News: Centre: Physics Centre related to Chalmers University of TechnologyFri, 09 Dec 2022 06:26:59 +0100’s-risks.aspx optical sensor can reduce hydrogen’s risks<p><b>​​In the pursuit of clean and renewable energy, hydrogen plays an important role. But a major challenge facing this transition is that the gas is explosive when mixed with air. For this reason, it is crucial to be able to detect hydrogen leaks as early as possible. Now researchers at Chalmers University of Technology, Vrije Universiteit Amsterdam and Eindhoven University of Technology, have developed an optical sensor that can detect record low levels of hydrogen.</b></p><div>Hydrogen is seen as an important part of the decarbonisation of the heavy transport sector and around the world hydrogen-powered trains, trucks and airplanes are being developed and deployed. Even in heavy industry, hydrogen is regarded as very important, for example for the production of fossil-free steel. </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The risks of storing or using hydrogen are well known. Only four percent hydrogen is required in air for the formation of an explosive mixture (knallgas) that can ignite at the slightest spark. Therefore, it is important that ultra-sensitive sensors are in place to monitor leaks and alarm at critical levels.</span></div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial">Safety of utmost importance in hydrogen use</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Together with Dutch colleagues, researchers at the Department of Physics at Chalmers University of Technology, Sweden, have now developed an optical hydrogen sensor that detects record-low levels of hydrogen. It thus joins the most sensitive sensors in the world.  <a href="" target="_blank">The new research results are presented in an article in Nature Communications</a>.</span></div> <div><br /></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/400_ChristophLanghammerfarg.jpg" class="chalmersPosition-FloatRight" alt="Christoph Langhammer" style="margin:5px;width:180px;height:236px" />&quot;Safety is of the utmost importance in all use and storage of hydrogen. If leaks are detected early, they can be fixed so that you hopefully do not have to take the plant or vehicle out of service at all,&quot; says Chalmers Professor</span><strong style="background-color:initial"> Christoph Langhammer</strong><span style="background-color:initial">, one of the main authors of the scientific article.</span></div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial">AI technology led the way</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The optical hydrogen sensor consists of many metal nanoparticles that work together to detect hydrogen in their surroundings. The approach to how the new sensor was designed differs from what has been done previously. Instead of producing a large number of samples and testing them individually to see which one works best, the researchers have used advanced AI technology to create the optimal interaction between the particles based on their distance to each other, diameter and thickness. The result is a sensor that detects changes in hydrogen concentration that are as small as a few hundred thousandths of a percent.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The secret behind the new sensor's low detection limit is the combination of the arrangement of the particles in a regular pattern on a surface and their fine-tuned dimensions. This turned out to be more favourable for the sensitivity of the sensor than the random particle arrangement used in previous sensors of the same type.</span></div> <div>Christoph Langhammer's research group has previously been able to present <a href="/en/departments/physics/news/Pages/Worlds-fastest-hydrogen-sensor-could-pave-the-way-for-clean-hydrogen-energy.aspx">the world's fastest hydrogen sensor​</a>. For him, it is clear that many different types of sensors are needed and that they have to be optimised for specific applications.</div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">&quot;The technology around hydrogen has taken a giant leap and therefore today's sensors need to be more accurate and tailored for different purposes. Sometimes a very fast sensor is needed, sometimes one is needed that works in a harsh chemical environment or at low temperatures. A single sensor design cannot meet all needs”, says Christoph Langhammer, who is also one of the founders of a new competence centre: TechForH2.</span></div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial">Industry and academia in new collaboration on hydrogen</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Tomas%20Grönstedt_400.jpg" class="chalmersPosition-FloatRight" alt="Tomas Grönstedt" style="margin:5px;width:180px;height:270px" />The new Chalmers-led centre brings together both academia and industry to develop new hydrogen technology with focus on the decarbonisation of heavy transport systems. TechForH2 is led by <strong>Tomas </strong><strong>Grönsted</strong><strong>t</strong><strong></strong><strong></strong><strong></strong>, professor at the Department of Mechanics and Maritime Sciences at Chalmers..