LABORATION

ET19A

STÖRNINGAR I MÄTSYSTEM

INNEHÅLL:

1. Elektriska och magnetiska störningar. sid. 2
2. Problem i samband med jordning. 12
3. Exempel på diverse störningsreducerande teknik. 24
4. Lock-in teknik. .. 27
5. Uppgifter. ... 31

Namn: ...
Laborationen utförd den ..
Laborationen godkänd den
Godkänd den ...
Handledare: ...
1. ELEKTRISKA OCH MAGNETISKA STÖRNINGAR.

Vid känsliga mätningar måste åtgärder vidtas för att inte resultatet skall påverkas av störningar. Störningar kan definieras som icke önskade elektriska signaler som ger distorsion eller misstolkning av den önskade signalinformationen.

Tre element erfordras för att störningsproblem skall uppstå (Fig. 1).

a) Störningskälla.
b) Mottagande krets känslig för den typ av störning som utsändes.
c) Någon form av koppling mellan störningskällan och den mottagande kretsen.

![Diagram](https://via.placeholder.com/150)

Fig. 1.

Det finns följaktligen också tre sätt att eliminera en störning nämligen att:

a) eliminera störningskällan
b) göra den mottagande kretsen okänslig för störningen
c) bryta upp kopplingen mellan störningskällan och mottagaren.

Exempel på koppling av störningar.

![Diagram](https://via.placeholder.com/150)

Fig. 2.

I Fig. 2 visas hur ström leds till jord genom en gemensam impedans. Potentialen i förhållande till jord för krets 1 moduleras genom fluktuationer i jordströmmen från krets 2 och vice versa. Störningar kommer därför att kopplas från den ena kretsen till den andra på grund av den gemensamma impedansen.
I Fig. 3 visas ett exempel i vilket två kretsar använder en gemensam spänningskälla. Varje ändring i strömmen till en krets kommer att ge upphov till en spänningsändring för den andra kretsen på grund av den gemensamma ledningsimpedansen och spänningskällans inre motstånd.

Fig. 3.

Störningar kan också uppstå genom kapacitiv koppling. I Fig. 4 a visas två ledare. C_{12} är kapacitansen mellan ledarna, C_{20} ledare 2:s kapacitans till jord, R dess resistans till jord. Den ekvivalenta kretsen visas i Fig. 4 b.

Fig. 4.

I de flesta praktiska fall är resistansen R betydligt mindre än den kapacitiva reaktansen. Den genom den kapacitiva kopplingen uppkomna störspänningen i förhållande till jord för ledare 2 kan därför approximativt skrivas:

$$V_N = j\omega R C_{12} U_1$$

Uttrycket visar att störspänningen är direkt proportionell mot frekvensen, resistansen till jord och kapacitansen mellan ledarna. År således U_1 och ω givna kan störspänningen i ledare 2 reduceras på två sätt: Sänkning av resistansnivån i kretsen eller minskning av C_{12} exempelvis genom att öka avståndet mellan ledarna eller genom skärmning.
Reduktion av kapacitiv koppling genom skärmning.

Antag att ledare 2 i Fig. 4 a har oändligt stor resistans till jord samt är omgiven av en skärm. Vi erhåller då konfigurationen i Fig. 5 a och den ekvivalenta kretsen i Fig. 5 b. Då ingen ström flyter genom \(C_{2S} \) får ledaren 2 potentialen \(V_s \). Jordas nu skärmen blir \(V_s = 0 \) och störspänningen på ledaren reduceras också till noll. Det här beskrivna fallet är emellertid idealt då innerledaren 2 är helt täckt av skärm. I ett praktiskt fall kommer ledare 2 att sträcka sig utanför skärm och vi får den situation som visas i Fig. 6. Även om skärmen är jordad kommer nu störspänningar att kopplas till ledare 2 via kapacitansen \(C_{12} \). Värdet på \(C_{12} \) bestämmer störspänningen \(V_N \) och det gäller att minimera \(C_{12} \) genom att låta den oskärmade ledaren vara så liten som möjligt. Jordningen av skärmen bör dessutom vara god.

![Diagram](image)

Fig. 5.

Physikalisk representation

a.

Ekvivalent krets

b.

![Diagram](image)

Fig. 6.

Physikalisk representation

a.

Ekvivalent krets

b.
Induktiv koppling.

En ström i en slutet krets orsakar ett magnetiskt flöde som är proportionellt mot strömmen. Varierar strömmen varierar flödet och inducerade spänningar (störspänningar) uppkommer i närbelägna strömslingor som genomflytes av det varierande flödet. Den i en sluten slinga uppkommande störströmmen beror på slingans impedans och dess area (Fig. 7 a). Om slingans ledningar är enkla trådar hjälper tvinning av dem eftersom öppningen mellan dem blir liten och dessutom växlar den inducerade spänningen tecken för varje "skruvvarv". (Fig. 7 c).

