News: Bioteknik related to Chalmers University of TechnologyWed, 17 Aug 2022 20:46:05 +0200 technology turns the whole fish into food<p><b>​In the meat industry, it’s common practice to turn the whole animal into food products. In the fish industry, over half of the weight of the fish ends up as side-streams which never reach our plates. This takes a toll on the environment and is out of step with Swedish food and fisheries strategies. Now, food researchers at Chalmers are introducing a new sorting technology that means we get five good cuts from fish and not just the fillet. A herring processing plant on Sweden’s west coast is already implementing the new method. ​</b></p><p class="chalmersElement-P">​<span>When the fillet itself is removed from a fish, valuable side-streams remain, which can be turned into products such as nuggets, mince, protein isolates or omega-3-rich oils. Despite such great potential, these products leave the food chain to become animal feed or, worst case, get discarded. To exploit valuable nutrients and switch to more sustainable procedures, the way we process fish needs to change. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">All cuts are treated with care</h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">&quot;With our new sorting method, the whole fish is treated with the same care as the fillet. The focus is on preserving quality throughout the entire value chain. Instead of putting the various side-streams into a single bin to become by-products, they are handled separately, just like in the meat industry,&quot; says research leader Ingrid Undeland, Professor of Food Science at the Department of Biology and Biological Engineering at Chalmers. </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">The research was conducted as part of an international project called Waseabi. The Chalmers researchers recently published their results in the scientific journal, Food Chemistry.  </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">&quot;Our study shows that this type of sorting technology is important, particularly as it means we can avoid highly perishable side-stream cuts being mixed in with the more stable cuts. This new method brings fresh opportunities to produce high-quality food,” says Chalmers researcher Haizhou Wu, first author of the scientific article.  </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">“The interest is there”</h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">The new sorting method for separating the five different cuts is being introduced at one of the partner companies in the research project. Fish processing company, Sweden Pelagic in Ellös on the island of Orust is already using parts of the method in its production and has had good results. </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">&quot;The sorting technology gives us many more opportunities to develop healthy, new and tasty foods and to expand our product range. This year, we estimate we’ll produce around 200-300 tonnes of mince from one of the new cuts and we aim to increase that figure year on year. The interest is there, in the food industry and public meal production segments like school catering,&quot; says Martin Kuhlin, CEO of Sweden Pelagic. </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span style="font-weight:700">Text:</span> Laila Dam (Waseabi) and Mia Halleröd Palmgren (Chalmers)​<br /><br /></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><img src="/SiteCollectionImages/Institutioner/Bio/Food/IngridUndeland_HaizhouWu_MartinKuhlin.jpg" alt="" style="margin:5px" /><br /><span style="background-color:initial">I</span><span style="background-color:initial">ngrid Undeland, Haizhou Wu and Martin Kuhlin. ​<br /></span><em style="background-color:initial">Photo: </em><span style="background-color:initial"><i>Anna-Lena Lundqvist, </i></span><span style="background-color:initial"><i>Mia Halleröd Palmgren​ and Karin Kuhlin. </i></span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">About the study and opportunities for the fish industry: </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"></p> <div> </div> <ul><li>Read the scientific article <a href="">Lipid oxidation in sorted herring (<em>Clupea harengus</em>) filleting co-products from two seasons and its relationship to composition</a> in the journal, Food Chemistry.  The article was written by Haizhou Wu, Bita Forghani, Mehdi Abdollahi and Ingrid Undeland at the Department of Biology and Biological Engineering at Chalmers. </li> <li>The new sorting technology means that fillet, backbones, tailfin, head, belly flap and viscera can all be separated. The backbone and head are most muscle-rich and thus well suited to becoming fish mince or protein ingredients. As the belly flap and intestines are rich in marine Omega-3, they can be used for oil production. The tail fin has a lot of skin, bones and connective tissue and is therefore well suited to such things as producing marine collagen, a much sought-after ingredient on the market right now. In addition to food, marine collagen is also used in cosmetics and ‘nutraceuticals’, with documented good effects on the health of our joints and skin.</li> <li><span style="background-color:initial">The EU’s fish processing industry is significant and generates an annual turnover of nearly €28 billion whilst employing over 122,000 people. However, the industry faces several challenges. For instance, an estimated 1.5 million tons of seafood side-streams are produced in Europe, based on a production of 5.1 million tons of fish caught. In Sweden, it has been estimated that 30,000-60,000 tons of seafood side-streams are generated yearly; some 35-70 times more than the Swedish cod catch. This means that the current utilisation of aquatic biomass for food is far too low. When producing fillets, up to 70 per cent of the aquatic resources end up as side-streams, which are either used for low-value products such as animal feed or discarded, which takes a toll on the environment and sometimes also the companies involved.</span></li></ul> ​<br /> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">For more information, please contact:</h3> <div> </div> <p class="chalmersElement-P"><strong>I</strong><span><strong>ngrid Undeland</strong>, Professor of Food Science, Department of Biology and Biological Engineering, Chalmers University of Technology, +46 73 708 08 64, <a href=""></a></span></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong>Martin Kuhlin</strong>, CEO of Sweden Pelagic, +46 70 966 65 68, <a href=""></a></p> <p class="chalmersElement-P"><br /></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3"><span>More about the </span><a href=""><span>EU’s </span><span>Waseabi </span><span>project </span></a></h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"></p> <ul><li>Waseabi is a four-year, interdisciplinary project aimed at making better use of side-stream products in the seafood industry by stabilising them and developing new methods of producing food. The project comprises thirteen partners from five European countries. Alongside Chalmers, two companies from Sweden are participating; Sweden Pelagic and Alfa Laval. International partners are the Technical University of Denmark (DTU), Food &amp; Bio Cluster, Denmark, AZTI, EIT Food, Royal Greenland, Pescados Marcelino, Jeka Fish, Barna, Nutrition Sciences and Ghent University.</li> <li>The project is funded by the Bio Based Industries Joint Undertaking (JU) of the European Union's Horizon 2020 research and innovation programme, under grant agreement no. 837726. JU is supported by the Horizon 2020 research and innovation programme and the Bio Based Industries Consortium.</li> <li>Read about a previous research advance from the project: <a href="/en/departments/bio/news/Pages/Dipping-solution-turns-the-whole-fish-into-food.aspx">New dipping solution turns the whole fish into valuable food</a></li></ul> <p></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p>Tue, 28 Jun 2022 08:00:00 +0200 of Systems Biology new honorary doctor<p><b>​Jens Nielsen, Professor of Systems Biology at Chalmers University of Technology, has been awarded an honorary docotrate by Sahlgrenska Academy, University of Gothenburgh.</b></p><p class="chalmersElement-P">​<span>Jens Nielsen is a pioneer and world leading researcher in systems biology and is one of the world’s <a href="/en/departments/bio/news/Pages/Chalmers-Professor-on-Highly-Cited-Researchers-List.aspx">most cited scientists</a> in this field of research. </span></p> <p class="chalmersElement-P">”I am very honoured to be appointed honorary doctor. I have over the last ten years worked closely with more than ten different medical doctors at Sahlgrenska Academy where we have contributed with our systems biology models to get new insight into metabolic diseases such as cancer, obesity, diabetes and more recently Alzheimer”, says Jens Nielsen. </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">He says that the close collaboration with Professor Fredrik Bäckhed on the gut microbiota in partcular has been very successful.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">”Besides being an excellent research collaboration it has also resulted in establishment of the spin-out company Metabogen AB.”