</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">&quot;When the research community and industry merge, it can take us to the next level, such that what we produce can be applied and meet the needs and challenges that exist in the industry. This applies to sensor development, as well as research related to the propulsion of heavy vehicles or aeroplanes using hydrogen gas,&quot; says Tomas Grönstedt, who mentions that an electric aircraft with a range of 500 kilometres could increase its range to 3000 kilometres if it was powered by hydrogen. </span></div> <div><span style="background-color:initial"><br /></span></div> <div><br /></div> <div><span style="background-color:initial"><div style="font-size:16px">How the optical hydrogen sensor works</div> <div style="font-size:16px"><br /></div> <div style="font-size:16px"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Toppbild_Metallnanopartiklar_450px.jpg" alt="Metal nanoparticles illustration" style="margin:5px" /><br /><br /><span style="background-color:initial;font-size:14px">The sensor that the researchers have developed is based on an optical phenomenon, plasmons, which occur when metal nanoparticles capture light and give the particles a distinct colour. If the nanoparticles are made of palladium or a palladium alloy, their colour changes when the amount of hydrogen in the surroundings changes, and the sensor can trigger an alarm if the levels become critical. </span></div> <div style="font-size:16px"><span style="background-color:initial;font-size:14px"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial;font-size:14px">To find the ultimate combination of the arrangement on the surface and geometry of the particles in the sensor, the researchers used an artificial intelligence algorithm called particle swarm optimisation to achieve the highest possible sensitivity to the exposure to hydrogen. Placing the particles in a very precisely defined regular pattern turned out to be the answer.</span></div> <div style="font-size:16px"><span style="background-color:initial;font-size:14px"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial;font-size:14px"></span><span style="background-color:initial;font-size:14px">Based on the AI-design, the optimised optical hydrogen sensor was fabricated and verified to be the first of its kind to optically detect hydrogen in the &quot;parts per billion&quot; range (250 ppb). </span></div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial">More about the research</span></div> <div><ul><li>The scientific paper<a href="" target="_blank"> Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection​</a> has been published in Nature Communications and is written by Ferry Anggoro Ardy Nugroho, Ping Bai, Iwan Darmadi, Gabriel W. Castellanos, Joachim Fritzsche, Christoph Langhammer, Jaime Gómez Rivas and Andrea Baldi. The researchers are active at Chalmers University of Technology, Eindhoven University of Technology and Vrije Universiteit Amsterdam. The researchers at Vrije and Eindhoven are behind the AI-aided design of the sensor surface and the characterisation of its optical properties, while the researchers at Chalmers have manufactured the sensor surface and performed the hydrogen sensing measurements.</li> <li>The new sensor’s practical applicability will now be further investigated within the newly started competence centre TechForH2, which is coordinated by Chalmers. </li> <li>The research has been partly funded by the Swedish Foundation for Strategic Research and the Swedish Energy Agency. Parts of the work have taken place in the Cleanroom at Chalmers and at Chalmers Material Analysis Laboratory (CMAL) under the umbrella of Chalmers Excellence's initiative Nano.</li></ul></div> <div><br /></div> <div>More about the new TechForH2 Competence Centre</div> <div><ul><li>TechForH2 is a competence centre for hydrogen technology that is coordinated and led by Chalmers, with RISE Research Institutes of Sweden as an academic partner. A number of industrial partners are involved in TechForH2: Volvo, Scania, PowerCell, Johnson Matthey, Oxeon, GKN Aerospace, Insplorion, Siemens Energy and Stena. </li> <li><span style="background-color:initial">TechForH2 will, among other things, focus on vehicle-integrated energy storage, the needs of the manufacturing industry, sensors, fuel cells and technology /instruments and innovations in the future hydrogen society.</span></li> <li><span style="background-color:initial">The competence centre has received SEK 54 million in funding from the Swedish Energy Agency and has a total bid of SEK 161 million for the first five years, with the possibility of a five-year extension.