Kursplan för Tillämpad matematik

Kursplanen innehåller ändringar
Se ändringar

Kursplan fastställd 2024-02-08 av programansvarig (eller motsvarande).

Kursöversikt

  • Engelskt namnApplied mathematics
  • KurskodTMA683
  • Omfattning7,5 Högskolepoäng
  • ÄgareTKKMT
  • UtbildningsnivåGrundnivå
  • HuvudområdeMatematik
  • InstitutionMATEMATISKA VETENSKAPER
  • BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd

Kurstillfälle 1

  • Undervisningsspråk Svenska
  • Anmälningskod 53116
  • Max antal deltagare135
  • Sökbar för utbytesstudenterNej
  • Endast studenter med kurstillfället i programplan.

Poängfördelning

0115 Projekt 1,5 hp
Betygsskala: UG
0 hp1,5 hp0 hp0 hp0 hp0 hp
0215 Tentamen 6 hp
Betygsskala: TH
0 hp6 hp0 hp0 hp0 hp0 hp
  • 16 Jan 2025 fm L
  • 14 Apr 2025 fm J
  • 21 Aug 2025 em J

I program

Examinator

Gå till kurshemsidan (Öppnas i ny flik)

Behörighet

Grundläggande behörighet för grundnivå
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Särskild behörighet

Samma behörighet som det kursägande programmet.
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Kursspecifika förkunskaper

Analys
  • Calculus (en och flera variabler); Komplexa tal, serier, trigonometri, Greens formel, Stokes sats och Gauss divergenssats.
  • Integralkalkyl; Partiell integration, partialbråksuppdelning av rationella funktioner, numerisk integration och dubbelintegraler.
  • Differentialekvationer: Linjära ordinära differentialekvationer av första (skalär och system) och andra ordningen (endast skalära).
Linjär algebra
  • Linjära ekvationssystem
  • Matrisalgebra
  • Linjära rum och egenvärdesproblem
Programmering i Matlab

Syfte

Kursens syfte är att studera numeriska såväl som analytiska lösningar till partiella (och ordinära) differentialekvationer vilket utgör en viktig del av de moderna matematiska verktygen inom natur- och ingenjörsvetenskap.

Lärandemål (efter fullgjord kurs ska studenten kunna)

Efter fullgjord kurs ska studenten kunna
  • numerisk lösa partiella och ordinära differentialekvationer (såsom (tidsberoende eller stationära) värmelednings-, konvektion-diffusions- och reaktion-diffusionsekvationer) med hjälp av finita elementmetoden;
  • konstruera och implementera numeriska algoritmer (i Matlab);
  • beräkna laplacetransform och invers laplacetransform;
  • lösa ordinära och integro-differentialekvationer med laplacetransformer;
  • bestämma fourierserier till periodiska fuktioner, samt sinus- och cosinusserier för funktioner definierade på ett intervall;
  • lösa linear PDE (såsom värmelednings- och vågproblem) med hjälp av variabelseparationsmetoden; 
  • kunna redogöra för och i vissa fall bevisa terorin rörande det ovanstående;

Innehåll

I kursen studeras matematiska modeller i 1D (och 2D) för processer inom teknik och naturvetenskap. Dessa processer modelleras med (partiella) differentialekvationer. Typiska exempel är reaktion, produktion, diffusion och konvektion processer.

Kursen är uppdelad i två delar. Den ena delen behandlar numerisk lösning av differentialekvationer med finita elementmetoden (FEM). Den andra delen behandlar tekniker för att exakt lösa differentialekvationer: Laplacetransform, fourierserier och variabelseparation.

Organisation

Kursen inbegriper föreläsningar, övningar och datorlaborationer.

En mindre del av kursinnehållet gås inte igenom under föreläsningarna utan lämnas åt självstudier. Detta material ingår dock i lika hög grad i kursen.

Arbete med övningar och datorlaborationer spelar en viktig roll under hela kursen och belyser kursens teoretiska innehåll från en praktisk synvinkel. Kursen är indelad i två moment om 6 hp respektive 1,5 hp. Momentet om 6 hp examineras genom skriftlig tentamen. För godkänt på momentet om 1,5 hp krävs godkänt på datorlaborationerna (specificeras på kurshemsida).

Litteratur

Referenser och en del extra material finns på kusens hemsida.

Examination inklusive obligatoriska moment

Skriftlig tentamen av problemlösningskaraktär med teoretiska inslag (svarar mot 6 hp) samt projektuppgift och datorlaborationer
(tillsammans 1,5 hp).

Kursens examinator får examinera enstaka studenter på annat sätt än vad som anges ovan om särskilda skäl föreligger, till exempel om en student har ett beslut från Chalmers om pedagogiskt stöd på grund av funktionsnedsättning.

Kursplanen innehåller ändringar

  • Ändring gjord på kurstillfälle:
    • 2024-05-14: Examinator Examinator ändrat från David Cohen (cohend) till Joakim Becker (becker) av Viceprefekt/adm
      [Kurstillfälle 1]