</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">Professor Agneta Holmäng, Dean of Sahlgrenska Academy, comments on the appointment in a <a href="">press release</a>:</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We're immensely proud and pleased to be able, by awarding these honorary doctorates, to strengthen our ties with two highly distinguished people* who are important to Sahlgrenska Academy. Each of our new honorary doctors has a strong commitment to issues relating to life sciences, and helped to strengthen this area in our region. ... <span style="background-color:initial">At an early stage Jens Nielsen was involved to a high degree in boosting the interaction between our faculty and Chalmers University of Technology&quot;</span><span style="background-color:initial">​</span></p> <p class="chalmersElement-P"><em style="background-color:initial">*The prominent businessman Michael Treschow is also appointed honorary doctor at Sahlgrenska Academy </em><br /></p> <p class="chalmersElement-P"><em> </em></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>Read more about Jens Nielsen’s research: </strong></p> <p class="chalmersElement-P"></p> <ul><li><span><a href="/en/departments/bio/research/systems-biology/nielsen-lab/Pages/default.aspx">Nielsen Lab</a></span></li> <li><a href="/en/departments/bio/news/Pages/Designing-healthy-diets-–-with-computer-analysis.aspx">Designing healthy diets − with computer analysis</a></li> <li><a href="/en/departments/bio/news/Pages/The-next-generation-of-human-metabolic-modelling.aspx">The next generation of human metabolic modelling​</a></li></ul> <p></p>Mon, 27 Jun 2022 02:00:00 +0200 sustainable production of aromatic chemicals<p><b>​Aromatic chemicals are versatile chemicals used in the manufacture of various medicines, but also as additives in cosmetics or food. Today, most aromatic chemicals are produced from oil and the need for new, sustainable biotechnological production methods for these chemicals is urgent. A research project led by Yvonne Nygård, Associate Professor at the Division of Industrial Biotechnology at Chalmers has just received a multi-million grant to develop technologies for this bioproduction.​</b></p><p class="chalmersElement-P">​<span>The focus of the research project is on constructing microorganisms, yeasts and filamentous fungi, that can be used as cell factories and to sustainably produce aromatic chemicals. The production is based on the fermentation of sugars and requires efficient and robust microorganisms for competitive industrial production.</span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>Why are yeasts and filamentous fungi suitable for this type of production?</strong></p> <div><strong> </strong></div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“Baker’s yeast, <em>Saccharomyces cerevisiae</em>, is already used today to produce many different chemicals, among them aromatic chemicals. Consequently, there is already ga lot of knowledge on how these chemicals can be produced in yeast and there are many tools for modifying yeast. This makes yeast an obvious choice in this project where we will make quite complicated modifications and screen strain variants using biosensors,” says Yvonne Nygård, continuing:</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“Choosing filamentous fungi provides us with robust and tolerant cell factories. They are quite complex to work with compared to baker’s yeast, but by testing similar modifications in yeast and fungi, we can learn more about regulation of the production of aromatic chemicals. We want to map the properties needed to be able to take the production of aromatic chemicals closer to a commercial level, in either yeast or filamentous fungi.”</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Screening the strain variants with biosensors – how does this work?</strong></p> <div> </div> <p class="chalmersElement-P"><strong> </strong></p> <div> </div> <p class="chalmersElement-P">“The biosensors measure the concentration of a certain predetermined substance in the cell or in the cell culture and report this concentration by fluorescence. In this way, the outcome of the cells' efficiency can be measured. As a postdoc in the Netherlands, I developed a biosensor for a specific aromatic chemical, and we will pick up and continue this work. We will also develop new biosensors for other aromatic chemicals.”</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>What are the effects of your project receiving 10 million DKK from the Novo Nordisk Foundation?</strong></p> <div> </div> <p class="chalmersElement-P"><strong> </strong></p> <div> </div> <p class="chalmersElement-P">“It is a fantastic opportunity to focus on a specific project for a longer period. More resources and a long-term perspective will hopefully lead to great progress, and I look forward to having a small team working on similar research”.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial"><strong>Text:</strong> Susanne Nilsson Lindh​</span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Photo:</strong> Martina Butorac</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Read more about Yvonne Nygård's research:</strong></p> <div> </div> <p class="chalmersElement-P"><strong> </strong></p> <div> </div> <p class="chalmersElement-P"></p> <div> </div> <ul><li>Yvonne Nygårds project <a href="">FunAromatics – High throughput technologies for production of aromatic biochemicals with fungi  </a></li> <li><span><a href="/en/departments/bio/news/Pages/Projects-on-sustainable-food-on-IVA’s-100-list.aspx">Projects on sustainable food on IVA’s 100 list</a></span></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/7971-paths-towards-better-cell-factories.aspx">7971 paths towards better cell factories​</a></span><br /></li> <li><a href="/en/departments/bio/news/Pages/New-discovery-can-improve-industrial-yeast-strains.aspx"><span style="background-color:initial">New discovery can improve industrial yeast strains</span></a>​</li> <li><a href="/en/departments/bio/news/Pages/Cutting-edge-Nobel-technique-in-practice-at-Chalmers.aspx"><span style="background-color:initial">C</span><span style="background-color:initial">utting edge Nobel tool in practice at Chalmers</span></a><br /></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/Yvonne-Nygard-receives-grant-from-the-Hasselblad-Foundation.aspx">Yvonne Nygård receives grant from the Hasselblad Foundation</a></span></li></ul> <div> </div> <p></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p>Wed, 22 Jun 2022 11:00:00 +0200 are the Future Research Leaders<p><b>​No less than six Chalmers researchers were accepted when the Swedish Foundation for Strategic Research, SSF, appointed Future Research Leaders. </b></p><div>​The goal of the program is to give newly established researchers with the highest scientific and pedagogical competence the opportunity to develop as research leaders. Ahmed Ali-Eldin Hassan, <span>Johan Bengtsson-Palme, <span style="display:inline-block"></span></span>Raphaël Frank J Van Laer, <span>Anton Frisk Kockum, <span style="display:inline-block"></span></span><span>Alexander Hollberg<span style="display:inline-block"></span></span> and Julia Wiktor are the six Chalmers researchers who qualified among the 16 young researchers who now receive 15 million each for independent research. SSF's assessment is that they are expected to be able to lead even larger research groups in the future, and they will therefore participate in a comprehensive leadership program.  <br /></div> <div><div> </div> <div><strong><a href="/en/staff/Pages/ahmh.aspx">Ahmed Ali-Eldin Hassan</a></strong>, Assistant Professor at the Department of Computer Science and Engineering, receives funding for the research project Edge Optimization: Operating Systems &amp; Software on the Edge. The project focuses on building a new operating system for latency critical next generation applications such as autonomous vehicles to make use of edge, cloud and local compute resources with performance guarantees.<span style="display:inline-block"></span></div></div> <div><br /></div> <div><p class="chalmersElement-P"><strong><a href="/en/Staff/Pages/johan-bengtsson-palme.aspx" target="_blank" title="">Johan Bengtsson-Palme</a></strong>, Assistant Professor at the Department of Biology and Biological Engineering since May 2022, receives funding for the research project Predicting future pathogenicity and antibiotic resistance. The aim of the project is finding out what mechanisms cause bacterial pathogenicity and antibiotic resistance. The researchers want to use this knowledge to understand which genes may pose a threat to human health in the future.    <span><strong><a href="/en/staff/Pages/raphael-van-laer.aspx"><br /><br />Raphaël Frank J Van Laer</a></strong>, Assistant Professor at the Department of Microtechnology and Nanoscience, receives funding for the research project Attojoule-per-bit acousto-optics. The long-term goal of the project is to help extend Moore's law with light and sound by reducing the energy footprint of chip-scale photonics and quantum technology.   </span><strong></strong><br /></p> <strong></strong><p class="chalmersElement-P"><strong><a href="/en/staff/Pages/Anton-Frisk-Kockum.aspx"><br />Anton Frisk Kockum</a></strong>, Researcher at the Department of Microtechnology and Nanoscience, receives funding for the research project Quantum simulation and communication with giant atoms. The main goal of the project is to construct efficient and useful simulations of quantum systems (e.g., molecules) that interact with a surrounding environment.<strong><br /><br /><a href="/en/staff/Pages/Alexander-Hollberg,-Arkitektur-och-samhallsbyggnadsteknik-.aspx">Alexander Hollberg</a></strong>, Assistant Professor at the Department of Architecture and Civil Engineering, receives funding for the research project Digital material inventories for sustainable urban mining. The main goal of this project is to develop a method for creating urban construction material inventories based on digital twins and machine learning, to support stakeholder to reuse and recycle materials. <strong><a href="/en/staff/Pages/Julia-Wiktor.aspx"><br /><br />Julia Wiktor</a></strong>, Assistant Professor at the Department of Physics, receives funding for the research project Ab Initio Description of Complete Semiconductor Devices. The project’s aim is to couple accurate but computationally expensive quantum mechanical modelling methods with emerging artificial neural network models to be able to efficiently model materials and interfaces that constitute semiconductor micro- and nanodevices.  </p> <div><br /></div> <div>More information about the call and what the appointment entails can be found on the <a href="" title="SSF" target="_blank">SSF web.</a><br /></div></div>Tue, 21 Jun 2022 14:00:00 +0200 and stretch assay reveals resistance genes<p><b>​Which antimicrobial resistance genes are present in bacteria, for example in a hospital ward? For laboratories with limited financial resources characterizing bacterial DNA is difficult, as this often requires expensive equipment. Researchers at Chalmers have now developed a method that can detect specific bacterial genes that encode resistance using standard microscopes, which are already used to diagnose tuberculosis in low-income countries.