</span></li> <li><span style="background-color:initial">With the support of nine new doctoral students and eight postdoctoral researchers, the hope is now to be able to contribute to knowledge building and education in the field, and to increase the pace of introduction of new hydrogen technology to thereby contribute to the transition to a fossil-free society. </span></li> <li>Read more about the competence centre: <a href="/en/departments/m2/news/Pages/TechForH2-paves-the-way-for-future-hydrogen-technology.aspx">TechForH2 paves the way for future hydrogen technology​</a></li></ul></div> <a href="/en/departments/m2/news/Pages/TechForH2-paves-the-way-for-future-hydrogen-technology.aspx"> </a><div><br /></div></span></div> <div><span style="background-color:initial"><strong>For more information about the sensor research, please contact: </strong></span><br /></div> <div><a href="/en/Staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer</a>, Professor, Department of Physics, Chalmers University of Technology, Sweden</div> <div>+46 31 772 33 31, <a href=""></a></div> <div><br /></div> <div><strong>For more information about the new TechForH2 Competence Centre, please contact: </strong></div> <div><a href="/en/staff/Pages/tomas-gronstedt.aspx">Tomas Grönstedt</a>, Professor, Department of Mechanics and Maritime Sciences and coordinator of the TechForH2 Competence Centre, Chalmers University of Technology, Sweden</div> <div>+46 31 772 14 55, <a href="">​</a> </div> <div><br /></div> <div>Text: Lisa Gahnertz and Mia Halleröd Palmgren</div> <div>Portrait pictures: Henrik Sandsjö (Langhammer) and Anna-Lena Lundquist (Grönstedt)</div> <div>Illustration of metal nano particles: Chalmers University of Technology | Yen Strandqvist<br /></div> ​Thu, 01 Dec 2022 07:00:00 +0100 tetraneutron may have been captured for the first time<p><b>For over fifty years, researchers have searched for the elusive tetraneutron – four neutrons that form a system. Now, for the first time, a signal has been measured that is believed to be precisely this phenomenon. Thomas Nilsson, Professor at the Department of Physics at Chalmers University of Technology, has participated in the experiment and tells us more about the discovery. </b></p>​<span style="background-color:initial">Our world is made up of atoms, whose nuclei consist of protons and neutrons. Whether a system made up entirely of neutrons can exist has long eluded the world of physics, and more than half a century has passed since searching for it began. Twenty years ago, scientists found signs of the tetraneutron after an experiment in which neutron-rich beryllium isotopes collided with carbon atoms, but the result had large margins of error and was difficult to interpret.</span><div><br /></div> <div>During a large-scale experiment carried out by a big international research team at the Radioactive Ion Beam Factory at RIKEN in Japan, it has now been possible for the first time to demonstrate what is believed to be an observation of the tetraneutron; four neutrons that are fleetingly connected. The experiment was carried out in 2016, but it has taken until now to analyse the complex measurements, <a href="">the results of which have been presented in Nature</a>.</div> <div><br /></div> <div style="font-size:16px">Better understanding of the atomic nucleus</div> <div><br /></div> <div><strong><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Thomas%20Nilsson_400x415.jpg" class="chalmersPosition-FloatRight" alt="Thomas Nilsson" style="margin:5px 10px;width:180px;height:189px" />Thomas Nilsson</strong>, Professor of experimental subatomic physics and Head of the Department of <span style="background-color:initial">Physics at Chalmers, is part of the research team. In short, the driving force behind this type of research is the curiosity to better understand the world, he says.</span></div> <div><br /></div> <div>“The tetraneutron can help us understand the microcosm and how the atomic nucleus is built right down to the quark level – the smallest demonstrated building blocks of matter. It would be an extreme system to study and could give us insights into the strong interaction between neutrons and protons in an atomic nucleus, one of the four interaction types found in nature and the most complicated one to study, says Thomas Nilsson.</div> <div><br /></div> <div>“The tetraneutron can also give us insights into the processes that take place in the universe's neutron stars. Large parts of them are made up of neutrons alone, and it is believed that heavy elements are created when neutron stars collide.”</div> <div><br /></div> <div style="font-size:16px">A neutron star in the lab</div> <div><br /></div> <div>Experimental studies of neutron systems are challenging because free neutrons decay within minutes. Therefore, the researchers cannot start from them. To create a system where the neutrons could interact only with each other during the experiment, the researchers used nuclear reactions with atomic nuclei that already have a large excess of neutrons. The researchers overcame the challenge by creating a beam of the isotope helium-8 (with two protons and six neutrons) and firing it at half the speed of light at a target of hydrogen. Thus, a collision was created where sometimes only four neutrons remained. In turn, they formed into a system of four – albeit as fleetingly as for 10<sup>-</sup><sup>22</sup> seconds (0.0000000000000000000001 seconds).