuell inställning av diffraktometerns manöverdon:

a) Spänning och strömskytte
b) Avsökningshastighet och avsökningssriktning
c) Skrivvarhastighet
d) Tidskonstant
e) Maximala skrivutslaget
f) Nollnivå
g) Skrivarkänslighet
h) Detektorspänning
i) Pulshöjdtsdiskriminering
j) Fixerad tid eller fixerat antal pulser
k) Stegning

a) Spänning och strömskytte

Inställningen av dessa beror på röntgenrörtyp och anodmaterial. I detta fall har vi ett 2 kW Cu-rör, vilket innebär att inställningen 60 kV, 33 mA är möjlig, även om vi här belastar röret med endast 1400 W, dvs 50 kV och 28 mA. Cu- och Mo-rör av normal typ kan belastas med 1000 W (vanligast är emellertid 40 kV och 20 mA).

b) Avsökningshastighet och avsökningsriktning

Avsökningshastigheten kan ändras genom byte till annan drivhjulskombination. Hastigheten räknas i $^\circ2\theta$ per min. och kan väljas till $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, 1 och 2°.

Avsökningsriktningen kan väljas med ett vred, där high, low resp. osc. innebär från låga 2θ-värden till höga, från höga till låga resp. avsökning av vinkelområdet i båda riktningarna. Gränsvärdena ställs in på en skala vid goniometeraxeln.
c) **Skrivarhastighet**

Skrivarhastigheten varieras genom inställning av ett bakelithjul till vänster och bakom papperet. Valmöjligheterna är (0, 5, 10, 20 resp. 40) x 40 mm/h. Skrivaren sätts på genom att fälla knappen rec.motor uppåt (~).

d) **Tidskonstant**

Värdet på tidskonstanten är proportionellt mot den tid pulserna "hopsamlas" innan de sänds vidare till skrivaren. Tillverkaren rekommenderar att den sätts \(\approx \frac{2}{\text{avvåkningshastigheten}} \text{ i } ^\circ/\text{min}. \)

Reglaget är märkt *time constant*.

e) **Maximala skrivarutslaget**

Detta kan med två reglage ställas in mellan 100 och 400.000 pulser per sekund. För att finna ett lämpligt värde, ställs goniometern in på den vinkel, \(\Theta \), som motsvarar den starkaste reflexen. Därefter justeras reglagen så, att skrivarens utslag motsvarar 80-90 \% av maximala utslaget.

f) **Nollnivån**

Nollnivån kan med hjälp av ett särskilt reglage, *zero suppressio* förskjutas åt vänster \(\frac{1}{4}, \frac{1}{2} \) resp. \(\frac{3}{4} \) av hela skrivarutslaget.

g) **Skrivarkänsligheten**

h) **Detektorsspänning**

Spänningen på proportionaldetektorn måste som tidigare antytts ligga mellan 1550 och 1750 V. Pulsernas amplitud är starkt avhängig inställningen av denna och variationer på detektorsspänningen av yttre eller inre anledningar kan ge upphov till helt felaktiga värden. I ifrågavarande fall har c:a 1650 V valts.
i) Pulshöjdsdiskriminering

De från detektorn kommande pulserna är av storleksordningen 100 mV. Pulserna får efter detektorn bl.a. genomgå en s.k. pulsskärningsenhet, där de omformas och anpassas till en förstärkare. Från förstärkaren leds pulserna till pulshöjdsdiskriminatorn. Denna har tre reglage;

1) **Attenuation**, dämpning 2^z där z kan ha värdena 0,1,2,3,4,5,6 och 7.

2) **Lower level**, tröskel som kan varieras från 0 till 100 V.

3) **Window**, fönster som helt kan fränkopplas eller varieras mellan 0 och 50 V.

Nedan visas ett exempel på en amplitudfördelningskurva för pulser genererade av CuK$_\alpha$-strålning.

![Amplitudkurva](image)

Denna kan lätt konstrueras genom att ställa in goniometern på en lämplig reflex från ett standard preparat t.ex. Si (starkaste reflexen $2\theta = 28,44^\circ$). Dämpningen, 1), regleras därefter så att pulsmaximum om möjligt kommer att ligga mellan 40 och 70 V på tröskelskalan. Därefter ställs fönstret på t.ex. 1 V och området avsökes genom att räkna antalet pulser per sek., då tröskeln förflyttas 1 V i taget.
Av ovanstående figur framgår att fönstret här är placerat ovanpå tröskelvärdet, inte som ibland är brukligt runt detsamma.

Då amplitudfördelningskurvan har upptagits väljer man ett fönster mellan 10 och 15 V och ställer med hjälp av tröskelreglaget in det symmetriskt runt toppens mitt. På detta sätt kommer "ströstrålning" med högre eller lägre energi än CuK\textsubscript{\alpha} att skäras bort, och förhållandet mellan topphöjd och bakgrund på diffraktogrammet kommer att förbättras.

j) **Fixerad tid eller fixerat antal pulser**

Vilken metod som än användes bör ett tillräckligt antal pulser räknas dvs. 10.000 och däreover. Anledningen till detta är att kvanta i en stråle inte följer på varandra med regelbundna tidsmellanrum utan fördelas sig helt slumpartat i tiden i enlighet med statistiska lagar. I en stråle, vars medelintensitet mätt över lång tid är konstant, uppträder därför fluktuationer i impulstalet. Man kan visa att om totalt N impulser uppmätts, blir den statistiska osäker-
heten \sqrt{N} impulser, dvs $100/\sqrt{N}$ %. Nedanstående tabell ger några numeriska exempel.

