Syfte och mål: Syftet är att anpassa och tillämpa ML-algoritmer för att extrahera funktioner från allmänt tillgängliga databaser för att berika urbana digitala tvillingar och tillhandahålla optimerade renoveringsåtgärder för beslutsstöd.Först kommer projektet att utveckla en metod för att extrahera information som behövs för prestandasimulering av byggnader. Därefter kommer en optimeringsmetod att utvecklas som inkluderar energisimulering, Livscykelanalys och en Livscykelkostnadsanalys. Slutligen skall de utvecklade metoderna implementeras i ett beslutsstöds-verktyg. Förväntade effekter och resultat: Två huvudsakliga resultat förväntas från detta projekt. Först ett skalbart och framtidssäkert arbetsflöde för att berika digitala tvillingar av städer med geometriska egenskaper och semantisk data. För det andra kommer beslutsstödsverktyget att ge intressenter, inklusive fastighetsförvaltare och kommuner, rätt information för renoveringsplanering.
Sidansvarig Publicerad: fr 29 apr 2022.
Var god fyll i ett meddelande
Skicka meddelande
Tack! Vi har tagit emot ditt meddelande. Om du har lämnat din mejladress kommer du inom 2-3 arbetsdagar få ett svar av ansvarig redaktör.