</div> <div><br /></div> <div>By measuring the mass and energy of the particles before and after the collision, the tetraneutron could be detected by the energy that was missing in the measurement after the collision.</div> <div><br /></div> <div>“In the past there have been indications of the tetraneutron, but they have not been statistically significant. Now we have received a very clear signal and you can say that we have possibly created a minimal neutron star in the lab”, says Thomas Nilsson.</div> <div><br /></div> <div>Further studies will be required to confirm the result of the experiment. In a few years, the German accelerator facility FAIR, Facility for Antiproton and Ion Research, is expected to be completed. There, the researchers will, among other things, be able to produce matter that is usually only found in space.</div> <div><br /></div> <div>“At FAIR, you will be able to measure all four neutrons separately. Then we will really be able to say whether it is a four-neutron system that we have found”, says Thomas Nilsson.</div> <div><br /></div> <div style="font-size:15px"><strong>More about the scientific article and the research:</strong></div> <div><ul><li>The article <a href="">“Observation of a correlated free four-neutron system“</a>, M. Duer, T. Aumann et al.: was published in Nature, June 22, 2022. The research result has involved researchers from, among others, Technische Universität Darmstadt, Technische Universität Munich, Riken Nishina Center, GSI Helmholtz Center for Heavy-ion Research and Chalmers University of Technology.</li> <li>From the Department of Physics at Chalmers, Mikhail Zhukov, Professor Emeritus, Thomas Nilsson, Professor, and Simon Lindberg, former doctoral student, have been involved in the planning and execution of the experiment and the writing of the article, as well as two further colleagues, Dr. Hans Törnqvist and Dr. Matthias Holl, who took part while being at TU Darmstadt. Additional researchers at the department who contributed to the instrumentation that forms the basis of the experiment are Associate Professor Andreas Heinz and research engineer Håkan Johansson. Generations of students have also worked on the subject in bachelor's and master's theses.</li> <li>Chalmers' contribution to the scientific article has been financed by the Swedish Research Council, that recently granted continued funding for the project until 2026.</li> <li><a href="">Read more in the press release from Technische Universität Darmstadt​</a>.</li></ul></div> <div><br /></div> <div style="font-size:15px"><strong>Contact:</strong></div> <div><a href="/en/Staff/Pages/Thomas-Nilsson.aspx">Thomas Nilsson</a>, Professor at the division of Subatomic, High Energy and Plasma Physics and Head of Department, Department of Physics, Chalmers University of Technology</div> <div><a href=""> </a></div> <div>+46 (0)31 772 32 58 </div> <div><br /></div> <div>Text: Lisa Gahnertz</div> <div>Illustration: Yen Strandqvist</div> <div>Portrait picture: Anna-Lena Lundqvist</div> <div><br /></div>Wed, 16 Nov 2022 10:00:00 +0100 expertise gathered at Chalmers<p><b>​​Research and development were in focus when academia, industry and other stakeholders gathered for the battery conference NordBatt 2022 at Chalmers at the end of October.</b></p><div>​The conference takes place every two years, with participants mainly from the Nordic and Baltic countries, and was this year organized at Chalmers by Professor <a href="/en/Staff/Pages/Patrik-Johansson0603-6580.aspx">Patrik Johansson's​</a> team, together with Battery Alliance Sweden (BASE) and the Swedish Energy Agency, with support from several of Chalmers' Areas of Advance.</div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The theme for this year's NordBatt was &quot;From moving electrons to electromobility&quot;. This was reflected in lectures on everything from fundamental material research to new manufacturing methods, via shorter talks from several battery manufacturers such as NoVo Energy, Beyonder, and Morrow, to plans and strategies from end users such as Volvo Cars, AB Volvo, Scania and Polestar. Some of the topics discussed were new battery materials and concepts, modelling, studies of how batteries age, and how batteries can be scaled up and recycled.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The purpose of the conference is to exchange experiences and inspire. It also aims to create and strengthen the Nordic-Baltic networks for the entire battery ecosystem including training, skills provision, and equality aspects.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">New for this year was that before the NordBatt 2022 conference took off, half a day was dedicated to a pre-conference by and for doctoral students and postdocs, in order for them to create their own networks. In parallel with this, the European research initiative Battery2030+ organised a strategic Nordic-Baltic meeting.