![Image of a magnetic field in a loop with a current](image)

Fig. 7 a. Sluten slinga omslutande varierande magnetiskt flöde.

Låt slinga 2 representeras av kretsen i Fig. 7 b. Den inducerade störspänningen V_N kan skrivas: $V_N = j\omega BA$ (sinusformad växelström).

![Image of a magnetic field with a current](image)

Fig. 7 b.

Tvinnad parledning motverkar inducerade störspänningar. Fig. 7 c.

Arean A kan minska om ledaren placeras närmare jordplanet eller genom tvinning. Observera skillnaden mellan induktiv och kapacitiv koppling. Att minska impedansen på mottagarsidan som i det kapacitiva fallet reducerar ej den inducerade störspänningen V_N.

Representerar de två ledarna i Fig. 7 d de ovan diskuterade kretsarna kan vi uttrycka den inducerade störspänningen \(V_N \) med den ömsesidiga induktansen.

\[
V_N = M_{12} \frac{di_1}{dt} = j\omega M_{12} I_1
\]

Om en o magnetisk och icke jordad skärm placeras kring ledare 2 (Fig. 7 e) påverkas ej den inducerade spänningen \(V_N \). I skärmens kommer däremot en störspänning att induceras. En jordning av skärmens ena ända påverkar ej situationen. Således har en sådan skärm ingen effekt på magnetiskt inducerade störspänningar i ledaren.
Magnetisk koppling mellan skärm och innerledare.

I en innerledare i en koaxialkabel induceras en spänning V_N på grund av ström i skärmarna (Se Fig. 8 a). Antag att skärmströmmen orsakas av spänningsgeneratorn V_s. L_s och R_s är inductans och resistans i skärmnen.

V_N som en funktion av vinkelfrekvensen ω återges i Fig. 8 b. Den störspänning V_N som erhålls i mittledaren är noll för likström men antar ett värde nära V_s för frekvenser större än $\omega = 5 \cdot \omega_c$ där $\omega_c = \frac{R_s}{L_s}$, den sk"ild cut-off frequency ".

Mätta värden på ω_c och $5 \omega_c$ återges i tabell I för några olika kablar. Observera att $5 \omega_c$ ligger i övre delen av audiofrekvensområdet.

![Diagram 8 a.](image)

![Diagram 8 b.](image)

Tabell I.

<table>
<thead>
<tr>
<th>Cable</th>
<th>Impedance (Ω)</th>
<th>Cutoff frequency (kHz)</th>
<th>Five times cutoff frequency (kHz)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coaxial cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG-6A</td>
<td>75</td>
<td>0.6</td>
<td>3.0</td>
<td>Double shielded</td>
</tr>
<tr>
<td>RG-213</td>
<td>50</td>
<td>0.7</td>
<td>3.5</td>
<td>Double shielded</td>
</tr>
<tr>
<td>RG-214</td>
<td>50</td>
<td>0.7</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>RG-62A</td>
<td>93</td>
<td>1.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>RG-59C</td>
<td>75</td>
<td>1.6</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>RG-58C</td>
<td>50</td>
<td>2.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Shielded twisted pair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>754E</td>
<td>125</td>
<td>0.8</td>
<td>4.0</td>
<td>Double shielded</td>
</tr>
<tr>
<td>24 Ga.</td>
<td>—</td>
<td>2.2</td>
<td>11.0</td>
<td>Aluminum-foil shield</td>
</tr>
<tr>
<td>22 Ga.*</td>
<td>—</td>
<td>7.0</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Shielded single</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Ga.</td>
<td>—</td>
<td>4.0</td>
<td>20.0</td>
<td></td>
</tr>
</tbody>
</table>
Reducerings av elektromagnetiska fält genom skärmning.

I Fig. 9 a visas det elektromagnetiska fältet kring en strömförande ledare. Om en skärm, jordad på en punkt, placeras runt ledaren kommer fältbilden att få utseendet i Fig. 9 b. De elektriska fältlinjerna träger ej genom skärmen och de magnetiska påverkas knappast. Om nu en ström får flyta genom skärmen i motsatt riktning och av samma storlek som strömmen i innerledaren kommer magnetfältet från de bågge strömmarna att ta ut varandra och inget magnetfält erhålles utanför skärmen (Fig. 9 c).

Fig. 9.

I Fig. 10 a visas en skärmad ledare med skärmen jordad i båge ändar. För att förhindra ett magnetfält utanför skärmen måste strömmen ledas tillbaka genom skärmen (I_s) och ej via jord (I_o). Vid hög frekvens (högre än ca 5 ggr den s k shield cut off frequency, se Tabell I) kommer på grund av den ömse-sidiga induktansen mellan innerledaren och skärmen den återgående strömmen att gå via skärmen. Vid lägre frekvenser minskar skärmens betydelse. Borttages jordningen vid mittledarens bortre ända får ej heller skärmen jordas där (Fig. 10 b) eftersom den återgående strömmen måste fås att gå via skärmen.