<table>
<thead>
<tr>
<th>N</th>
<th>\sqrt{N}</th>
<th>$100/\sqrt{N}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>32</td>
<td>3,2</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>100000</td>
<td>320</td>
<td>0,32</td>
</tr>
</tbody>
</table>

Här har uttrycket statistisk osäkerhet använts i stället för det mera korrekta standardavvikelse. Omkring 50 % av alla mätningar har mindre avvikelse från det rätta värdet än $2/3 \sqrt{N}$, 68 % har mindre avvikelse än \sqrt{N}, 95 % mindre än $2\sqrt{N}$ och 99,74 % av mätningarna avviker mindre än $3\sqrt{N}$ från det rätta värdet. Vid kvantitativa bestämnings måste man alltså undvika små totala impulstdel. Det är dessutom många gånger lämpligt att räkna ett fixt antal impulser för att på detta sätt ha lika stor statistisk osäkerhet i alla värdena.

k) **Stegning**

Diffraktometern är också utrustad med en anordning för stegning, där 2θ stegas med 0,01, 0,02 eller 0,05°. Här utnyttjas sedan de ovan under j) beskrivna möjligheterna att räkna fix tid eller ett fixt antal pulser. Diffraktometern kan också utrustas med en pränt som skriver ut erhållna värden och sedan låter diffraktometern stega vidare.

2. **Provpreparering**

Plana prov av typen metallplåt behöver som regel inte prepareras utan kan monteras direkt med hjälp av en fjädor som håller provet i läge.

Består provet av ett varierande antal små och/eller stora partiklar måste det malas ner till ett pulver med en partikelstorlek mellan 1 och 10 μ. Detta kan lämpligen göras i en agatmortel. Det malda provet placeras sedan i en för ändamålet tillverkad pulverhållare och slätas till med en glasskiva så att det får en jämn och plan yta. Både molning och montering har mycket stor betydelse för re-
producerbarheten. Vill man använda någon kalibreringssubstans blandas denna lämpligen i vid malningen av provet.

Diffraktometern kan även utrustas med en roterande provhållare, vilket minskar negativa effekter orsakade både av orientering och av för stor kornstorlek.

3. Utvärdering av resultat

Ur de erhålta intensitetskurvorna kan följande information erhållas helt eller delvis

a) Planavstånden, d, för de uppträdande reflexerna
b) Miller indices för reflexerna
c) Enhetscellens dimensioner och gittetyper
d) Reflexernas intensitet
e) Kvalitativ identifikation av faser
f) Kvantitativ analys av fasbländningar
g) Bestämning av kristallitstorleken ur toppbredden

I denna laboration skall endast planavstånden för de ingående faserarna i ett metallpulver bestämmas.
Uppgift:

Slitstarka ytskikt på hårdmetall har stor teknisk betydelse, t ex för livslängd på verktyg. Ett sätt att åstadkomma ett sådant ytskikt är att låta titan-tetraklorid strömma förbi hårdmetaller vid hög temperatur, cirka 1 000°C.

![Diagram](image)

Uppgiften består i:

1. Ta upp ett diffraktogram från hårdmetallen och bestämma ingående faser.

2. Från befintligt diffraktogram bestämma de faser som ingår i ytskiktet.
Instuderingsfrågor till laboration:

FM4 RÖNTGENDIFFRAKTION

1. Vad är röntgenstrålning fysikaliskt sett?
2. Hur alstrar man röntgenstrålning?
3. Hur kan röntgenstrålning växelverka med kristaller?
5. Rita en skiss över en fluorescensspektrometer.
6. Vilka detektortyper används vid fluorescensanalys?
7. Rita en skiss över en pulverdiffraktometer.
8. Om man vill utnyttja Kalfa-strålning från ett röntgener, hur undviker man Kbeta-strålningen?
MATERIEFYSIK
FY 100

INTRODUKTION TILL
LABORATION FM 4

Denna introduktion är huvudsakligen hämtad ur kompendium för Industriella Fysikaliska Analysmetoder.
ANALYS MEDELST RÖNTGENDIFFRAKTION

1. INLEDNING

1.1 Röntgenspektra

Röntgenstrålning är den elektromagnetiska strålning i våglängdsområdet från 5×10^{-14} m till 5×10^{-9} m, som uppkommer vid kvantsprång i atomers och molekylers elektronhöljen. I tekniken alstras röntgenstrålning på två sätt: antingen låter man elektriskt laddade partiklar av tillräckligt hög energi bromsas i materia eller också bestrålar man materia med röntgenstrålning. Den avgivna strålningen utgör i det förra fallet primär röntgenstrålning och i det senare fluorescensstrålning.

I synnerhet den primära röntgenstrålningen uppvisar ett okarakteristiskt kontinuerligt spektrum av s.k. "bromstrålning". Överlagrade på bromsträlningspektrum upptråda ämneskarakteristiska spektrallinjer (se fig 1).

Fig. 1 Röntgenspektrum från molybden vid bromsning av 35 keV elektroner.
De tyngre grundämnena uppvisa flera spektrallinjer, tillhörande K-, L-, M-serierna o.s.v. (se fig 2). Motsvarande energinivåer hänföra sig till

atomernas inre elektronskal och påverkas därför mycket ringa av atomernas kemiska omgivning, varför spektralanalys av den karakteristiska röntgenstrålningen utmärkt lämpar sig för grundämnemesanalys. Sambandet mellan våglängden, \(\lambda \), för en viss röntgenlinje och atomnumret, \(Z \), för den utsändande atomen gives av Moseleys lag:

\[
\frac{1}{\sqrt{\lambda}} = C(Z - \sigma),
\]

där \(C \) och \(\sigma \) är konstater, som utmärka vederbörande spektalarserie (jfr fig.3).
Fig. 3 Moseleys samband mellan våglängd (eller frekvens) och atomnummer.

1.2 Röntgenstrålnings interferens i kristaller

Då strålning genomgår materia, kommer strålningen genom växelverkan med materien att spridas. Om strålningsens våglängd är av samma storleksordning som de utmärkande avstånden i materien, yttrar sig spridningen såsom böjning (diffraktion). I synnerhet kommer röntgenstrålnning, vars våglängd storleksordningsvis uppgår till 1 Å (10^{-10} m), att diffrangeras av atomer och molekyler. Om dessa äror regelbundet anordnade i rummet, såsom i en kristall, kommer till följd av interferens diffraktionen att vara särskilt kraftig, då vissa geometriska villkor är uppfyllda.