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/PatrikJohansson_20190823_280x300.jpg" alt="Patrik Johansson" class="chalmersPosition-FloatRight" style="margin:5px;width:190px;height:204px" />“Being able to gather physically again after the pandemic and see how the battery field has grown in just the last few years was a fantastic feeling. From this year's conference, the progress on the battery manufacturing side is really noticeable, and that is good news, not the least for Gothenburg. How other battery technologies advance their positions is also clear, as is how the entire battery value chain is now involved,” says Patrik Johansson.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">“Another aspect to highlight is the younger researchers, they are very mature and we really need their excellence going forward – both in academia and in industry.”</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The next NordBatt will take place in 2024 and will be organized by Alexey Koposov at University of Oslo.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read more about this year's conference at the homepage of NordBatt 2022</a></span></div> <div><br /></div> <div>Text: Lisa Gahnertz</div> <div><br /></div>Mon, 14 Nov 2022 10:00:00 +0100 and security in focus for the new Assistant Professor<p><b>&quot;I am attracted by the open discussion climate and look forward to forming a new team in cryptography,&quot; says Elena Pagnin, one of Chalmers's 15 new research talents.</b></p>​<span style="background-color:initial">For the fifth time, Chalmers has made a major investment in attracting sharp research talents from all corners of the world. The campaign was very successful; nearly 2,000 eligible people applied for the 15 positions as Assistant Professors.</span><div><div><br /></div> <div>&quot;It is extremely gratifying to see the large interest in Chalmers internationally and that so many research talents want to come to Chalmers to build their future career,&quot; says <b>Anders Palmqvist</b>, Vice President of Research.</div> <h3 class="chalmersElement-H3">Security a significant challenge</h3> <div>One of the 15 is <b>Elena Pagnin</b>, Assistant Professor with a focus on <a href="" title="link to wikipedia">cryptography</a>. Her position is linked to the Information and Communication Technology (ICT) Area of Advance, and director <b>Erik Ström</b> welcomes her warmly:</div> <div>“Security, in a broad sense, is one of the major societal challenges of our time. With the recruitment of Elena, Chalmers' competence in cyber security, specifically in cryptography, is strengthened. I expect Elena to advance the research front in crypto as well as drive cross-disciplinary research on effective cryptographic solutions for security problems in e.g., transport, health and technology, production, and energy.”</div> <h3 class="chalmersElement-H3"><span>Loving the science</span></h3> <div><span style="background-color:initial">Elena Pagnin will work at the Department of Computer Science and Engineering (CSE), a familiar place since her time as a PhD student at Chalmers. After a few years as a postdoctoral researcher in Aarhus, Denmark, and Associate Senior Lecturer in Lund, she is looking forward to her new job:</span><br /></div> <div>&quot;I love cryptography and provable security. My primary focus will be on the design of digital signature schemes with advanced properties such as homomorphic signatures, extendable ring signatures, and signatures with flexible verification. I will also work on efficient and privacy-preserving protocols for concrete use cases including location proximity testing, server-aided data sharing, and secure data deduplication.&quot;</div> <h3 class="chalmersElement-H3">​A rising star</h3> <div>The Head of Department <span style="background-color:initial">of Computer Science and Engineering</span><span style="background-color:initial">, </span><b style="background-color:initial">Richard Torkar</b><span style="background-color:initial">, is thrilled that Elena accepted the offer to come back to Chalmers and create her own research group:</span></div> <span></span><div></div> <div>&quot;Dr Pagnin complements our cybersecurity environment well, and given her credentials, we expect her to succeed greatly in the years to come. I am personally convinced that one day she will become one of our brightest stars. I look forward to following her career in the years to come.&quot;</div> <h3 class="chalmersElement-H3">Open climate and visibility</h3> <div>Elena says that she was drawn back by the vibrant and lively environment at Chalmers and that there is an open climate for discussions about interdisciplinary research:</div> <div>&quot;People are positive and I appreciate the honest advice I get from the network. In addition, Chalmers' visibility, not only in Sweden but also internationally, is a bonus.&quot;</div> <div>&quot;And now, I look forward to establishing a new team of cryptographers in Sweden. We can do that, mainly because of the good cooperation within Chalmers and with our close contacts in the industrial sector,&quot; concludes Elena Pagnin.