Fig. 10 a. Fig. 10 b.

Skärmning av kretsar från magnetiska fält.

Det bästa sättet att skydda sig mot magnetiska fält är att minska ytan av den störningskänsliga kretsen. Viktig är då strömvägen tillbaka till signalkällan. I Fig. 11 illustreras skärmens inverkan på strömslingans yta för några olika fall.
I Fig. 11 a är signalkällan V_S ansluten till belastningen R_L genom en enkelledare och jorden används som återledning. Den omslutna areaen blir här stor. I Fig. 11 b har en skärm tillkommit. Ledaren och skärmens jordats i bågge ändar. År frekvensen tillräckligt hög (> 5 ggr shield cut-off frequency, Tabell 1) följer strömmen skärmens som indikerats i Fig 11 b och en viss störningsreduktion uppnåtts.

En skärm placerad som i Fig. 11 c och jordad enbart i ena ändan ändrar ej slingarean och ger således ingen skärmning.

Kretsen i Fig. 11 b ger ej störningarsskydd vid lägre frekvenser och bör undvikas av två andra skäl. Den ena orsaken är att då skärmens används som återledare kommer störströmmen i skärmens att genom det ohmska spänningsfall den orsakar ge upphov till störspänningar. Den andra orsaken är att om vi har en potentialskillnad mellan de två jordpunkterna kommer denna potentialskillnad att uppträda som en störspänning i kretsen.

Slutsatsen är att då en krets är jordad i båda ändar är möjligheten begränsad att uppnå skydd mot magnetiska störfält på grund av de stora störströmmar som kan induceras i jordslingan $x)$ (Fig. 12). I figuren ger skärmströmmen en störspänning på ingången som är $V_{IN} = R_S I_S$, där I_S är strömmen i skärmens och R_S skärmens ohmska motstånd. Även om skärmens jordas enbart på ena sidan kan störströmmar uppstå i skärmens på grund av kapacitiv koppling till skärmens. För maximalt störningarsskydd vid låga frekvenser får följaktligen skärmens ej vara en del av signalkretsen och ena sidan av kretsen måste vara isolerad från jord.

$x)$
Exempel på störningsskydd vid några olika kretskonfigurationer.

Några mätresultat, upptagna med arrangeranget i Fig. 13 visas på sid. 11 (Fig. 14).

Fig. 13.
Frekvensen 50 kHz använd vid försöken är större än 5 ggr "shield cut-off frequency" för samtliga testade kablar (L2 i Fig. 13). Observera att konfigurationerna A-F med båge kretsändar jordade ger mycket mindre dämpning än G-K med bara ena ändan jordad. Krets A ger praktiskt taget ingen skärmning och spänningen över 1 MΩ motståndet i denna krets har använts som referens (0 dB). Det tvinnade parret i krets D skulle ge mycket bättre skärmning om det inte vore för jordslingan som erhållits genom jordning i båge ändar och framgår genom jämförelse med H. Ingen av konfigurationerna A-F ger bra magnetisk skärmning på grund av jordslingorna. Om kretsen måste jordas i båge ändar bör konfigurationerna C eller F användas.

Användningsområdena för koaxialkabel och "shielded twisted pair"kabel framgår av Fig. 15. Den senare typen av kabel är användbar upp till c:a 100 kHz. Ovanför 1 MHz blir förlusterna stora. Koaxialkabeln är användbar för frekvenser upptill 100 MHz.

Fig. 15.
<table>
<thead>
<tr>
<th>ATTENUATION</th>
<th>0 (REF)</th>
<th>27</th>
<th>13</th>
<th>13</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 14.

Frequency = 50 kilohertz for all tests.
2. PROBLEMT I SAMBAND MED JORDNING.

En god jordning innebär att:

Störsningar genererade av strömmen från två eller flera kretsar genom en gemensam impedans till jord har blivit minimerade.

Jordslingor i vilka störningar kan induceras på magnetisk väg och vilka kan ge skillnader i jordpotential har undvikits.

Allmänt kan jord definieras som ett ekvipotentialplan vilket ger en referenspotential för en krets eller ett elektriskt system. Det behöver inte nödvändigtvis vara på jordpotential. Endast i det fall då ekvipotentialplanet är förbundet med jordpotential medelst en lågimpedansledning kan vi tala om jordpotential.

Man har två skäl för att jorda en krets:
Av säkerhetsskäl.
För att erhålla en referenspotential för spänningssignalen.

Vid jordning av säkerhetsskäl använder man alltid jordpotential. Signaljord behöver ej nödvändigtvis vara på jordpotential.