​</b></p><p class="chalmersElement-P">​<span>Antimicrobial resistance is one of the major health threats globally, as common infections no longer respond to antibiotics. This may result in severe illness and death, for example in neonatal sepsis, i.e., severe bacterial blood infections in new-born children.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">The genes conferring resistanc</span><span style="background-color:initial">e to bacteria, for example by breaking down antibiotics, are often found on plasmids, the circular DNA molecules that do not belong to the chromosomal bacterial DNA. Plasmids can transfer between bacterial strains and species and can thus spread rapidly in a bacterial population.</span></p> <h2 class="chalmersElement-H2"><span>Microscope already present in many labs​</span></h2> <p class="chalmersElement-P"><span style="background-color:initial">“Effective and simple methods are needed to characterise bacterial plasmids and detect resistance genes when an infection spreads in hospitals. This is a problem for laboratories with limited resources as existing methods require expensive equipment,” says<a href="/sv/institutioner/bio/forskning/kemisk-biologi/Westerlund-lab/Sidor/default.aspx"> Fredrik Westerlund</a>, Professor of Chemical Biology at Chalmers.</span></p> <p class="chalmersElement-P"><span>Thanks to a tuberculosis diagnosis program, many laboratories in low- and middle-income countries are already in possession of standard fluorescence microscopes. This was the starting point for Fredrik Westerlund’s research group. They based their newly developed method on these microscopes, which are present in the hospital laboratory of their collaboration partners in Dar es Salam, Tanzania.  </span></p> <h2 class="chalmersElement-H2">Linear DNA molecule can be detected</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">To find specific genes, the researchers use the so-called gene scissors, CRISPR-Cas9, which can recognize and cut DNA strands at any predetermined sequence, so unique that specific genes can be found.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“If a resistance gene is present on the plasmid, it will be cut by Cas9. The DNA is then stretched on a glass slide and imaged with fluorescence microscopy, and the linear molecule can be detected. The images for analysis, can be acquired by a regular smartphone, which you can easily attach to the microscope eyepiece,” says <a href="/en/Staff/Pages/goyal.aspx">Gaurav Goyal​</a>, a postdoc in the research group.</p> <h2 class="chalmersElement-H2">&quot;Any microbiological lab can perform this plasmid analysis&quot;​<br /></h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">Gaurav Goyal explains that the method is currently intended for epidemiological studies − to characterize bacterial plasmids and to understand the spread of antibiotic resistance. It might for example be relevant to examine how many new-borns in a hospital ward that carry bacteria with resistance genes. In the long run, it could also be used for diagnosis.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We started to develop the method for laboratories with limited resources, but any microbiological lab can perform this plasmid analysis − and get relevant results. In addition to finding resistance genes on plasmids, the method can also be used to determine the size and the number of the plasmids in a sample. Our method is simple and faster than other methods, which can be useful in modern microbiology labs in high-income countries too,” says Fredrik Westerlund.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>Read the study:</strong><a href=""> A simple cut and stretch assay to detect antimicrobial resistance genes on bacterial plasmids by single-molecule fluorescence microscopy</a> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><strong>Text: </strong>Susanne Nilsson Lindh<br /><strong>Illustration:</strong> Pixabay</p> <p class="chalmersElement-P"> ​</p>Mon, 20 Jun 2022 09:00:00 +0200 benefits from Mediterranean diet with low GI <p><b>The prevalence of type 2 diabetes is increasing globally, and the disease is strongly connected to an increased risk of developing cardiovascular disease. A recent study by food and nutrition researchers at Chalmers University of Technology, among others, shows that consuming a Mediterranean diet with a low glycemic index (GI) could lead to health benefits that can help prevent type 2 diabetes.</b></p><p class="chalmersElement-P">​<img src="/SiteCollectionImages/Institutioner/Bio/Food/Therese_Hjorth_portrait_350x305px.jpg" alt="Therese HJort" class="chalmersPosition-FloatRight" style="margin:5px;width:250px;height:218px" /><span>In the current <a href="">study</a>, which is a collaboration between Purdue University, Federico II University, and Chalmers, the researchers investigated how meal-related insulin sensitivity, so-called postprandial glycemia, was affected by a diet with high and low glycemic index, GI.</span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“Lowering glucose levels after a meal may be a strategy to reduce the prevalence of type 2 diabetes, as a meal-related glucose increase probably contributes to the development of the disease,” says <strong>Thérése Hjorth</strong>, doctoral student in food and nutrition science at Chalmers, and one of the researchers behind the study.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">Previous research has shown that the GI of carbohydrate rich foods plays a major role in postprandial blood glucose levels and that diabetics manage their glucose control by choosing foods with low GI. But there has been no consensus on how GI affects non-diabetic persons, especially in the context of a healthy eating pattern (HEP).</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“There is research showing that consuming Mediterranean (MED) HEP may reduce the risk of developing type 2 diabetes, but no studies have previously evaluated the effect of foods with low versus high GI in connection with a MED-HEP diet,” says Thérése Hjorth.</p> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"><span>Low GI may be important in the </span>Mediterranean diet’s health benefits<span style="font-family:inherit;background-color:initial">​</span></h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">In the study 160 participants at risk of developing type 2 diabetes completed a 12-week dietary intervention assessing the effect of MED-HEP with a low versus high GI. Participants consumed half of their daily carbohydrates as low GI foods such as pasta, brown rice, flat bread or high GI foods such as jasmine rice, potato, mashed potatoes, couscous along with fruits, vegetables and other carbohydrate rich foods that all consumed.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“As we assumed, glucose levels were lower after the meals with a low GI diet, compared to the high GI diet − and the difference between the groups increased with time during the study. However, the difference between the groups was mostly due to the high GI participants increasing their blood glucose after a meal, while the participants that ate a low GI showed the same level as the baseline. This indicates that glucose levels are increasing after eating foods with a high GI for 12 weeks,” says Thérése Hjorth.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">The researchers say that the study shows that GI affects glucose levels in the blood among non-diabetic persons despite eating a healthy Mediterranean diet. That is: a healthy diet (MED-HEP) does not compensate for a high GI diet, and one should therefore think about the carbohydrate quality of the food and choose foods with a low GI.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“As foods with low GI like pasta are part of a traditional Mediterranean diet, our results suggest that the low GI may be an important component in the Mediterranean diet’s health benefits.”</p> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Results can be useful when looking for biomarkers</h2> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">The Chalmers researchers say the results can be very useful when looking for specific biomarkers for consumption of foods with high versus low GI.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“Such biomarkers could be used in epidemiological studies to improve our understanding of the role of GI diets in health and disease. We will also use the extensive data collected to better understand the role of diet, gut microbiota and plasma metabolites in explaining inter-personal differences in glucose response to diet.” says Thérése Hjorth.</p> <p class="chalmersElement-P"><span style="font-weight:700">Text: </span>Susanne Nilsson Lindh<br /><span style="font-weight:700;background-color:initial">Photo: </span><span style="background-color:initial">Pixa</span><span style="background-color:initial">bay</span><span style="background-color:initial"></span><br /></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><strong>Read the study:</strong> <a href="">Differential Glycemic Effects of Low- versus High-Glycemic Index Mediterranean-Style Eating Patterns in Adults at Risk for Type 2 Diabetes: The MEDGI-Carb Randomized Controlled Tria</a>l  </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><br /></p> <div><strong> </strong></div> <div><strong> </strong></div> <div><strong> </strong></div> <p class="chalmersElement-P"><strong> </strong></p> <div><strong> </strong></div> <div><strong> </strong></div> <div><strong> </strong></div> <p class="chalmersElement-P"><strong>Read more: </strong></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"></p> <ul><li><a href="/en/departments/bio/news/Pages/Wholegrains-important-for-preventing-type-2-diabetes.aspx">Wholegrains important for preventing type 2 diabetes</a></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/Filtered-coffee-helps-prevent-type-2-diabetes.aspx">Filtered coffee helps prevent type 2 diabetes, show biomarkers in blood samples</a></span></li></ul> <p></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p>Fri, 17 Jun 2022 08:00:00 +0200 light the way towards new medicine<p><b>​To develop new drugs and vaccines, detailed knowledge about nature’s smallest biological building blocks – the biomolecules – is required. Researchers at Chalmers University of Technology, Sweden, are now presenting a groundbreaking microscopy technique that allows proteins, DNA and other tiny biological particles to be studied in their natural state in a completely new way.