</div> <div><br /></div> <div><a href="" target="_blank" title="link to Elenas personal webpage"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read more </a></div> <div><br /></div> ​<br /></div> ​Wed, 19 Oct 2022 03:00:00 +0200 the mysteries of the universe under the skin of an atomic nucleus<p><b>​​Massive neutron stars colliding in space are thought to be able to create precious metals such as gold and platinum. The properties of these stars are still an enigma, but the answer may lie beneath the skin of one of the smallest building blocks on Earth – an atomic nucleus of lead. Getting the nucleus of the atom to reveal the secrets of the strong force that governs the interior of neutron stars has proven difficult. Now a new computer model from Chalmers University of Technology, Sweden, can provide answers.​</b></p><div>In a recently published <a href="">article in the scientific journal Nature Physics</a>, Chalmers researchers present a breakthrough in the calculation of the atomic nucleus of the heavy and stable element lead.</div> <div><br /></div> <div style="font-size:20px">The strong force plays the main role</div> <div><br /></div> <div>Despite the huge size difference between a microscopic atomic nucleus and a neutron star several kilometers in size, it is largely the same physics that governs their properties. The common denominator is the strong force that holds the particles – the protons and neutrons – together in an atomic nucleus. The same force also prevents a neutron star from collapsing. The strong force is fundamental in the universe, but it is difficult to include in computational models, not least when it comes to heavy neutron-rich atomic nuclei such as lead. Therefore, the researchers have wrestled with many unanswered questions in their challenging calculations.</div> <div><br /></div> <div style="font-size:20px">A reliable way to make calculations</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Andreas%20Ekström.jpg" class="chalmersPosition-FloatRight" alt="Andreas Ekström" style="margin:5px" /><span style="background-color:initial">&quot;</span><span style="background-color:initial">To understand how the strong force works in neutron-rich matter, we need meaningful comparisons between theory and experiment. In addition to the observations made in laboratories and with telescopes, reliable theoretical simulations are therefore also needed. Our breakthrough means that we have been able to carry out such calculations for the heaviest stable element – lead,” says </span><strong style="background-color:initial">Andreas Ekström</strong><span style="background-color:initial">, Associate Professor at the Department of Physics at Chalmers and one of the main authors of the article.</span></div> <div><br /></div> <div>The new computer model from Chalmers, developed together with colleagues in North America and England, now shows the way forward. It enables high precision predictions of properties for the isotope* lead-208 and its so-called ‘neutron skin’.</div> <div><br /></div> <div style="font-size:20px">The thickness of the skin matters</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Christian%20Forssen.jpg" class="chalmersPosition-FloatRight" alt="Christian Forssén" style="margin:5px" />It is the 126 neutrons in the atomic nucleus that form an outer envelope, which can be described as a skin. How thick the skin is, is linked to the properties of the strong force. By predicting the thickness of the neutron skin, knowledge can increase about how the strong force works – both in atomic nuclei and in neutron stars.</div> <div><br /></div> <div>&quot;We predict that the neutron skin is surprisingly thin, which can provide new insights into the force between the neutrons. A groundbreaking aspect of our model is that it not only provides predictions, but also has the ability to assess theoretical margins of error. This is crucial for being able to make scientific progress,&quot; says research leader <strong>Christian Forssén</strong>, Professor at the Department of Physics at Chalmers.</div> <div><br /></div> <div style="font-size:20px">Model used for the spread of the coronavirus</div> <div><br /></div> <div>To develop the new computational model, the researchers have combined theories with existing data from experimental studies. The complex calculations have then been combined with a statistical method previously used to simulate the possible spread of the coronavirus.</div> <div><br /></div> <div>With the new model for lead, it is now possible to evaluate different assumptions about the strong force. The model also makes it possible to make predictions for other atomic nuclei, from the lightest to the heaviest.</div> <div>The breakthrough could lead to much more precise models of, for example, neutron stars and increased knowledge of how these are formed.