Jordning av säkerhetsskäl.
Av bland annat säkerhetsskäl är elektrisk utrustning oftast inneslutet i ett chassi och detta chassi bör jordas. Anledningen till detta framgår av Fig. 16.

![Diagram](image)

Fig. 16.

I Fig. 16 a är Z_1 ströimpedansen mellan en punkt med potentialen V_1 och chassit. Z_2 är ströimpedansen mellan chassit och jord. Chassits potential kommer att bestämmas av spänningsdelaren Z_1, Z_2.

$$V_{	ext{chassi}} = \frac{Z_2}{Z_1 + Z_2} V_1$$
Chassit kan således hamna på hög potential. Jordas chassit blir $Z_a = 0$ och $V_{chassi} = 0$. Fig. 16 b visar en farligare situation. Om ett isolationsfel skulle uppstå och chassit får direkta anslutning till nätet skulle chassit kunna lämna en ström upp till säkringsvärdet vid full nätspänning. Var och en som kommer i kontakt med chassit blir direkt nätansluten. Jordas chassit uppstår normalt vid isolationsfel en så stor ström att säkringen löser ut och chassit är ej längre spänningsförande. I Fig. 17 och Fig. 18. visas en- och trefassystem med jordanslutningar.

Fig. 17.

Fig. 18.
Signaljord.

Signaljord finnes av två olika slag:

En-punkts jord (Fig. 19 a, b).
Fler-punkts jord (Fig. 19 c).

En-punkts jord kan uppdelas i serietyp (Fig. 19 a) och parallelltyp (Fig. 19 b). I den följande diskussionen av jordningsteknik bör man hålla i minnet:

2. Två separata jordpunkter har sällan samma potential.

Nätjord är normalt av litet praktiskt värde som signaljord. Potentialdifferensen mellan två separata nätjordspunkter rör sig om några tiondels volt upptill volt. Av säkerhetsskäl bör emellertid signaljord ha en förbindning med nätjord.

Ur störsignalsynpunkt är jordsystemet i Fig. 19 a det minst önskvärda men kanske det vanligast förekommande. Med beteckningar enligt Fig. 20 får punkten A potentialen:

$$V_A = (I_1 + I_2 + I_3)R_1$$

och punkt C:

$$V_C = (I_1 + I_2 + I_3)R_1 + (I_2 + I_3)R_2 + I_3R_3$$

Observera att punkt A har den lägsta potentialen. Detta jordningssätt bör ej användas för kretsar med stor skillnad i effektnivå. Vid ej speciellt kritiska förhållanden fungerar dock detta jordningssätt bra.
Vid låga frekvenser är jordsystemet i Fig. 21 det mest önskvärda. Orsaken är att vi inte har någon interferens mellan de olika jordströmmarna. Potentialen för en av kretsarna är här enbart en funktion av jordströmmen och resistansen i kretsen ifråga. Systemet är emellertid mekaniskt opraftiskt då ett stort antal jordledningar krävs i stora system. En annan begränsning finns vid höga frekvenser på grund av induktanserna i ledningarna. Impedansen ökar och induktiv koppling uppstår mellan ledningarna.

Fler-punktsjord (Fig. 22) används vid höga frekvenser för att minimera impedanserna till jord. I detta system ansluts kretsarna till närmaste jordpunkt vanligtvis chassit. Den lägre impedansen erhålls främst genom den låga induktansen. Förbindningarna mellan varje krets och jord bör hållas så korta som möjligt för att minimera impedansen. Vid låga frekvenser bör detta jordningssätt ej användas eftersom jordströmmarna från alla kretsarna flyter genom en gemensam impedans-jordplanet. Vid höga frekvenser kan jordplanets impedans reduceras genom försilvring.

Vid frekvenser under 1 MHz är en-punktsjordning att föredra. Over 10 MHz är ett fler-punkts jordningssystem bäst.
Praktisk lågfrekvensjordning.

De flesta praktiska jordsystem för låga frekvenser är en kombination av serie- och parallell enpunkts jordsystem. En sådan kombination är en kompromiss mellan behovet att reducera störningar och undvika att ledningsdragningen blir alltför komplex. Grundtanken är att kretsar av samma slag vad beträffar signalnivå, effektnivå etc förs till samma jord.

Fig. 23.

De flesta system kräver minst tre separata jordledningar (Fig. 23). I figuren visas hur kretsar på låg signalnivå har sin separata jord, reläer, motorer etc sin och sedan en ytterligare för rackar och dylikt. I Fig. 24 ges ytterligare

Fig. 25.

I Fig. 25 visas korrekt och felaktig jordning av rackar. Rackarna måste jordas av säkerhetsskäl. Jordningen av elektroniken måste vara separat så störströmmen i rackarna ej behöver passera elektronikens jordledningar. I Fig. 25 visas hur man felaktigt sammanfört jordningar av rack och elektronik. Observera att jordanslutningar måste vara tillförlitliga, lögning och svetsning är alltid att föredra framför skruvförband.