</b></p>​<span style="background-color:initial">A great deal of time and money is required when developing medicines and vaccines. It is therefore crucial to be able to streamline the work by studying how, for example, individual proteins behave and interact with one another. The new microscopy method from Chalmers can enable the most promising candidates to be found at an earlier stage. The technique also has the potential for use in conducting research into the way cells communicate with one another by secreting molecules and other biological nanoparticles. These processes play an important role in our immune response, for example. </span><div><br /></div> <div style="font-size:16px"><strong>Revealing its silhouette </strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Biomolecules are both small and elusive, but vital since they are the building blocks of everything living. In order to get them to reveal their secrets using optical microscopy, researchers currently need to either mark them with a fluorescent label or attach them to a surface.</span></div> <div><span style="background-color:initial"><br /><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Christoph%20Langhammer_320.jpg" alt="Christoph Langhammer" class="chalmersPosition-FloatRight" style="margin:5px;width:200px;height:195px" />“With current methods you can never quite be sure that the labelling or the surface to which the molecule is attached does not affect the molecule’s properties. With the aid of our technology, which does not require anything like that, it shows its completely natural silhouette, or optical signature, which means that we can analyse the molecule just as it is,” says research leader <strong>Christoph Langhammer</strong>, professor at the Department of Physics at Chalmers. He has developed the new method together with researchers in both physics and biology at Chalmers and the University of Gothenburg. </span></div> <div><br /></div> <div>The unique microscopy method is based on those molecules or particles that the researchers want to study being flushed through a chip containing tiny nano-sized tubes, known as nanochannels. A test fluid is added to the chip which is then illuminated with visible light. The interaction that then occurs between the light, the molecule and the small fluid-filled channels makes the molecule inside show up as a dark shadow and it can be seen on the screen connected to the microscope. By studying it, researchers can not only see but also determine the mass and size of the biomolecule, and obtain indirect information about its shape – something that was not previously possible with a single technique.</div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial"><strong>Acclaimed innovation</strong></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The new technique, nanofluidic scattering microscopy, was recently presented in the scientific journal Nature Methods. The Royal Swedish Academy of Engineering Sciences, which every year lists a number of research projects with the potential to change the world and provide real benefits, has also paid tribute to the progress made. The innovation has also taken a step out into society through the start-up company Envue Technologies, which was awarded the “Game Changer” prize in this year’s Venture Cup competition in Western Sweden.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/barboraspackova-321x366_fotograf%20Aykut%20Argun.jpg" alt="Barbora Spackova" class="chalmersPosition-FloatRight" style="margin:0px 5px;width:200px;height:228px" />“Our method makes the work more efficient, for example when you need to study the contents of a sample, but don’t know in advance what it contains and thus what needs to be marked,” says researcher <strong>Barbora Špačková</strong>, who during her time at Chalmers derived the theoretical basis for the new technique and then also </span><span style="background-color:initial">conducted the first experimental study with the technology​.</span></div> <div><br /></div> <div>The researchers are now continuing to optimise the design of the nanochannels in order to find even smaller molecules and particles that are not yet visible today.  </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">“</span><span style="background-color:initial">The aim is to further hone our technique so that it can help to increase our basic understanding of how life works, and contribute to making the development of the next generation medicines more efficient” says Langhammer.</span></div> <div><br /></div> <div><strong>More about the scientific article and the research:</strong></div> <div><span style="background-color:initial"><br /></span></div> <div><ul><li><span style="background-color:initial">The article </span><a href="" style="outline:0px">Label-Free Nanofluidic Scattering Microscopy of Size and Mass of Single Diffusing Molecules and Nanoparticles</a><span style="background-color:initial"> was published in Nature Methods, and was written by Barbora Špačková, Henrik Klein Moberg, Joachim Fritzsche, Johan Tenghamn, Gustaf Sjösten, Hana Šípová-Jungová, David Albinsson, Quentin Lubart, Daniel van Leeuwen, Fredrik Westerlund, Daniel Midtvedt, Elin K. Esbjörner, Mikael Käll, Giovanni Volpe and Christoph Langhammer. The researchers are active at Chalmers and the University of Gothenburg. Barbora Špačková is currently starting up her own research group at the Czech Academy of Sciences in Prague.</span></li></ul></div> <div><span style="background-color:initial"><br /></span></div> <div><ul><li><span style="background-color:initial">The research has been mainly funded by the Swedish Foundation for Strategic Research, as well as by the Knut and Alice Wallenberg Foundation. Part of the research was conducted at the Chalmers Nanofabrication Laboratory at the Department of Microtechnology and Nanoscience (MC2) and under the umbrella of the Chalmers Excellence Initiative Nano.</span></li></ul></div> <div><br /></div> <div><strong>How the technique works:</strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/750x340/Toppbild_ENG_Mikroskopet%20som%20kan%20visa%20genva╠êgen%20till%20ny%20medicin_750x340px.jpg" alt="New microscopy method" style="margin:5px;width:600px;height:269px" /><br /><br /><ul><li><span style="background-color:initial">The molecules or particles that the researchers want to study are placed in a chip containing tiny nano-sized tubes, nanochannels, that are filled with test fluid. </span></li> <li><span style="background-color:initial">The chip is secured in a specially adapted optical dark-field microscope and illuminated with visible light. </span></li> <li><span style="background-color:initial">On the screen that shows what can be seen in the microscope, the molecule appears as a dark shadow moving freely inside the nanochannel. This is due to the fact that the light interacts with both the channel and the biomolecule. The interference effect that then arises significantly enhances the molecule’s optical signature by weakening the light just at the point where the molecule is located. </span></li> <li><span style="background-color:initial">The smaller the nanochannel, the greater the amplification effect and the smaller the molecules that can be seen. </span></li> <li><span style="background-color:initial">With this technique it is currently possible to analyse biomolecules from a molecular weight of around 60 kilodaltons and upwards. It is also possible to study larger biological particles, such as extracellular vesicles and lipoproteins, as well as inorganic nanoparticles.</span></li></ul></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href=""><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/NSM_technique.png" alt="Video" style="margin:5px;width:500px;height:138px" /></a><br /><br /></span></div> <div><span style="background-color:initial"><strong>Video</strong>: <a href="">Watch a video from the microscope​</a>, showing a biomolecule inside a nanochannel. It shows up as a dark shadow and it can be seen on the screen connected to the microscope. By studying it, researchers can not only see but also determine the mass and size of the biomolecule, and obtain indirect information about its shape – something that was not previously possible with a single technique.<br /></span></div> <div><br /></div> <div><strong>For more information, contact: </strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="/en/Staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer</a>, Professor, Department of Physics, Chalmers University of Technology<br />+46 31 772 33 31, </span><a href="">​</a></div> <div><br /></div> <div>Text: Lisa Gahnertz and Mia Halleröd Palmgren<br />Photo/illustration: ​<span style="background-color:initial">Maja Saaranen/Envue Technologies (photo collage), </span><span style="background-color:initial">Yen Strandqvist/ Chalmers University pf Technology and Daniel Spacek/ Neuroncollective (illustration),</span><span style="background-color:initial"> </span><span style="background-color:initial">Anna-Lena Lundqvist (portrait picture of Langhammer), Aykut Argun (portrait picture of </span><span style="background-color:initial">Špačková).