Inom kristallografien beskriver man en kristall såsom uppbyggd av ett stort antal identiskt lika enhetsceller, materiefyllda parallelepipeder, staplade tätt intill varandra i tre dimensioner med sammanfallande hörnpunkter. Mängden av hörnpunkter utgör kristallens rymdgitter. Ett plan, som innehåller ett...
Fig. 4 Rymdgitter med fyra nätplanskaror inlagda:
(a) (111), (b) (100), (c) (101) och (d) (201).

antal gitterpunkter, kallas ett kristallplan eller nätplan. Eftersom all gitterpuntär är likvärdiga, svarar varje möjlig orientering av ett nätplan mot en hel skara av parallella nätplan (fig. 4). Varje sådan planskara kännetecknas av sina millerska indices (h k l), hela tal utan gemensam heltalsdivisor, och avståndet $d_{h,k,l}$ mellan näraliggande plan i skaran är entydigt bestämt av enhetscellens dimensioner.

Teorien för röntgenstrålnings interferens i kristaller kan förenklats sammanfattas i två interferensvillkor: (i) Vid interferens är infallsvinkeln mot något nätplan lika stor som reflexionsvinkeln, d.v.s. nätplanet i fråga uppträder, som vore det en spegel. (ii) Vid interferensmaximum gäller, att

$$2d_{h,k,l}\sin \theta = n\lambda$$

(Braggs villkor), där θ är glansvinkeln med avseende på den "speglande" planskaran (h k l), dvs vinkeln mellan strålriktningen och ett plan i skaran, λ är strålningens våglängd och n är ett helt tal (interferensens ordningstal). Ofta skriver man

$$2d_{nh,nk,nl}\sin \theta = \lambda,$$
varvid man betraktar interferenserna som orsakad av spegling mot en plan-skara med avståndet \(d_{nh,nk,nl} = \frac{d_{h,k,l}}{n} \), kännetecknad av sina braggiska indices \(nh \), \(nk \), \(nl \). De braggiska indices nyttjas för klassifikation av interferenserna från en kristall. Sådana utgör reflexionen \(2 \overline{2}0 \) andra ordningens interferens från kristallplanskaran \(2 \overline{2}0 \), reflexionen \(6 \overline{3}0 \) tredje ordningens interferens från samma skara o.s.v.

1.3 Kristallinterferensers utnyttjande i analystekniken

Det braggiska interferensvillkoret förknippar med varandra tre fysikaliska storheter: röntgenstrålingens våglängd \(\lambda \), braggplanavståndet \(d_{nh,nk,nl} \) samt spridningsvinkeln \(\theta \). Tre vägar att nyttja röntgeninterferens i analytiskt syfte öppna sig då.

För det första kan man använda en viss planskara i en given kristall till att spektraluppdela röntgenstråling från ett prov \((d = \text{konstant}, \theta = \theta(\lambda)) \); man kan då göra kvalitativ och/eller kvantitativ grundämnesanalys av provet. Om den undersökta strålingen utgör fluorescensstråling, talar man då om våglängdsdispersiv fluorescenspektrometri.

För det andra kan man nyttja strålnings av fastlagd våglängd till bestämning av braggplanavstånden för ett kristallint prov \((\lambda = \text{konstant}, \theta = \theta(d)) \); med hjälp härav kan man företaga fasanalys av provet. Vid rutinanalys enligt denna princip utgår man från ett pulveriserat prov, varför metoden vanligen kallas pulverfotografi eller pulvediffraktometri, alltefter det använda registreringsförfarandet. För fullständighetens skull talar man lämpligen om vinkeldispersiv diffraktometri.

En tredje väg består i att man bestrålar provet med polyenergetisk röntgenstrålnings (bromstrålnings) och analyserar spektrum för den strålnings, som i given riktning sprides av provet \((\theta = \text{konstant}, \lambda = \lambda(d)) \); härigenom möjliggöres fasanalys medelst energiupplösande detektor. Vi kunde kalla detta förfarande energidispersiv diffraktometri.

Gemensamt för spektrometrisk och diffraktometrisk analys är, att båda förutsätta tillgång till listor över förekommande spektrallinjer resp. diffraktionslinjer. För fluorescenspektrometri fordras endast en för-teckning över samtliga grundämns spektrallinjer i området 0,5 - 20 Å. Diffraktometri, vars syfte är fasanalys, bjuder i detta hänseende större svårigheter: för en förutsättningslös analys fordras tillgång till tabeller över diffraktionsmönstren för alla existerande kristallina faser. Tack vare ett omfattande kartläggningsarbete finnas värden på de viktigaste braggplanavstånden sammanställda för närmare 40 000 kristallina faser.
2. VÅGLÅNGDSDISPERSIV FLUORESCENSANALYS

2.1 Fluorescensspektrometer

För våglångsdispersiv fluorescensröntgenanalyse nyttjas särskilda instrument, fluorescensspektrometrar (se figurerna 5 och 6).

![Diagram](image)

Fig. 5 Fluorescensspektrometer med plan kristall.

![Diagram](image)

Fig. 6 Fluorescensspektrometer med krökt kristall.

Fig. 7 Fluorescensspektrum av rostfritt stål (Cr 18, Ni 8%, Mn och Co smärre mängder, Fe resten). Primärstrålning från W-antikatod, rörspänning 50 kV. Linjerna från Cu och W härrör från primärstrålningen.
I en fluorescensspektrometer med plan kristall (se fig. 5) nyttjas vanligen reflexionen 2 0 0 från natriumklorid eller lithiumfluorid. Strålingen måste kollimeras, vilket göres medelst en sollerkollimator, ett system av tunna metallplåtar (tjocklek ofta 50 μm) ordnade parallellt med varandra på litet avstånd (0,4–0,5 mm), varigenom strålingenens divergens begränsas till ≈ 1,5°.