Referensjord för elektronikkretsar.

Eftersom två jordpunkter sällan har samma potential, kommer skillnaden i jordpotential om två jordpunkter används, att kopplas till kretsen. Problemet illustreras i Fig. 26 där en signalkälla \(V_s \) jordats i punkt A och förstärkaren i punkt B. Potentialskillnaden mellan de två jordpunkterna är \(V_G \). Insignalen

Fig. 26.
till förstärkaren blir \(V_{IN} = V_S + V_G \). För att eliminera störningen måste en av jordningarna borttagas. Borttagens jordningen B måste förstärkaren anslutas till en icke jordad spänningskälla. Det är därför lättare att eliminera jordningen vid \(f \).

Skärmning av förstärkare.

Förstärkare, speciellt sådana med mycket hög förstärkning, byggs ofta in i metall-lädor som skydd (skärmning) mot elektriska fält. Hur skall en sådan skärm jordas? Fig. 27 a visar de strökapacitanser som uppträder mellan

![Diagram](image)

företräder och skärmen. Från det ekvivalenta schemat (Fig. 27 b) ser vi att strökapacitanserna \(C_{3S} \) och \(C_{1S} \) ger möjlighet till en återkoppling från ut- till ingång och följaktligen finns risk för att förstärkaren blir ostabil (oscillera).

Detta kan undvikas om jordningen utföres som i Fig. 27 c. Skärmen är i detta fall ansluten till en punkt som är gemensam för förstärkarens in- och utgång. Kapacitansen \(C_{2S} \) blir då kortsluten och återkopplingen har elimineras. Denna förbindning bör göras även om den gemensamma ledningen i förstärkaren ej har jordpotential.

Jordning av kabelskärmar.

Kabelskärmar bör vid låga frekvenser jordas i en enda punkt om kretsen har enbart en jordpunkt. Jordas skärmen vid mer än en punkt kommer störströmmen att flyta. Om nu skärmen bara skall jordas i en punkt, var skall då denna punkt placeras? I Fig. 28 visas en förstärkare med ojordad signalkälla. \(V_{G1} \) representerar potentialen på förstärkarens gemensamma ledning i förhållande till jord, \(V_{G2} \) representerar potentialdifferensen mellan de två jordpunkterna. Då skärmnen skall ha enbart en jordpunkt blir det kapacitanserna mellan skärmen och ingångsledningen som ger upphov till störande kopplingar. Skärmnen kan jordas i fyra möjliga punkter A, B, C, D. Kopplingen A är ej önskvärd då den tillåter störström i skärmnen att ledas via signalledningen. Som framgår av Fig. 29 är det endast konfigurationen i C som ej ger upphov till någon spänning \(V_G \) mellan förstärkarens ingångar.
oavsett värdena på V_{G1} och V_{G2}. Således bör för en krets med icke jordad signalkälla skärmen alltid förbindas med förstärkarens gemensamma ledning även om denna punkt ej är på jordpotential.

\[
V_{12} = \frac{C_1}{C_1 + C_2} (V_{G2} + V_{G1})
\]

Fig. 28.

Fallet jordad signalkälla, ojordad förstärkare visas i Fig. 29. Med beteckningar som i det föregående visar det sig att C ej är en önskvärd förbindning då den tillåter störströmmar att passera signalledningen för att nå jord. Endast förbindning enligt A ger $V_{12} = 0$. Således bör i fallet jordad signalkälla och ojordad förstärkare skärmen förbindas enligt A även om denna punkt ej är på jordpotential.

\[
V_{12} = \frac{C_1}{C_1 + C_2} V_{G1}
\]

\[
V_{12} = \frac{C_1}{C_1 + C_2} (V_{G1} + V_{G2})
\]

Fig. 29.
I Fig. 30 visas några rekommenderade jordningschemor för låga frekvenser. Konfigurationerna A-D visar fall med jordning vid signalkälla eller förstärkare, dock ej vid båda. E och F visar fall med jordning av skärmen i båda ändar.

Möjligheterna till reducering av störningar i dessa två fall är begränsade av skillnaden i potential mellan jordpunkterna och känsligheten i jordslingan för magnetiska fält. Blir störningarna här för stora måste jordslingan brytas på något sätt.
Isolertransformatörer och optisk koppling.

En jordslinga bildas när båda ändar av en krets jordas som i Fig. 31 a.

![Diagram a.](image)

Fig. 31.

Denna jordslinga kan brytas med hjälp av en isolertransformatör enligt Fig. 31 b. I kretsar där likströmssignaler eller lågfrekventa signaler måste överföras är det inte möjligt att använda isolertransformatör. Ett enkelt sätt att erhålla låg impedans för signalströmmar men hög impedans för störningar är det som visas i Fig. 32. Ett annat sätt att bryta upp en jordslinga i en digital krets är med hjälp av optisk koppling som i Fig. 33.