</span></div> <div><br /></div> <div><br /></div> ​Thu, 16 Jun 2022 07:00:00 +0200 year's Tandem Webinars<p><b>​Here you will find 2022 all Tandem Webinars. All the webinars can be watched afterwards via Chalmers Play. </b></p><div></div> <div><span style="background-color:initial"><b>Upcoming webinars:</b><br /><div>8 September, <a href="/en/areas-of-advance/materials/Calendar/Pages/Tandem-WebinarNew-Insulation-Materials-for-High-Voltage-Power-Cables.aspx">New Insulation Materials for High Voltage Power Cables</a></div> <div>5 October, <a href="/en/areas-of-advance/materials/Calendar/Pages/Tandem-Webinar-Metallic-nanoalloys-for-next-generation-optical-hydrogen-sensors.aspx">Metallic nanoalloys for next generation optical hydrogen sensors</a><br />November, TBA</div> <br /><b>Wat</b></span><span style="background-color:initial;font-weight:700">ch 2022 year´s seminars on Chalmers Play</span><span style="background-color:initial;font-weight:700">:<br /><br /></span><div><span style="background-color:initial;font-weight:700">11 April</span><span style="background-color:initial;font-weight:700">: </span><span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="font-weight:700;background-color:initial">– </span><span style="background-color:initial"><b>Perspectives on cellulose nanocrystals<br /></b></span><span style="font-size:16px">In this tandem webinar</span><span style="font-size:16px;background-color:initial"> </span><span style="font-size:16px">we have two hot topics dedicated to Cellulose nanocrystals: Cellulose nanocrystals in simple and not so simple flows &amp; Using liquid crystal phase separation to fractionate cellulose nanocrystals.</span><br /></div> <div><a href="" style="outline:0px"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a><div><br /></div> <div><div><span style="font-weight:700">Program:</span></div> <div><ul><li>Moderator: Leif Asp, Co-Director Chalmers Area of Advance Materials Science</li> <li>C<span style="background-color:initial">ellulose nanocrystals in simple and not so simple flows, <a href="/en/staff/Pages/roland-kadar.aspx">Roland Kádár</a>, Associate Professor, Chalmers University of Technology.</span></li> <li>U<span style="background-color:initial">sing liquid crystal phase separation to fractionate cellulose nanocrystals.<a href=""> Jan Lagerwall</a>, Professor at the Physics &amp; Materials Science Research Unit in the University of Luxembourg.</span> </li></ul></div></div></div> <div><br /></div> <div><span style="font-weight:700;background-color:initial">30 May: </span><span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="background-color:initial;font-weight:700">– </span><b><span></span>Lipid nanoparticles for mRNA delivery</b><br /><span style="background-color:initial"><a href=""><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a><br />Organizer: Chalmers Area of Advance Mater</span><span style="background-color:initial">ials Science.<br /></span>The role of supramolecular lipid self assembly and protein corona formation for functional mRNA delivery to cells. Two hot topics will be covered by Elin Esbjörner and Fredrik Höök​.<br /><div><br /></div> <div><ul><li>Moderator: Maria Abrahamsson, Director of Materials Science Area of Advance </li> <li><a href="/en/staff/Pages/Fredrik-Höök.aspx">Fredrik Höök</a>, <em>Professor, Nano and Biophysics, Department of Physics, Chalmers University of Technology</em>.</li> <li><span style="background-color:initial"><a href="/en/staff/Pages/Elin-Esbjörner-Winters.aspx">Elin Esbjörner</a>, </span><i>Associate Professor, Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology.</i></li></ul></div></div> <div> <div><strong>Read more:</strong></div></div></div> <a href="/en/areas-of-advance/materials/news/Pages/2021-tandem-seminars.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />2021 year's Tandem Webinars</a>​.​Wed, 15 Jun 2022 00:00:00 +0200 yeast model can improve protein production<p><b>​​Microorganisms, such as baker’s yeast, can be used as cell factories to produce different chemicals and proteins, such as commonly used pharmaceuticals as insulin. By modifying the cell factories researchers are trying to increase the yield and speed of the production processes. In a new study, researchers in systems biology at Chalmers provide us with a new yeast model focusing on one of the limiting steps of the cell factory production − the secretory pathway.​</b></p><p class="chalmersElement-P">​<span>The secretory pathway in eukaryotic cells consists of several different organelles that involve transportation and different modifications of proteins. This very complex pathway is – and has been historically − a target for improving recombinant protein expression in the cells in order to develop efficient cell factories. But due to its natural complexity, there has so far been a lack of tools to systematically optimize this pathway to produce any recombinant protein. </span></p> <div> </div> <p class="chalmersElement-P"><span></span></p> <div> </div> <h2 class="chalmersElement-H2" style="font-family:&quot;open sans&quot;, sans-serif">Advanced model can lead to better cell factory production</h2> <div> </div> <div><span style="color:rgb(33, 33, 33);background-color:initial">In the recently published <a href="">study ​</a>the researche</span><span style="color:rgb(33, 33, 33);background-color:initial">rs present a new advanced genome-scale protein secretory model of baker’s yeast, </span><em style="color:rgb(33, 33, 33);background-color:initial">Saccharomyces cerevisiae</em><span style="color:rgb(33, 33, 33);background-color:initial">, called </span><strong style="color:rgb(33, 33, 33);background-color:initial">pcSecYeast</strong><span style="color:rgb(33, 33, 33);background-color:initial">. </span></div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“We aimed to systematically understand protein secretion in yeast to better design the yeast cell factory for recombinant pharmaceutical and industrial production of proteins such as insulin and α-amylase, an enzyme that converts starch into sugars,” says Feiran Li, postdoc in systems and synthetic biology at Chalmers and first author of the study.</p> <div> </div> <h2 class="chalmersElement-H2">Model predicts engineering targets</h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">The model is the first complex and advanced protein secretory model containing the detailed processes of how the proteins are synthesized and modified to their mature form in the cell. This model enables multiple types of simulations, including the competition between those recombinant and native secretory proteins for the limited resources. </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“We predicted the engineering targets for eight recombinant proteins produced in yeast and experimentally validated several predicted targets for α-amylase. For the first time, a model can systematically predict the engineering targets in both the metabolic and protein secretory part,” says Feiran Li.</p> <h2 class="chalmersElement-H2">Rational cell factory strain design​</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">By identifying engineering targets (such as gene amplification targets) the model can be used for rational cell factory strain design, for industrial or pharmaceutical protein production. </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“The model also facilitates in silico testing of various hypotheses for protein expression and secretion, which will boost the fundamental understanding of the complex secretory pathway”, says Feiran Li, continuing: </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">”We also tested several hypotheses and identified that the so called retro-translocation capacity could prevent degradation of excessive misfolded protein. This can lead to the accumulation of those proteins which is related to human diseases such as Alzheimer’s and Parkinson’s.”</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Read the article </strong><a href="">Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints</a></p> <div> </div> <p class="chalmersElement-P"><strong>Text: </strong>Susanne Nilsson Lindh<br /><strong>Photo:</strong> Martina Butorac</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"> </p>Mon, 13 Jun 2022 11:00:00 +0200’s-100-list.aspx on sustainable food on IVA’s 100 list<p><b>​Two research projects at the Department of Biology and Biological Engineering at Chalmers are highlighted by the Royal Swedish Academy of Engineering Sciences (IVA) on the IVA 100 list 2022. This year’s theme is “Technology in the service of humanity” and both BIO-projects focus on sustainable food production. ​</b></p><h2 class="chalmersElement-H2">​<span>Fungi for production of the protein of the future</span></h2> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <p class="chalmersElement-P"><strong>Participants:</strong> <a href="/en/staff/Pages/nygardy.aspx">Yvonne Nygård,</a> Associate Professor in industrial biotechnology, <a href="/en/Staff/Pages/eric-oste.aspx">Eric Öste</a>, industrial PhD student at Chalmers, <a href="">Stefano Sacchetto​</a>, industrial PhD student at Lund University and <strong>Emil Andreasson</strong>, gue​st researcher at Chalmers. All participants are involved in the biotech company <a href="">Cirkulär AB </a>.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><strong>About the project:</strong> Alternative protein sources such as fungi (mycoprotein) can lead to 95 percent less carbon dioxide emissions than beef. The vision is that the protein of the future is produced by fungi, which convert bio-based residual streams from industry. The fungi are grown in closed bioreactors with little impact on the external environment. </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">In the project the researchers develop and produce fungi that grow faster on residual biomass and produce specific proteins in larger quantities. These so-called cell factories can be used for many different applications, for everything from animal feed, food, chemicals to materials, and medicines. The first cell factories produce proteins for feed and food applications, including milk proteins, an ingredient used in vegan dairy products.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“We are very happy and grateful to be included in the prestigious IVA list, together with other exciting research projects. We believe that our research can have a large and direct impact on the food industry and support the industry's ambitions to reduce its environmental impact, nationally and globally,” says Yvonne Nygård.