Spektrometern med krökt kristall (se fig. 6), å andra sidan, arbetar med divergent strålning, som genom en spaltbländare får infalla mot kristallens yta. Genom kristallens krökning fokuseras den reflekterade strålingen, och i fokus finnes anbringä annu en spaltbländare, vilken släpper fram det önskade strålnkippet till detektorn. Kristallen kan vara aningen en alkalihalidkristall enligt ovan, varvid strålingen speglas från den konkava kristallytan, eller en glimmerkristall (tjocklek 15–100 μm), varvid strålingen under genomgång av kristallen reflekteras i första ordningens diffaktion från kristallplanet (3 3 7), vilket är vinkelrätt mot glimmers klyvplan.

På senare tid har man för långvägig strålning börjat nyttja kristaller av organiska salter såsom kaliumväteftalat ("KAP"), rubidiumväteftalat ("RbAP") och blystearat. Tabell I visar värden för några använda analysatorskristaller.

<table>
<thead>
<tr>
<th>Ämne</th>
<th>nh</th>
<th>nk</th>
<th>ni</th>
<th>nl</th>
<th>2d_{nh, nk, nl}/Å</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithiumfluorid</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1,80</td>
<td></td>
</tr>
<tr>
<td>Lithiumfluorid</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2,84</td>
<td></td>
</tr>
<tr>
<td>Glimmer</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3,0</td>
<td>0,3°</td>
</tr>
<tr>
<td>Kaliumfluorid</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3,86</td>
<td></td>
</tr>
<tr>
<td>Lithiumfluorid</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,03</td>
<td>0,5°</td>
</tr>
<tr>
<td>Glimmer</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td>5,06</td>
<td></td>
</tr>
<tr>
<td>Natriumklorid</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,64</td>
<td>0,5°</td>
</tr>
<tr>
<td>Kaliumfluorid</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6,31</td>
<td></td>
</tr>
<tr>
<td>Germanium</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6,53</td>
<td></td>
</tr>
<tr>
<td>Kvarts</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6,70</td>
<td></td>
</tr>
<tr>
<td>Grafit, pyrolytisk (PG)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6,72</td>
<td></td>
</tr>
<tr>
<td>Pentaerytritol (PE, PET)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td>8,74</td>
<td></td>
</tr>
<tr>
<td>Ammoniumväteftosfat (ADP)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10,64</td>
<td></td>
</tr>
<tr>
<td>Gips</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15,18</td>
<td></td>
</tr>
<tr>
<td>Glimmer</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>20,2</td>
<td></td>
</tr>
<tr>
<td>Rubidiumväteftalat (RAP, RbAP)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>26,12</td>
<td></td>
</tr>
<tr>
<td>Kaliumväteftalat (KAP)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>26,62</td>
<td></td>
</tr>
<tr>
<td>Blystearat</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>≈ 100</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Detektorn

De detektorer, som nyttjas vid fluorescensanalys, äro geigerräknare, proportionalräknare och scintillationsräknare. Gasräknarna (geiger- och proportionalräknare) voro tidigare vanligen kryptonfyllda och voro då känsliga för strålning med våglängd större än 0,5 Å. För kortvågigare strålning användes scintillationsräknare med talliumdopad natriumjodidkristall och multiplikatorfotocell. Geigerräknaren lider nackdelen av stor dödtid (typiskt 200 µs), varigenom särskilda åtgärder (dödtidkorrektion eller dämpning av strålfältet medelst metallplåtar i strålgången) måste vidtas vid räknehastighet över 1000 s⁻¹.

I moderna spektrometrar användas scintillationsräknare för strålning med våglängd under 1,5 Å. För långvågigare strålning nyttjas gasflödesproportionalräknare med blandningar av å ena sidan argon, neon eller helium och å andra sidan metan eller koldioxid. Med He 70, CO₂ 30 % kan man detektera Ko-strålningen från fluor (våglängd 18,3 Å) utan störning av strålning från tunga element. I mellanområdet nyttjas även slutna gasräknare med fyllning av argon eller xenon.

Tabell II.

Typiska parametrar för delspektrometrar ingående i parallellröntgenanalyssator för industriellt rutinbruk.

<table>
<thead>
<tr>
<th>Element att mäta</th>
<th>Spektral linje</th>
<th>Kristall</th>
<th>Detektor Typ</th>
<th>Fönster</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 F - 12 Mg</td>
<td>Ca</td>
<td>RbAP 001, krökt</td>
<td>Flödesprop.</td>
<td>1 µm plast</td>
</tr>
<tr>
<td>13 Al, 14 Si, 17 Cl - 19 K</td>
<td>Ca</td>
<td>PE 002, krökt</td>
<td>Flödesprop.</td>
<td>1 µm plast</td>
</tr>
<tr>
<td>15 P, 16 S</td>
<td>Ca</td>
<td>Ge 111, krökt</td>
<td>Flödesprop.</td>
<td>1 µm plast</td>
</tr>
<tr>
<td>20 Ca - 26 Fe</td>
<td>Ca</td>
<td>LiF 200, krökt</td>
<td>Sluten Ar-prop.</td>
<td>50 µm Be</td>
</tr>
<tr>
<td>27 Co</td>
<td>Ca</td>
<td>LiF 200, krökt</td>
<td>Slutén Xe-prop.</td>
<td>150 µm Be</td>
</tr>
<tr>
<td>28 Ni - 39 Y</td>
<td>Ca(KB)</td>
<td>LiF 200, flat</td>
<td>Slutén Xe-prop.</td>
<td>150 µm Be</td>
</tr>
<tr>
<td>40 Zr - 48 Cd</td>
<td>Ca</td>
<td>LiF 200, flat</td>
<td>Scintill.</td>
<td></td>
</tr>
<tr>
<td>49 In - 51 Sb</td>
<td>Ca</td>
<td>LiF 220, flat</td>
<td>Scintill.</td>
<td></td>
</tr>
<tr>
<td>52 Te - 92 U</td>
<td>La(LB)</td>
<td>LiF 200, flat</td>
<td>Slutén Xe-prop</td>
<td>150 µm Be</td>
</tr>
</tbody>
</table>
2.3 Spektrometerns upplösning