![Diagram b.](image)

![Diagram c.](image)

Fig. 32.

Fig. 33.
Jordning av skärmar vid höga frekvenser.

Vid frekvenser under 1 MHz bör skärmar jordas endast vid en jordpunkt. Den endajordpunkten eliminerar också möjligheten till jordslingor och magnetiska störningar. Vid frekvenser över 1 MHz är det ofta nödvändigt att jorda en skärm vid mer än en punkt för att garantera att den förblir vid jordpotential. Som framgår av Fig. 34 kan vid höga frekvenser strökapacitanser

![Fig. 34.](image)

"Guard shields" (skyddsskärmar).

Effekten av en skyddsskärm förklaras enklast med ett exempel, i vilket en skyddsskärm används för att upphäva inverkan av en skillnad i jordpotential. Fig. 35 visar en förstärkare ansluten till en jordad signalkälla. V_S är en spänning på grund av en skillnad i jordpotential. V_5 är signalspänningen.

![Fig. 35.](image)
V_g ger upphov till två oönskade strömmar I_1 och I_2. Då strömmarna ej flyter genom samma impedanser uppstår en insignal till förstärkaren. Om emellertid en skyddsskärm placeras runt förstärkaren och skärmens hälles på samma potential som punkten A (Fig. 36) blir båda strömmarna I_1 och I_2 noll eftersom ingen potentialskillnad förefinnas. Skärmens eliminerar således störspänningen på ingången.

Hur skall vi nu åstadkomma att skärmens erhåller samma potential som punkten A? Ett sätt att åstadkomma detta visas i Fig. 37. Detta förutsätter att ingen störspänning genereras mellan A och "Amplifier Common". Observera att förfaran är kabelskärmens jordad endast i en punkt (A) och ansluten till "Amplifier Common", liksom "guard shield". Observera dock att ingen punkt på "guard shield" får komma i kontakt med jordpunkten B. En praktisk krets bör därför ha ytterligare en skyddsskärm jordad i punkten B (Fig. 38.)
Arrangemang av detta slag förekommer blott vid extremt låga signalnivåer.

Observera att många nya instrument är försedda med skyddsskärm och att det
ankommer på instrumentanvändaren att i mätkretsen ansluta skärmen på lämpligt
sätt. Förstår ej användaren skärmens funktion jordar han ofta skärmen
eller låter den vara oansluten. Ingetdera av dessa anslutningssätt ger maxi-
malt resultat.

3. EXEMPEL PÅ DIVERSE STÖRNINGSREDUCERANDE TEKNIK.

Ledningar på hög och låg signalnivå bör normalt använda separata kablar.
Skall de blandas bör detta göras som Fig.39 visar dvs jordledningar liksom ej
använda ledningar placeras mellan hög- och lågsignalnivåledningar.

Fig. 39.

Spänningskällor med flera kretsar anslutna kan ofta kräva separata filter
så ej störningar kan kopplas från den ena kretsen till den andra via spännings-
källan. (Se Fig.40.)

Fig. 40.
Vid analys av förstärkarsteg förutsätter man att växelströmmotståndet över spänningskällans terminaler är noll. Det kan emellertid i praktiken ej alltid garanteras eftersom nätaggregatet och tilledningar har viss induktans. En relativt stor kapacitans bör därför anslutas vid förstärkarstegets matningsspänningsanslutning (Fig. 41).

Metallskärmburkar används ibland för att förhindra högfrekvenskretsar att utstråla störningar. För att en sådan skärm skall vara effektiv måste alla ledningar till eller från skärmburken vara försedda med filterkretsar för att förhindra störningar att tränga ut. I Fig. 42 visas några exempel på sådana filter.

Fig. 41.

Fig. 42.
Transformatorer används ofta för att isolera kretsar från varandra. Den önskvärda kopplingen sker i detta fall genom magnetfältet. I praktiken har vi också en kapacitiv koppling (Fig. 42) mellan primär- och sekundärbindningen och denna koppling möjliggör transmittering av störningar. Kopplingen kan elimineras genom en elektrostatisk skärm enligt Fig. 43. Skärmen måste jordas vid B. En jordning vid A av skärmens skulle göra att denna kopplar störningar genom kapacitansen C_2 till belastningen.

$$V_{\text{NOISE}} = \frac{Z_L}{Z_L + Z_C} V_G$$

Fig. 42.

Fig. 43.
4. Lock-in teknik.

Lock-in teknik används för att detektera och mäta små växelsignaler. Med en lock-in förstärkare kan man utföra noggranna mätningar av små signaler dolda i brus. En lock-in förstärkare kan i princip betraktas som ett filter med en godtyckligt smal bandbredd avstämd till signalfrekvensen. En typisk tillämpning kan kräva en center-frekvens av 10 kHz och en bandbredd av 0.01 Hz. Förutom filterverkan ger lock-in tekniken också förstärkning.