</p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <h2 class="chalmersElement-H2">Stabilizing seafood side-streams allowing full use for food production</h2> <div> </div> <p class="chalmersElement-P"><strong>Participants: </strong><a href="/en/staff/Pages/Ingrid-Undeland.aspx">Ingrid Undeland</a>, Professor of Food and Nutrition Science, Chalmers, <a href="/en/Staff/Pages/haizhou.aspx">Haizhou Wu</a>, <a href="/en/Staff/Pages/khozaghi.aspx">Mehdi Abdollahi</a> and <a href="/en/Staff/Pages/bita-forghani.aspx">Bita Forghani</a>, all researchers at the Division of Food and Nutrition Science, Chalmers. </p> <div> </div> <p class="chalmersElement-P"></p> <div> </div> <p class="chalmersElement-P"><strong>About the project: </strong><span style="background-color:initial">The demand for fish is steadily increasing in response to dietary recommendations, population growth and wishes to consume more climate-friendly protein sources. We therefore need to convert more of each landed fish into food, as today mainly the fillet is used, i.e., only 40-50 per cent of the weight. </span></p> <p class="chalmersElement-P"><span style="background-color:initial">Our sorting and antioxidant technologies make it possible to retain also filleting co-products in the food chain. Sorting allows tailor-made valorisation of individual parts into high quality minces or protein ingredients while antioxidant treatments mitigate problems with fast rancidity. </span></p> <p class="chalmersElement-P"><span style="background-color:initial"></span></p> <p class="chalmersElement-P">“It is very nice that our research, which aims at creating a more sustainable food production system, is recognized at the IVA 100-list. The seafood chain currently suffers from large losses of biomass in favor of low value fodder production; our research can help mitigating such losses and thereby make sure that more of each caught or harvested fish is converted into foods,” says Ingrid Undeland. </p> <p class="chalmersElement-P"><strong>Read more:</strong> <a href="/en/departments/bio/news/Pages/Dipping-solution-turns-the-whole-fish-into-food.aspx">New dipping solution turns the whole fish into food</a></p> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/Dipping-solution-turns-the-whole-fish-into-food.aspx">​</a></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p>Tue, 10 May 2022 09:00:00 +0200 investigated by Robot Scientist Eve<p><b>​Only one third of the results from 74 selected scientific papers in breast cancer cell biology of high scientific interest could be reproduced. This was shown by a study where the researchers combined automated text analysis and the Robot Scientist Eve at Chalmers. ​</b></p><p class="chalmersElement-P">​<span>Eve is an automated system using AI invented by Ross King, Professor of Machine Intelligence at Chalmers and Cambridge University, and Wallenberg Chair in AI at <a href="">WASP</a>. In this study Ross King’s research group used Eve to reproduce the results from 74 selected papers.</span></p> <p class="chalmersElement-P">“The cancer literature is enormous, but no one ever does the same thing twice, making reproducibility a huge issue,” Ross King says in a <a href="">press release​</a> from Cambridge University.  </p> <p class="chalmersElement-P"><span style="background-color:initial">“Given the vast sums of money</span><span style="background-color:initial"> spent o</span><span style="background-color:initial">n cancer research, and the sheer number of people affected by cancer worldwide, it’s an area where we urgently need to improve reproducibility.”</span></p> <p class="chalmersElement-P"><span style="background-color:initial"><br /></span></p> <p class="chalmersElement-P"><span style="background-color:initial"><strong>Read the full scientific paper in Journal of the Royal Society Interface:</strong> <a href="">Testing the reproducibility and robustness of the cancer biology literature by robot. </a></span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span style="background-color:initial"><strong>Read more: </strong></span><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"></p> <ul><li><a href="">WASP: Robot Scientist ’Eve’ Illuminates Reproducibility in Breast Cancer Research​</a></li> <li><a href="/en/departments/bio/news/Pages/Chalmers-Robot-Scientist-ready-for-drug-discovery.aspx">Chalmers' Robot Scientist ready for drug discovery</a></li></ul> <p></p> <div> </div> <div>​<br /></div> <div> </div> <div><br /></div> <div> </div>Wed, 27 Apr 2022 09:00:00 +0200 paths towards better cell factories<p><b>​Microorganisms that efficiently convert plant biomass into renewable biofuels and biochemicals play a major role in the sustainable society of the future. However, the efficiency of these microbial cell factories is inhibited by several compounds that are released as biomass is degraded into sugars, which the cell factories then convert.How can these bioprocesses be improved? Researchers in industrial biotechnology at Chalmers are now one step closer to a solution. </b></p><p class="chalmersElement-P">​<span>Baker’s yeast, <em>Saccharomyces cerevisiae</em>, is used to ferment lignocellulose from plant biomass to produce sustainable biofuels and biochemicals. But the cells' performance is inhibited by various compounds, such as furans, acids, and phenols, which are released during the pre-treatment of the biomass. This challenges the use of bioprocesses a cost-effective alternative to conventional production.</span></p> <div> </div> <h2 class="chalmersElement-H2"><span>Studies aim to increase cell productivity</span></h2> <div> </div> <p class="chalmersElement-P">Efficient fermentation of lignocellulose could have great societal impact and a great amount of research has already been conducted within the field. There are many studies in which researchers genetically modified different yeast strains to increase the cell factories' tolerance to different inhibitors – with the aim to increase cell productivity. </p> <div> </div> <p class="chalmersElement-P"><strong><img src="/SiteCollectionImages/Institutioner/Bio/IndBio/Yvonne_340.jpg" alt="Yvonne Nygård" class="chalmersPosition-FloatRight" style="margin:5px;width:240px;height:240px" />Yvonne Nygård</strong>, Associate Professor of industrial biotechnology, and her colleagues at Chalmers, have made a compiled analysis of the information from previous research for further development of efficient yeast.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“When developing new cell factories, we want to make use of all the accumulated knowledge. More specifically, our goal was to use the new CRISPR/Cas9-technology to combine and fine-tune genetic engineering previously shown to be favourable for the fermentation of lignocellulose,” says Yvonne Nygård.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">There is an enormous amount of previous research data and the researchers' database grew as they dug deeper.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“At the same time, it was harder for us to choose from all the data. In addition, we noticed that the various experiments were very different, which made it difficult to compare the data and draw conclusions. We did the systematic analysis to help our own research. It didn’t take long before we came up with the idea of sharing the database and analysis with others, and we decided to summarise our results in a review,” she says.</p> <div> </div> <h2 class="chalmersElement-H2">Data from 7971 was collected and analysed</h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">The researchers collected data from 7971 previous experiments, from 103 studies in which researchers had modified the tolerance of different strains of baker's yeast to the most common inhibitors in the pre-treated lignocellulose (so-called lignocellulose hydrolysate): acetic acid, formic acid, furans, and phenolic compounds. The mutants included in the assay had shown increased or decreased tolerance to individual inhibitors or combinations of inhibitors.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The effects of the inhibitors on the cells varies from, for example, reduced growth rate, cell survival, vitality, to product yield. The inhibitory effect is due to the presence of individual inhibitors and is affected by environmental factors, including pH, temperature, and the availability of nutrients.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“Our analysis showed that the results very often were characterised by the strain and cultivation conditions. Although so much work has been done already, relatively few genetic modifications have been used in different strain backgrounds or for the conversion of different types of biomasses,” says Yvonne Nygård.</p> <h2 class="chalmersElement-H2">Development of new cell factories can be accelerated</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The work towards a new cell factory can, for example, be accelerated by applying the genetic modifications that show advantage in several different strains or modifications for tolerance to different inhibitors. In addition, the study describes the biology behind the various genetic modifications – which in several studies have been shown to lead to better strains. Thus, it contributes to increasing knowledge about the requirements for the development of more robust cell factories.