Upplösningen hos en spektrometer angives som $\lambda / \Delta \lambda$, där λ är strålningens våglängd och $\Delta \lambda$ är våglängdsskillnaden mellan två linjer, som instrumentet just förmår upplösa. Differentiering av Braggs villkor (2) giver

$$\frac{\lambda}{\Delta \lambda} = \frac{\text{tg} \theta}{\Delta \theta},$$

(där $\Delta \theta$ är vinkelavståndet mellan två nätt och jämnt upplösta toppar i spektrogrammet. Vid en fokuserande spektrometer begränsas upplösningen av den naturliga bredden, B, hos kristallinterferensen, av storleksordningen $0,5^\circ$, d.v.s.

$$\frac{\lambda}{\Delta \lambda} = \frac{\text{tg} \theta}{B}.$$

En typisk användning av fluorescensröntgenanalys inom metallurgien innebär, att krom och mangan måste upplösas. Linjerna Cr Kβ och Mn Kα ha våglängdsvärdena $2,085 \ \text{Å}$ resp. $2,104 \ \text{Å}$. Instrumentet måste då ha bättre upplösning än $\lambda / \Delta \lambda = 2,1/0,019 \approx 111$. Med värden från tabell I beräknar man upplösningsvärdena för glimmer 3 3 7, litiumfluorid 2 0 0 och natriumklorid 2 0 0 till resp. 182, 70 och 46, vilket innebär att endast glimmerkristallen i detta fall giver tillräcklig upplösning.

2.4 Automatisk fluorescensspektrometri

Automatiska fluorescensspektrometrar ha funnit stor industriell användning främst inom den metallurgiska industrien. De kunna indelas i parallellspektrometrar och sekvensspektrometrar.

I sekvensspektrometern mätras de särskilda grundämnenas linjer i följd efter varandra, varvid analysatorkristall och detektor medelst en servo- eller stegmotor vridas mellan mätningarna. En typisk sådan spektrometer tillåter mätning i 20 eller 40 lägen, varav vissa, åtminstone vid kvantitativ analys, måste användas för kalibreringsmätning av en referenslinje. I den mån styrverket utgöres av en räkneautomat ("minidator"), blir antalet lägen praktiskt taget obegränsat, samtidigt som räknetiden kan väljas individuellt med hänsyn till antalet räknade pulser. För rutinanalysbruk kan sekvensspektrometern utrustas med magasin för upp till 80 prover, vilka automatiskt analyseras i följd efter varandra. Sekvensspektrometern ställer stora krav på konstans hos röntgenrörets spänning och ström.

Automatiska spektrometrar utrustas vanligen för automatisk utskrift av analysprotokollet.

Om de olika grundämnen icke störde varandra, skulle man förvänta sig att intensiteten hos en spektrallinje från ett prov varierade lineärt med mängden av motsvarande element i provet. I verkligheten kan intensiteten avvika betydligt från linearitet (fig. 8).

![Diagram](image)

Fig. 8 Sambandet mellan intensiteten hos Fe Kα och järninnehållet vid fluorescensanalys av olika järnlegeringar.

Man finner, att halten C_i av ett element i i provet måste beräknas ur intensitetsvärdena I_j för spektrallinjer från samtliga grundämnen j i provet, t ex enligt formeln

$$C_i = a_{10} + a_{11}I_i + a_{12}I_i^2 + I_j \sum m_{ij}I_j + \sum b_{ij}I_j,$$

(6)

där a_{10}, a_{11}, a_{12}, b_{ij} och m_{ij} är koefficienter, som måste bestämmas. Bestämningen av koefficientmatriserna utgår från mätningar på standardprover av känd sammansättning och regression från mätvärdena. Ofta måste iterativa förfarsanden tillgripas, vilket ej bjuder svårigheter i moderna automatiska system.
2.6 Metodens användbarhet

Röntgenfluorescensanalys kan användas för kvalitativ och kvantitativ grundämnesanalys av nästan alla fasta och flytande ämnen, förutsatt att intet lättare ämne än fluor skall bestämmas. Med särskilda provkammare kunna även gaser analyseras.

Inträngningsdjupet för röntgenstrålning i materia varierar med strålningens våglängd och materialets atomnummer och masstäthet. För långvågig strålning (5 - 20 Å) i t ex järn är inträngningsdjupet < 1 μm. Med avseende på lätta grundämnen i en tyngre matris leder röntgenspektrometri alltså väsentligen till en analys av ytan.

Påvisbarhetsgränsen för ett grundämne vid kvalitativ fluorescensanalys av ett prov med 1 cm² area och tjocklek mellan 1 nm och 2 μm är av storleksordningen 0,1 μg. Förbättrad diskriminering av bakgrundsstrålning eller förlängd mättid sänker gränsen.

Haltgränsen för påvisbarhet av ett element i ett sammansatt prov medelst modern spektrometer rör sig vid 20 s mättid om 1 - 100 atomer per 10⁶, alltefter provets sammansättning. I stål eller koppar kan man påvisa flertalet element i en halt av 20 x 10⁻⁶, i aluminium i varje fall medeltunga och tyngre element i halter om (2 - 10) x 10⁻⁶. Standardavvikelsen vid kvantitativ analys är av samma storlek som påvisbarhetsgränsen.
3. VINKELDISPERSIV PULVERDIFFRAKTOMETRI

3.1 Pulverdiffraktometern

Fig. 9 Pulverdiffraktometer.