De viktigaste delarna i lock-in förstärkaren är:

- Referensoscillator
- Förstärkare
- Blandare
- Faskontroll
- Filter

Funktionssätt: Jämför principen för en radiosuperheterodynmottagare (jfr ET15). Där har man:

- Högfrekvensförstärkare
- Lokalosculator
- Blandare
- Mellanfrekvensförstärkare
- Detektor

Figur 44. Superheterodynmottagarens blockschema.
Exempel på mätobjekt

![Diagram](image)

Figur 45. Lock-in-förstärkarens blockschema.

Radiomottagaren (se figur 44) hade två signalfrekvenser till sin blandare, dels lokaloscillatorm, dels sändarsignalen. Dessa signaler blandas och därefter filtreras de så att endast frekvensenheten (mellanfrekvensen) behandlas vidare. I lock-in förstärkaren har man samma frekvenser till blandaren (se figur 45). Skillnaden är att den ena frekvensen går via mätobjektet till blandaren, den andra går via ett faskompenseringsnät till blandaren.

Antag till exempel (figur 45) att vi vill mäta resistansen hos ett visst prov och att vi samtidigt har begränsningen att mycket liten effekt får avges i provet. Resistansen är av storleksordningen några tiondels ohm, strömmen från referensoscillatorm begränsas till 1 μA genom 1 MΩ resistansen och signalen blir några tiotal nV. Störsignaler döljer denna lilla signal, enbart 50 Hz störningar har en amplitud som kanske är 1000 ggr större. Signalen ligger således dränkt i brus.

I blandaren möter signalen "sig själv igen". Till blandaren har den då gått två vägar. För att optimal utsignal skall erhållas måste den "direkta" referenssignalens fas kompenseras så att de båda signalerna får exakt samma fas. Skillnaden i amplituden kommer nu att utgöra den verkliga mätsignalen. Mätsignalen filtreras sedan i mycket smala filter och med lämplig tidkonstant för att senare presenteras på utgången med en voltmeter eller mV-meter.

I exemplet kan resistansen beräknas enligt

\[R = \frac{U(nV)}{I_{\text{ref.osc.}}(\mu A)} \]

Vid laborationen används en lock-in förstärkare, SR510, tillverkad av Stanford Research Systems. Block schemat visas i figur 46 och en utförlig handledning finns på laborationsplatsen.
Figur 46. Blockdiagram över SR510 lock-in förstärkare.

Kretsen PLL (Phase-Lock Loop) följer insignalfrekvensen. Utgången kan ges ett fasshift av typen \(\cos(\omega_t t + \Phi) \). Signalen från provet förstärks av differentialförstärkare med hög förstärkning. Signalerna från förstärkaren och PLL blandas och en utsignal:

\[
u = \cos(\omega_t t + \Phi) \cos \omega_s t =
\]

\[= \frac{1}{2} \cos[(\omega_r + \omega_s)t + \Phi] + \frac{1}{2} \cos[(\omega_r - \omega_s)t + \Phi]
\]

erhålls. Summafrekvensen dämpas av ett lågpassfilter och endast de skillnadsfrekvenser som ligger inom lågpassfiltrets smala frekvensområde passerar. Lågpassfiltrets tidskonstant kan ha värden upp till 100 s.

I figur 47 visas en "true differential" anslutning.

Beträffande mätuppgifter se "Uppgifter", moment 4 och 5.

True-Differential Connection

Figur 47.
Summering av störningsreducerande teknik.

The check list that follows is intended to summarize, in short form, the more commonly used noise reduction techniques. Those items with an asterisk are essentially free of added cost and should be used whenever applicable. The remaining techniques should be used whenever additional noise reduction is required.

Noise Reduction Check List

A. Suppressing Noise At Source:
☐ Enclose noise sources in a shielded enclosure.
☐ Filter all leads leaving a noisy environment.
☐ Limit pulse rise times.
☐ Relay coils should be provided with some form of surge damping.
☐ Twist noisy leads together. *
☐ Shield and twist noisy leads.
☐ Ground both ends of shields used to suppress radiated interference (shield does not need to be insulated). *