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial"><strong>Text: </strong>Susanne Nilsson Lindh</span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong style="background-color:initial">Read the study</strong><span style="background-color:initial"> by Elana Cámara, Lisbeth Olsson, Jan Zrimec, Aleksej Zelezniak, Cecilia Geijer and Yvonne Nygård, The Department of Biology and Biological Engineering, Chalmers: </span><a href="">Data mining of<em> Saccharomyces cerevisiae</em> mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates </a><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Read more about cell factory research: </strong></p> <p class="chalmersElement-P"></p> <ul><li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/New-discovery-can-improve-industrial-yeast-strains.aspx">New discovery can improve industrial strains​</a></span></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/Robust-microorganisms-for-sustainable-bioproduction.aspx">Robust microorganisms for sustainable bioproduction</a></span></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/New-network-improves-European-yeast-research.aspx">New network improves European yeast research </a></span><br /></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/Cutting-edge-Nobel-technique-in-practice-at-Chalmers.aspx">Cutting edge Nobel tool in practice at Chalmers</a></span></li></ul> ​<br /><p></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> Tue, 26 Apr 2022 09:00:00 +0200”School-collaboration-important-part-of-research”-.aspx ”School collaboration important part of research” <p><b>​“Research should be a part of society and not stay within the walls of the university. School collaboration is important to achieve this”, says Marie Palmnäs, postdoc at the Division of Food and Nutrition Science at Chalmers.She and five colleagues have therefor initiated an interactive event focused on nutrition research and diet intervention studies in the school program at the International Science Festival in Gothenburg. </b></p><p class="chalmersElement-P">​<img src="/SiteCollectionImages/Institutioner/Bio/Food/Marie-Palmnas-340x400px.jpg" class="chalmersPosition-FloatRight" alt="Marie Palmnäs" style="margin:10px;width:240px;height:282px" /><span style="background-color:initial">&quot;With </span><a href="">this event </a><span style="background-color:initial">we hope to increase the students' interest in biology or other fields in natural science and at the same time show how complex, varied and rewarding research process actually is”, says </span><strong style="background-color:initial">Marie Palmnäs</strong><span style="background-color:initial">.</span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">Informing and interacting with society is part of the researchers', doctoral students’ as well as professors’, mission. It can be difficult, though, to find the right arenas for outreach - especially during the pandemic when the physical meetings have been scarce.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">“There is always a risk that we, especially as young researchers focus too much on our own projects and miss the bigger picture. For successful outreach, our research must be put in context. It can be very helpful and rewarding to meet different target groups, in this case high school students, to adapt the communication to them and listen to their questions and opinions”, says Marie Palmnäs.</span></p> <h2 class="chalmersElement-H2"><span>Simulation of research project </span></h2> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">During the event at the Science Festival, she and five doctoral students, Elise Nordin, Sebastian Åberg, Thérése Hjorth, Olle Hartvigsson and Viktor Skantze, will let 15-year-old high school students experience a simulation of a research project. They will start with the set-up of a clinical study, do laboratory work, and finally analyse and discuss the data that has been collected. The event is based on an internationally recognised <a href="/en/departments/bio/news/Pages/For-IBS,-specific-diets-are-less-important-than-expected.aspx">IBS project​</a>, but in a concentrated format. </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“We also want to show the wide range within the area of nutrition; that there are many different tasks and people needed within a project, spanning from nutritionists to data analysts, and how we bring these fundamentally different parts of the project together. This event might also broaden the students’ image of Chalmers. It may not be generally known that we conduct research in food and nutrition science at the Department of Biology and Biological Engineering”, says Marie Palmnäs.</p> <h2 class="chalmersElement-H2">Contribute to society <span></span><span>​</span><span>− strong driving force for researchers​</span></h2> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">In times of fake news and research being questioned in public discussions, the researchers behind the event hope that students will gain a little more knowledge about the solid and rigorous process behind a research result.</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“We are involved in countless discussions about the set-up of each project and how to interpret and communicate the results. Our projects go through ethical assessments, are evaluated alongside other projects to (hopefully) get funding and the papers are extensively reviewed prior to submission. We want the students to understand how much goes into each research study <span style="background-color:initial">–</span><span style="background-color:initial"> and that we base our knowledge on results and experiences from years of prior research. Our research may, in turn, be something other researchers can base their studies on and that we can base new innovations, dietary guidelines etc. from.  In this way, we contribute to society, which I believe is a strong driving force for most researchers,” says Marie Palmnäs.</span></p> <p class="chalmersElement-P"></p> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">The event can inspire other researchers</h2> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">The Department of Biology and Biological Engineering, where the researchers behind the event work, actively supports school collaboration and outreach to the society.  </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">“We have received a lot of support from the department, and we see this event as a pilot project that can both inspire and guide other researchers in all the divisions at the department.”</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><strong>Text:</strong> Susanne Nilsson Lindh</p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Meet researchers from the Department of Biology and Biological Engineering at the Science Festival</h2> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <p class="chalmersElement-P"><span><strong>P</strong></span><span><strong>UBLIC PROGRAM</strong></span></p> <p><strong>Wednesday 4 May</strong></p> <a href=""><p>Researchers' Driving Force <span style="font-weight:300">–</span> the Unknown</p> </a><p><span style="background-color:initial">Inter</span><span style="background-color:initial">view: Acclaimed researchers about possible future discoveries.</span><br /></p> <p><br /></p> <p><strong>Thursday 5 May </strong><span style="background-color:initial"><strong>–</strong></span><span style="background-color:initial"><strong>Sunday 8 May</strong></span></p> <span></span><p></p> <strong> </strong><a href=""><p>Blå mat <span style="background-color:initial">​</span><span style="background-color:initial">−</span><span style="background-color:initial"> framtidens sjömat</span></p> <p><span style="background-color:initial;color:rgb(0, 0, 0);font-weight:300">Exhibition</span><br /></p></a><p><br /></p> <p><strong>Friday 6 May</strong></p> <strong> </strong><a href=""><p>Scientific Research Pipeline in Cancer Studies</p> </a><p>Lecture: The new approaches of performing research in different steps of dealing with cancer.</p> <a href=""><p><span style="background-color:initial">Evolution in Yeast using CRISPR Technology</span><br /></p> </a><p>Lecture: Evolution is the main way to get genes with novel properties and CRISPR can act as an evolution tool.</p> <a href=""><p>Havets hållbara protein</p> </a><p>Lecture </p> <p><br /></p> <p><strong>Lördag 7 maj</strong></p> <strong> </strong><a href=""><p><span style="background-color:initial">How Can We Eat Seaweed?</span><br /></p> </a><p>Lecture: Join us to know more about seaweed or try delicious seaweed treats!</p> <p><br /></p> <p><strong>Sön 8 maj</strong></p> <strong> </strong><a href=""><p>A Peek into the Microworld with Foldscope</p> </a><span style="background-color:initial">Workshop: Make your o</span><span style="background-color:initial">wn paper origami microscopes 'foldscopes' and explore the microworld with us.</span><div><br /><span style="background-color:initial"></span><div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><strong>Read more about: </strong><a href="/en/departments/bio/society-industry/utilisation/Pages/default.aspx">collaboration at the Department of Biology and Biological Engineering​</a></span></div> <br /><div> <div><br /></div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p></div></div>Tue, 19 Apr 2022 13:00:00 +0200 research paves way for sustainable biofuels<p><b>​Development of efficient processes where biomass is used as raw material for sustainable production of biofuels and biochemicals is important for the transition into a fossil-free society. However, efficient degradation of residues from the f​​orest industry is challenging as plant biomass contains lignin. Removal of lignin is not only difficult, but also expensive. The key to success may be a certain type of enzyme that can facilitate and accelerate the degradation of biomass.</b></p><p class="chalmersElement-P">​<span>Lignocellulose, the main component of residual biomass from the forest industry, is an important raw material to produce, among other things, bioethanol. It is a complex material, difficult to process in a cost-effective way, due to the strong chemical bonds between lignin and carbohydrates.</span></p> <p class="chalmersElement-P">Johan Larsbrink, Associate Professor, and Scott Mazurkewich, postdoc, both at the Division of Industrial Biotechnology at Chalmers, participated in a research project in collaboration with several universities, where a recently published study has shown that − and how − the enzymes glucuronoyl esterases can break these chemical bonds.</p> <p class="chalmersElement-P"><strong><img src="/SiteCollectionImages/Institutioner/Bio/IndBio/Scott_M-240x280px.jpg" alt="Scott Mazurkewich" class="chalmersPosition-FloatRight" style="margin:10px" />How did you conduct this study and what were your results?