Pulverdiffraktometerns anordning framgår av fig. 9. Strålningen från antikatodens brännfläck (S) i röntgenröret (T) kollimeras medelst en sollerkollimator (A) och avgränsas medelst spaltbländare (a och b) och får därefter infalla mot provet (C), vilket utgöres av kristallpulver, som i form av ett tunt skikt anbragts på ytan av en flat provhållare, vridbar kring en axel (O).
Glansvinkeln mot provhållplanet antages vara θ. Detektorarmen (E), vilken uppblåser en andra sollerkollimator (B), en spaltbländare (F) och en kvanträknare (G), är vridbar kring samma axel 0 och mekaniskt kopplad till provhållaren så, att armen bildar vinkeln 2θ med primärstrålriktningen. Brännfläcken S och detektorspalten F befinner sig på omkretsen av samma cirkel runt diffraktometeraxeln 0, den s.k. diffraktometercirkeln.

Om diffraktionsvillkoret är uppfyllt för någon kristalplanskara i provmaterial vid vinkeln θ, komma kristallkorn på många ställen i provet att böja strålning i vinkeln 2θ. Förutsatt att provets utsträckning är liten i förhållande till diffraktometercirkelnars radie, kommer den diffrangerade strålningen med god noggrannhet, oaktat den inffallerande strålningen är divergent, att fokuseras på detektorspalten F; detta inses genom en enkel geometrisk överläggning.

Spektrometern vrides vanligt medelst en steg- eller servomotor. Två förrånden är vanliga. Vid det ena sker vridningen med konstant hastighet, varvid signalen från kvanträknaren integreras med liten tidkonstant för att utmatas på en skrivare, vars papper frammattas med konstant hastighet. Man får på så sätt ett diffraktogram (se fig. 10).

Fig. 10 Diffraktogram av volframpulver, upptaget med ofilterad strålning från kopparantikatod, rörspänning 25 kV. Varje braggplanskara reflekterar vid olika värden på glansvinkeln, beroende på att strålningen omfattar flera spektralinjer: Cu Ka$_1$, Cu Ka$_2$, Cu KB (flera linjer, ej upplösta) samt W La$_1$ och W La$_2$, de senare härrörande från förorening av antikatoden genom förängning av katodomaterial.
Det andra förfarandet innebär, att diffraktometern står stilla, medan pulserna räknas, varefter räkneresultatet utmatas på en tryckare, räknaren nollställs och diffraktometerns vinkelinställning frammatas ett förutbestämt steg (från 0,01° upp till några grader) och räkningen startas ånyo. Detta förfarande är att föredraga vid kvantitativ analys, då stor noggrannhet fordras.

3.2 Strålkällan

Vid diffraktometri utnyttjas den karakteristiska strålningen från ett röntgenrör. Vanligen väljer man kopparns Ka-strålning (våglängd 1,54 Å), men för särskilda ändamål måste man tillgripa annan strålning, från Ag Ka (0,56 Å) till Cr Ka (2,29 Å). Då man ej kan undvika att Kß-strålning utsändes tillsammans med den önskade Kß-strålningen, filtreras strålningen genom tunn plåt av ett grundämne, vars K-absorptionskant faller mellan antikatodomateriallets Ka- och Kß-linjer. Sålunda nyttjas filter av nickel tillsammans med kopparstrålning.

Vissa spektrometrar förses för samma ändamål med en monokromatorkristall, ofta av calciumfluorid, vilken inställes så, att den reflekterar endast Ka-strålningen. Monokromatorn kan anbringas antingen vid strålkällan eller på detektorn. I det senare fallet vinner man, att monokromatorn avlägsnar den fluorescensstrålning, som i vissa fall avgives av provet; signal-brus-förhållandet i diffraktionsmönstret förbättras därigenom avsevärt.

3.3 Detektorn

Vid val av detektor för diffraktometern gälla samma synpunkter, som anförts ovan avseende fluorescenspektrometern. Vanligen brukas en scintillationsräknare, men för långvägig strålning, t.ex. kromstrålning, övergår man till flödesproportionalräknare.

3.4 Kvalitativ analys enligt Hanawalt

<table>
<thead>
<tr>
<th>2276 d 1-1194</th>
<th>2.28</th>
<th>1.50</th>
<th>1.35</th>
<th>2.60</th>
<th>Mo$_2$C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/L 1-1194</td>
<td>100</td>
<td>35</td>
<td>35</td>
<td>29</td>
<td>MOLYBDENUM CARBIDE</td>
</tr>
<tr>
<td>Red.</td>
<td>α 0.709</td>
<td>Filter ZnO$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dia. 16 INCHES Cut off</td>
<td>Col.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/L CALIBRATED STRIPS</td>
<td>d corr. abs. No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syn. HEXAGONAL</th>
<th>S.G.</th>
<th>a = 2.994 Å</th>
<th>c = 4.722 Å</th>
<th>C 1.576</th>
</tr>
</thead>
<tbody>
<tr>
<td>d Å</td>
<td>I/L</td>
<td>hkl</td>
<td>d Å</td>
<td>I/L</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>2.60</td>
<td>29</td>
<td>.93</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.36</td>
<td>24</td>
<td>.91</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2.28</td>
<td>100</td>
<td>.89</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>24</td>
<td>.87</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>35</td>
<td>.84</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>35</td>
<td>.82</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.27</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.08</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.98</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.97</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11 ASTM-kort för molybdenkarbid. Av kortet kan utläsas, att Mo$_2$C kristalliserar i hexagonala systemet med $a = 2.994$ Å och $c = 4.722$ Å ($c/a = 1.576$) samt 2 formelenheter per enhetscell. Diffractionsdata till höger ha upptagits medelst en 16 tums pulverkamera med strålning av våglängden 0,709 Å (Mo K-strålning). Reflexionernas styrka har normalrats så, att den starkaste reflexionen tilldelats värden 100. Överst till vänster finner man braggplanavstånden för de tre starkaste linjerna ordnade efter reflexionens styrka samt det största braggplanavståndet hos kristallen.