B. Eliminating Noise Coupling:
☐ Twist low-level signal leads. *
☐ Place low level leads near chassis (especially if the circuit impedance is high).
☐ Twist and shield signal leads (coaxial cable may be used at high frequencies).
☐ Shielded cables used to protect low-level signal leads should be grounded at one end only (coaxial cable may be used at high frequencies with shield grounded at both ends). *
☐ Insulate shield on signal-leads.
☐ When low-level signal leads and noisy leads are in the same connector, separate them and place the ground leads between them. *
☐ Carry shield on signal leads through connectors on a separate pin.
☐ Avoid common ground leads between high and low level equipment. *
☐ Keep hardware grounds separate from circuit grounds. *
☐ Keep ground leads as short as possible. *
☐ Use conductive coatings in place of nonconductive coatings for protection of metallic surfaces.
☐ Separate noisy and quiet leads. *
☐ Ground circuits at one point only (except at high frequencies). *
☐ Avoid questionable or accidental grounds.
☐ For very sensitive applications, operate source and load balanced to ground.
☐ Place sensitive equipment in shielded enclosures.
☐ Filter or decouple any leads entering enclosures containing sensitive equipment.
☐ Keep the length of sensitive leads as short as possible. *
☐ Keep the length of leads extending beyond cable shields as short as possible. *
☐ Use low-impedance power distribution lines.
☐ Avoid ground loops. *
☐ Consider using the following devices for breaking ground loops:
 • Isolation transformers
 • Neutralizing transformers
 • Optical couplers
 • Differential amplifiers
 • Guarded amplifiers
 • Balanced circuits.

C. Reducing Noise at Receiver:
☐ Use only necessary bandwidth.
☐ Use frequency selective filters when applicable.
☐ Provide proper power supply decoupling.
☐ Bypass electrolytic capacitors with small high-frequency capacitors.
☐ Separate signal, noisy, and hardware grounds. *
☐ Use shielded enclosures.
☐ With tubular capacitors, connect outside foil end to ground. *

*Essentially free of added cost.
5. UPPGIFTER.

UPPGIFT 1. Simulering av LF-störningar.

Apparatur: Effektförstärkare, belastningsmotstånd 8 Ω, primärspole, sekundärspoler 3 st, Ae voltmeter och funktionsgenerator.

Som Du ser har vi två grundläggande kopplingsvarianter A-F, G-K. Försöket kommer att visa att för bästa störningsskydd för låg frekvens, bör skärmen ej vara en av signalledarna, samt att en ända av kretsen bör vara isolerad från jord (eliminering av strömlooper).

Således bör Du finna att kopplingarna A-F har sämre störningsskydd än varianterna G-K. Försök med AC voltmeter och oscilloskop; verifiera detta påstående.

Funktionsgeneratorm inställas på sinus 50 kHz och med ampl. 1 V.

Koppla AC voltmetern över 1 MΩ-motståndet samt avläs de olika varianternas värde i förhållande till koppling A som vi har som OdBref.

<table>
<thead>
<tr>
<th>DAMPNING</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

Jämför med värdena i tabell sid. 11.
UPPGIFT 2. Simulering av HF-störningar på olika typer av ledare.

Apparatur: Oscilloskop med hög känslighet (1 mV/cm). Philips RF-generator PM 5324 (2 st.).

Den generator som levererar störsignalen ansluts till en central enkelledare ”störledaren” via en BNC-kontakt.

Den generator som levererar den ”önskade” signalen ansluts till oscillografen via olika ledningstyper (enkelledare, dubbelledare, tvinnad dubbelledare och koaxialkabel).

a. Undersök störningen vid olika frekvenser. Börja med 50 MHz och variera störsignalen kring detta värde.

b. Vilken inverkan har en metallplåt som inskjuts mellan ”störledaren” och den studerade ledaren?

c. Vilken ledningstyp är störkänsligast resp. okänsligast?

Kommentar:

UPPGIFT 3. Störningar från pulssignaler.

Pulsgeneratorn PG 501 används som störningskälla i detta fall.

Störsignal: Max. amplitud och 50 kHz < f < 50 MHz.

Signaldetektorn på 100 kHz.

Upprepa observationerna i uppgift 1.

Komentarer:

UPPGIFT 4. Bestäm med lock-in teknik storleken av motståndet R i kretsen i skärmburken.

UPPGIFT 5. Bestäm med lock-in teknik signalen från en fotodiod som svagt belyses med en LED-diod vars ljussignal är svagt modulerad. Bestämningen skall dels göras i mörker och dels i full belysning från lysämnarestir. Studera signalen i oscilloskop i de bågge fallen.
Instuderingsfrågor till laboration:

ET19A STÖRNINGAR I MÄTSYSTEM

1. Vad fordras för att störningsproblem skall uppstå?
2. Vilka sätt för att eliminera störningsproblem kan härledas ur a?
3. Ge exempel på koppling av störningar.
4. Visa hur man reducerar kapacitiv koppling.
5. Ge exempel på induktiv koppling och hur den reduceras.
7. Ställ upp några krav på en god jordning.
8. Ange två typer av signaljord.
9. När bör enpunktsjord resp. flerpunktsjord föredras?
11. Hur bör kabelskärmor jordas?
12. Hur kan man bryta en jordslinga?
13. Hur och i vilka sammanhang används Guard shields?