Kursplan för Matematisk överbryggningskurs

Kursplan fastställd 2021-02-26 av programansvarig (eller motsvarande).

Kursöversikt

  • Engelskt namnMathematical supplementary course
  • KurskodLMA224
  • Omfattning7,5 Högskolepoäng
  • ÄgareTIMAL
  • UtbildningsnivåGrundnivå
  • HuvudområdeMatematik
  • InstitutionMATEMATISKA VETENSKAPER
  • BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd

Kurstillfälle 1

  • Undervisningsspråk Svenska
  • Anmälningskod 65133
  • Max antal deltagare98
  • Blockschema
  • Sökbar för utbytesstudenterNej

Poängfördelning

0107 Tentamen 7,5 hp
Betygsskala: TH
7,5 hp

    I program

    Examinator

    Gå till kurshemsidan (Öppnas i ny flik)

    Behörighet

    Grundläggande behörighet för grundnivå
    Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

    Särskild behörighet

    Samma behörighet som det kursägande programmet.
    Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

    Kursspecifika förkunskaper

    Kurserna LMA401 Matematisk analys och MVE580 Linjär algebra och differentialekvationer eller motsvarande kunskaper.

    Syfte

    Kursens syftet är att, tillsammans med övriga matematikkurser inom Chalmers ingenjörsprogram i maskinteknik, ge en matematisk allmänbildning som är så användbar som möjligt i fortsatta studier och teknisk yrkesverksamhet. Specifikt har kursen som syfte att ge kompletterande kunskaper i matematik för övergång till Chalmers civilingenjörsprogram i maskinteknik.

    Lärandemål (efter fullgjord kurs ska studenten kunna)

    • redogöra för innebörden hos grundläggande begrepp inom matematisk analys (i en och flera variabler), linjär algebra och sammanhörande numerisk analys.
    • redogöra för sambanden mellan de olika begreppen.
    • använda dessa begrepp vid problemlösning.
    • tillämpa fördjupade färdigheter i Matlab-programmering för att lösa beräkningsproblem.

    Innehåll

    Vektorrum, underrum, linjärt oberoende, bas, basbyte. Linjära avbildningar. Minsta kvadratmetoden. Egenvärden, egenvektorer och diagonalisering. Numerisk lösning av ickelinjära ekvationssystem. Extremvärden, optimering på kompakta områden, optimering med bivillkor. Numerisk optimering: gradientmetoden och Newtons metod. Dubbel- och trippelintegraler, numerisk beräkning och tillämpningar. Kurvintegraler och Greens formel. Numerisk lösning av ordinära differentialekvationer. Kort om PDE: Laplace och Poissons ekvationer, numerisk lösning. Matlabtillämpningar.

    Organisation

    Föreläsningar och övningar. Övningarna förläggs till datorsal. Mer detaljerad information ges på kursens webbsida före kursstart.

    Litteratur

    Kurslitteratur anges på kursens webbsida före kursstart.

    Examination inklusive obligatoriska moment

    Examinationen består av skriftlig tentamen samt obligatoriska inlämningsuppgifter. Mer detaljerad information om examinationen ges på kursens webbsida före kursstart.

    Kursens examinator får examinera enstaka studenter på annat sätt än vad som anges ovan om särskilda skäl föreligger, till exempel om en student har ett beslut från Chalmers om pedagogiskt stöd på grund av funktionsnedsättning.