Det grundläggande materialet är sammanfattat utgivet i form av "ASTM-kort" (se fig. 11). Varje kort innehåller uppgifter om en kristallin fas. I första hand återgivas röntgendiffraktionsdata (braggplanavstånd och relativ styrka hos motsvarande interferenser) tillsammans med uppgifter om det använda mätförfarandet, men därutöver meddelas om möjligt uppgifter om kristallsystem, symmetrigrupp, masstæthet, enhetscellens parametrar, kristallens optiska egenskaper samt dess smältpunkt. Braggplanavstånden för de tre starkaste diffractionslinjerna återfinnas i kortets övre kant tillsammans med kristallens största braggplanavstånd; dessa värden utgöra fasens "fingeravtryck". Omkring 40 000 kristallina faser finnas redovisade på detta sätt.
De ursprungliga ASTM-korten förvaras och nyttjas på samma sätt som bibliotekens kortkataloger. Sedan har man även utgivit korten i form av nålkort för halvmekanisk sortering och hålkort för sortering i maskin, och numera torde materialet även finnas tillgängligt på magnetband för inmatning i räkneautomat.

I allmänhet kan en fas identifieras på grundval enbart av sitt "fingeravtryck". För underlättande av det praktiska arbetet har man därför sammanställt dessa värden i böcker, ett alfabetiskt "ASTM-index" (se fig. 12) och ett numeriskt (se fig. 13).

Molybdenum Silicide, Silicide	Mo₃(Si,B)₃	2.17	2.61	2.03	100	60	60	9–292
Molybdenum Monocarbide	Y⁺MoC	2.47	1.29	2.09	100	90	80	6–0546
Molybdenum Carbide	MoC (50 AT.%)	2.44	2.29	2.12	100	100	80	8–384
Molybdenum Carbide	Mo₂C	2.26	1.50	1.35	100	35	35	1–1188
Molybdenum Carbide	1.19	1.30	1.22	100	45	45	8–270	
D Phase Molybdenum Chromium Carbalt	Cr₄-Co-Mo (D Phs)	2.19	1.17	2.18	100	100	100	7–98
R Phase Molybdenum Chromium Carbalt	Cr₄-Co-Mo (R Phs)	2.17	2.18	2.00	100	100	100	7–98
Molybdenum Chromium Iron	X-Mo₁₀Co₆₅Fe₁₈	2.11	1.21	1.81	100	65	64	8–200
Sigma Molybdenum Chromium Iron	α-Fe₈Mo₅	2.13	2.01	2.46	100	100	50	9–50
Sigma Molybdenum Chromium Iron Nickel	0.5 Cr-Fe-Mo-Ni	1.98	1.36	2.16	100	100	80	7–98
Molybdenum Chromium Iron Tungsten Carbide	2.04	2.38	2.17	100	80	60	5–0721	
Sigma Molybdenum Chromium Nickel	Cr₆Ni₄Mo (δ Phase)	2.00	1.96	2.06	100	100	70	9–284
P Phase Molybdenum Chromium Nickel	Cr₆Ni₄Mo (P Phase)	2.19	2.03	1.19	100	70	70	7–50
Molybdenum Chromium Nickel Steel (Chs Phase)		2.08	2.18	1.05	100	80	70	6–0676
Molybdenum Chromium Nitride	CrMo₄N₂ (1:x=2)	2.18	2.25	2.49	100	60	50	10–197
Delta Molybdenum Cobalt Nickel	Co₄Ni₄Mo (δ Phase)	2.20	2.06	2.08	100	100	80	9–267
Nu Molybdenum Cobalt Nickel	Co₄Ni₄Mo (μ Phase)	2.07	2.37	2.17	100	70	60	9–298
Molybdenum Tri Fluoride	MoF₃	3.67	1.74	2.75	100	66	41	6–0205
Beta Molybdenum Germanium 1:2	β-MoGe₂	2.34	2.11	2.30	100	100	90	6–0571
Molybdenum Germanium 213	Mo₄Ge₃	2.34	2.09	2.46	100	100	80	6–0573
Molybdenum Germanium 3:1	Mo₄Ge	2.30	2.00	0.92	100	90	80	6–0598
Molybdenum Germanium 312	Mo₄Ge₂	2.15	2.19	2.02	100	80	80	6–0518
Alpha Molybdenum Germanium 1:2	α-MoGe₂	2.08	2.25	2.47	100	90	60	6–0666
Molybdenum Hydroxide	Mo₃O₇(OH)₈	3.26	2.35	1.89	100	100	100	7–252
Sigma Molybdenum Iron	δ-Fe₆Mo (50 AT. % Fe)	2.21	1.99	1.28	100	100	100	9–290
Molybdenum Iron 112	Fe₅Mo	2.18	2.02	2.36	100	100	60	6–0622
Molybdenum Iron	C-Fe₃Mo₂	2.08	2.37	2.18	100	90	65	9–297

Fig. 12 Utdrag ur "ASTM Alphabetical Index". Längst till höger återfinn ASTM-kortets identifikationsnummer.
Fig. 13 Utdrag ur "ASTM Numerical Index". (a) Det ursprungliga index enligt Hanawalt med 3-ledat "fingeravtryck". (b) Ett nyare index enligt Fink med 8-ledat "fingeravtryck", varvid intensitetsangivelserna utelämnats.
I det numeriska index återkommer varje fas på tre ställen, i det att vart och ett av dess "fingeravtrycksvärden" användes såsom ingångsvärde; detta är av betydelse, då den relativa intensiteten hos en viss diffractionslinje ändras vid ändring av strålningsvälgång samt i sammansatta prov - till följd av strålningsens absorption i grannfaser m.m.