</strong></p> <p class="chalmersElement-P"><strong> </strong></p> <p class="chalmersElement-P">“This is an in-depth study with computer modelling, biochemistry and structural biology to understand mechanistically how the enzyme cuts bonds in plant biomass. The results show which of the enzyme’s amino acids are most important to facilitate the reaction, and how the rate-limiting step is the enzyme itself being able to detach from the biomass to find a new position to cut”, says <a href="/en/staff/Pages/scott-mazurkewich.aspx">Scott Mazurkewich</a>.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>Why did you start to investigate this group of enzymes?</strong></p> <p class="chalmersElement-P"><strong> </strong></p> <p class="chalmersElement-P">“When we started the project, very few studies had been done on glucuronoyl esterases and in particular there was a lack of detailed information on the atomic scale. Thus, this has been both curiosity-driven research to understand how these enzymes work, but also to discover how they can be used in applications that can reduce the use of fossil raw materials. Using plant biomass in smarter ways to create new materials is also the main focus within the research center, <span style="background-color:initial">the </span><a href="">Wallenberg Wood Science Center,</a> <span style="background-color:initial">where both Scott and I are active, </span><span style="background-color:initial">” says Johan Larsbrink.</span></p> <span></span><p class="chalmersElement-P"></p> <p class="chalmersElement-P"><strong><img src="/SiteCollectionImages/Institutioner/Bio/IndBio/Johan%20L_240x280px.jpg" alt="JOhan Larsbrink" class="chalmersPosition-FloatRight" style="margin:10px" />What can your results lead to?</strong></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“The discovery provides an increased understanding of the factors that affect these enzymes’ efficiency. The knowledge could be used to determine which type of enzymes are best suited for the degradation of different types of biomass,” says <a href="/sv/personal/Sidor/johan-larsbrink.aspx">Johan Larsbrink</a>.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>About the study:</strong></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"></p> <ul><li>The study is a collaboration between the University of Copenhagen, Nankai University, Chalmers University of Technology, and the University of Campinas.</li> <li>Read the scientific article <a href="">Mechanism and biomass association of glucuronoyl esterase: an α / β hydrolase with potential in biomass conversion</a> </li></ul> <strong>Text:</strong> Susanne Nilsson Lindh<br /><strong>Photo (portraits):</strong> Martina Butorac<p></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p>Mon, 04 Apr 2022 14:00:00 +0200 water gives seaweed cultivation a boost<p><b>​Process water from the food industry is an excellent fertilizer in land-based seaweed cultivation. Not only does the seaweed grow faster; its protein content also multiplies. In this way, process water can go from being a cost to becoming a resource in the food industry.​</b></p><div> <span style="color:rgb(33, 33, 33);background-color:initial">Can </span><span style="color:rgb(33, 33, 33);background-color:initial">macroalgae, such as sea lettuce, become a competitive source of protein in the foods of the future the way soy</span><span style="color:rgb(33, 33, 33);background-color:initial">beans are today? Seaweed naturally has a lower protein content than soybeans, but with fertilizer that difference decreases.</span></div> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">A <a href="">scientific article ​</a>from researchers at the University of Gothenburg and Chalmers University of Technology shows that process water from food production can serve as an excellent fertilizer in seaweed cultivation. The seaweed grew more than 60 per cent faster, and the protein content quadrupled with the addition of process water.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“The protein content of soybeans is about 40 per cent. By using process water, we have increased the protein content in the seaweed to more than 30 per cent,” says <strong>Kristoffer Stedt</strong>, a doctoral student at the Department of Marine Sciences at the University of Gothenburg.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">We already know that algae grow better in the vicinity of fish farms in the sea due to nutrients in fish faeces that spread in the water. Process water from food industries is often rich in nitrogen and phosphorus in a similar way.</p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">Process water from different food producers</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The researchers tested four different types of seaweed and added process water from several different food producers – from the herring industry, salmon farming, shellfish processors, and a manufacturer of oat milk. A certain amount of process water with a controlled content of nitrogen was added to the seaweed cultivation. After eight days the researchers analysed the results.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We included oat milk to achieve cultivation that was completely vegan. And it turned out that all different types of process water worked well as fertilizer for the seaweed,” says Stedt.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">Food production requires large amounts of water, and taking care of the process water is currently a cost for producers. But this water can be turned into a valuable resource.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We think that you could have land-based cultivations of algae, such as sea lettuce, near a herring factory, for example. Seaweed cultivation can cleanse large portions of the nutrients from the process water. That brings us closer to a sustainable approach, and the companies have another leg to stand on,” says Stedt.</p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">No of​f-taste for the seaweed</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The researchers were worried that the seaweed would be tainted by the process water. Not everyone may appreciate herring-flavoured sea lettuce. But test panels did not note any impact on the taste of the seaweed from the process water.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">In the future, Kristoffer Stedt and his colleagues will focus on scaling up the experiments with seaweed cultivation. They will use process water from the herring industry, which showed very promising results, and focus on the species Ulva fenestrata (sea lettuce).</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We need to conduct tests in larger volumes as a first step in a controlled environment. But we believe that this may be an alternative source of protein in future foods. It could also be a completely circular system if we used cultivated seaweed as feed for salmon culture on land and used the process water to fertilize the seaweed cultivation,” says Stedt.</p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">Great need for new protein sources</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">An estimated 10 billion people will live on Earth by 2050, and there is a great demand for sustainably produced food protein. Between 2000 and 2018, the production of seaweed tripled, reaching 32 million tonnes. Almost 99 per cent is produced in the Far East.</p> <p class="chalmersElement-P"><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/Bio/Food/Ingrid%20Undeland_240px.jpg" class="chalmersPosition-FloatRight" alt="Professor Ingrid Undeland" style="margin:10px" />In the</span><a href="/en/projects/Pages/Seaweed-as-a-vehicle-for-nutrients-in-a-circular-food-chain--.aspx"> research project CirkAlg​</a><span style="background-color:initial">, researchers from the University of Gothenburg and Chalmers University of Technology are collaborating on processes that can generate a new Swedish marine protein source in a resource-efficient way through both cultivation and processing of seaweed.</span><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“In addition to boosting the seaweed’s protein content with process water, we are looking at several ways to extract the proteins from the algae for use in other foods in the same way as protein is extracted from soybeans today. However, this presents a challenge, because the protein in seaweed is bound more tightly than in the soybeans,” says <strong>Ingrid Undeland</strong>, Professor of food science at the Department of Biology and Biological Engineering at Chalmers. She is also the coordinator for CirkAlg.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="font-weight:700">Text:</span> Olof Lönnehed, University of Gothenburg, The text was published as a press release from <span style="background-color:initial">University of Gothenburg </span><span style="background-color:initial">29 March 2022. </span></p> <p class="chalmersElement-P"><span style="font-weight:700">Photo header</span>: Sofie Steinhagen, University of Gothenburg<br /><span style="font-weight:700">Photo portrait Ingrid Undeland: </span>Anna-Lena Lundqvist, Chalmers</p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="font-weight:700">Read more: </span></p> <p class="chalmersElement-P"></p> <p class="chalmersElement-P"></p> <p></p> <div></div> <p class="chalmersElement-P"></p> <div></div> <p></p> <ul style="box-sizing:border-box;margin-top:0px;margin-bottom:10px;overflow:hidden;orphans:2;text-align:-webkit-left;text-indent:0px;widows:2"><li><a href="/en/projects/Pages/Seaweed-as-a-vehicle-for-nutrients-in-a-circular-food-chain--.aspx"><font face="open sans, sans-serif"><b></b></font><font face="open sans, sans-serif"><b><span></span>Seaweed as a vehicle for nutrients in a circular food chain - innovative steps to accomplish a protein shift (CirkAlg)</b></font></a></li> <li style="font-family:&quot;open sans&quot;, sans-serif;font-size:14px;font-style:normal;font-weight:300;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px;box-sizing:border-box">Read the scientific article:<a href="" style="box-sizing:border-box;background-color:transparent;text-decoration:none;font-weight:600"> Cultivation of seaweeds in food production process waters: Evaluation of growth and crude protein content</a></li></ul> <p class="chalmersElement-P"> </p>Tue, 29 Mar 2022 13:00:00 +0200