3.5 Automatisk diffractionsanalys

Till skillnad från röntgenspektrometrarna, vilka utvecklats fortlöpende, har pulverdiffraktometrarna behållit sitt utseende sedan mitten av 1940-talet. Efter hand ha instrumenten kompletterats för automatisk styrning och mätvärdesinsamling. Därefter har automatisk identifiering av de kristallina faserna låtit vänta på sig, beroende på att diffractionsanalysens fasidentifiering kräver avsevärt större och vidlyftigare system för datahantering än spektralanalysens grundämnesidentifiering.

Sedan något år finns ett helautomatiskt system, där det experimentellt upptagna diffractionsmönstret jämföres med JCPDS-mönstren. De senare är antingen lagrade i ett 5 megabytes magnetskivminne eller via de internationella dataöverföringsnäten omedelbart tillgängliga hos International Center for Diffraction Data i Pennsylvania. Sökning av mönstren sker på några sekunder, och resultatet framställs på en bildskärm (fig. 14).

Fig. 14 Bildskärmsframställning av uppmätt diffractionsmönster samt ur JCPDS-filerna automatiskt hämtade standardmönster för ett natriumaluminiumsilikathydrat (12-228), α-kvarts (5-490) och ett kaliumaluminiumsilikathydrat (16-692).
3.6 Diffraktionsanalysens användbarhet

Pulverdiffraktometriens stora värde ligger däri, att den lämnar detaljerad upplysning om provets fassammansättning. För rutinbruk finnes en allvarlig begränsning: om en fas icke tidigare har undersöks, kan den ej identifieres enligt Hanawalts metod; man måste då företaga en fullständig strukturbestämning, vilken kräver långvarigt arbete av specialister och därför torde vara uteslutten i alla vanliga fall.

För att en fas skall giva mätbara diffraktionslinjer fordras vid diffraktometri 0,5 - 10 mg av fasen. Fotografisk registrering av diffraktogrammet i Debye-Scherrer-kamera eller Guiner-kamera är i detta hänseende vida överlägsen: 1 μg av en fas kan på detta sätt påvisas.

Fig. 15 Principen för energidispersiv pulverdiffraktometri. S_1S_2 och S_3S_4 äro de båda kollimatorerna.

4. ENERGIDISPERSIV PULVERDIFFRAKTOMETRI

Vid energidispersiv diffraktometri får polyenergetisk röntgenstrålning (bromsstrålning) efter kollimering falla in mot ett pulverformigt prov (fig. 15). Av den strålning, som sprider av provet, uttages medelst en andra kollimator ett knippe i en fast riktning given av spridningsvinkeln $2\theta_0$. Detta strålknippe uppfångas i en spektrometer, bestående av en kylt halvledardetektor med pulshöjdsanalysator.

Eftersom strålknippet uppstår genom interferens av bromsstrålningskomponenter i olika braggplanskaror i provet, kommer dess spektrum att innehålla ett antal komponenter E_{nh}, nk, nl motsvarande de olika interferenser.
För röntgenstrålning är \(E = \frac{hc}{\lambda} \) (varvid \(h \) är Plancks konstant och \(c \) är ljushastigheten), och interferensvillkoret (3) kan då skrivas

\[
\frac{d_{nh, nk, nl}}{2 \sin \theta_0} = \frac{1}{E_{nh, nk, nl}}. \tag{7}
\]

Provets diffaktionsmönster låter sig alltså beräkna ur den diffrange-rade strålningens spektrum. För kvantitativa undersökningar fordras dessutom, att den primära bromstrålningens spektrum uppmätas.

Fasidentifieringen utförs vid energidispersiv diffraktometri på samma sätt som vid winkeldispersiv diffraktometri.

LITTERATUR

Planavstånd i en planskara

Avståndet mellan två närliggande plan i en planskara är beroende dels på vilka Millerindices planskaran har och dels på enhetscellens kantlängd. Av fig. 1 framgår att lägre indices ger större avstånd.

![Diagram](image)

Fig. 1. Tvådimensionellt gitter med olika planskor.

Man kan geometriskt härleda avståndet, \(d \), mellan två närliggande plan i planskaran hkl. För det kubiska kristallsystemet kan avståndet sålunda beräknas som

\[
d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}
\]

(1)

där \(a \) = enhetscellens kantlängd

\(k, h, l \) = Miller-indices för planskaran

VÄXELVERKAN MELLAN RÖNTGENSTRÅNLING OCH MATERIA

Allmänt

Den del av röntgenstrålens växelverkan med materia som vi kallar röntgendiffraktion är ett komplext fenomen som omfattar samverkan mellan infallande röntgenstråle och elektronerna i en atom. Röntgenstrålen är en elektromagnetisk våg i reflexion som kommer att framkalla en motsvarande våg i reflexion hos elektronerna i varje atom. Den utgående strålingen är således att betrakta som en elektromagnetisk våg från atomer. Populärt säger man att strålingen reflekteras i planskor, vars enskilda plan går genom atomlägen.
Braggs lag

De utgående strålarna från olika atomer förstärker varandra då vägskillnaden är ett helt antal våglängder (jfr sid. 2). Vägskillnaden mellan två utgående vågor framgår av fig. 2.

![Fig. 2. Diffraction of x-rays.](image)

Vägskillnaden = OA + OB, men OA = OB = d sin θ, således är

\[n \lambda = 2OB = 2d \sin \theta \] \hspace{1cm} (2)

n = heltal
λ = våglängden
d = avståndet mellan två närliggande plan i en planskala
θ = reflexionsvinkeln

Ekvation (2) kallas Braggs lag. θ är en mätbar storhet. Man kan alltså beräkna d ur uppmätta data. Emellertid är n en obekväm faktor eftersom man måste betrakta reflexionsvillkoret för olika värden på n. Man kan emellertid låta n ingå i Millerindices hkl. Ur ekv. (2) får man

\[\lambda = \frac{2d \sin \theta}{n} \]

och med hjälp av ekv. (1) fås kubiska fallet

\[\lambda = \frac{2a \sin \theta}{n\sqrt{h^2 + k^2 + l^2}} \] \hspace{1cm} (3)