</div> <div><br /></div> <div>&quot;The goal for us is to gain a greater understanding of how the strong force behaves in both neutron stars and atomic nuclei. It takes the research one step closer to understanding how, for example, gold and other elements could be created in neutron stars – and at the end of the day it is about understanding the universe,&quot; says Christian Forssén.</div> <div> </div> <div style="font-size:16px">More about the scientific study</div> <div><ul><li>The scientific article <a href="">&quot;Ab initio predictions link the neutron skin of 208Pb to nuclear forces&quot;</a> has been published in Nature Physics and is written by Baishan Hu, Weiguang Jiang, Takayuki Miyagi, Zhonghao Sun, Andreas Ekström, Christian Forssén, Gaute Hagen, Jason D. Holt, Thomas Papenbrock, S. Ragnar Stroberg and Ian Vernon.</li> <li>During the study, the researchers worked at Chalmers University of Technology in Sweden, Durham University in the UK, University of Washington, Oak Ridge National Laboratory, University of Tennessee and Argonne National Laboratory in the USA and TRIUMF and McGill University in Canada.</li> <li>The research has been carried out using some of the world's most powerful supercomputers. The Chalmers researchers have mainly been funded by the Swedish Research Council and the European Research Council.</li> <li>Further reading about the research can also be found in a commentary article in Nature Physics; <a href="">A historic match for nuclei and neutron stars</a>.<br /></li></ul></div> <div><br /></div> <div>*Isotope: An isotope of an element is a variant with a specific number of neutrons. In this case, it is about the isotope lead-208 which has 126 neutrons (and 82 protons).</div> <div><br /></div> <div><div style="font-size:16px">For more information, please contact:</div> <div><a href="/en/Staff/Pages/Andreas-Ekstrom.aspx">Andreas Ekström</a>, Associate Professor, Department of Physics, Chalmers University of Technology, +46 31 772 36 85,</div> <div><a href="/en/staff/Pages/christian-forssen.aspx">Christian Forssén</a>, Professor, Department of Physics, Chalmers University of Technology, +46 31 772 32 61,</div></div> <div><br /></div> <div><div>Text: Lisa Gahnertz and Mia Halleröd Palmgren</div> <div>​Illustration: JingChen | Chalmers tekniska högskola | Yen Strandqvist<br /></div> <div>Portrait pictures: Anna-Lena Lundquist</div></div> ​​Wed, 12 Oct 2022 07:00:00 +0200“Most of my research has focused on things that could be useful for others"<p><b>​​Ferenc Mezei has made several ground-breaking discoveries in neutron physics. For this he is awarded the 2021 Lise Meitner Prize.“It is certainly a great part of the satisfaction that knowledgeable people find one’s work also of some use. I think distinguished awards like this one always tend to primarily appreciate the value for general use, which is a very crucial part of the recognition,” he says.</b></p><div><strong>Ferenc Mezei</strong> is awarded for inventing the neutron spin echo method, the concept of the so-called super mirror, as well as the long pulse neutron source concept. All are ground-breaking discoveries that have moved neutron research forward and improved the speed and accuracy of neutron-based materials investigation methods. Among other things, his research is the basis for the technical design of the large-scale research facility European Spallation Source (ESS) which is now being built in Lund, where he was also technical coordinator until recently.</div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial"><strong>Research is like solving challenging problems</strong></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Currently, Professor Mezei is in the frontline of the development of a new type of intense accelerator-driven </span><br /></div> <div>compact neutron sources. Research is to be equated with solving challenging problems, he believes, and this is also one of his driving forces. Another one is the benefit of his research.</div> <div><br /></div> <div>“Most of my research has focused on things that could be useful for others. In my opinion it has to be like that, if one spends a substantial amount of money. The challenge and satisfaction include the conviction of “money well spent”. Developing more powerful or simpler experimental techniques is something that by its fundamental nature is motivated by the use others will make of it. Of course, it was also a drive to be one the first users of these instrumental developments,” says Ferenc Mezei.</div> <span style="font-size:16px"> </span><div><br /></div> <div>Ferenc Mezei, born in 1942 in Budapest, Hungary, is ordinary member of the Hungarian Academy of Sciences in Budapest and Adjunct professor of Physics, University of California San Diego. He has also been Professor of Physics in joint appointment by TU Berlin and Hahn-Meitner Institute, Berlin. He also worked extended periods of time in neutron research laboratories at Central Research Institute of Physics in Budapest, at Institut Laue-Langevin in Grenoble and Los Alamos National Laboratory in New Mexico. </div> <div><br /></div> <div><span style="font-size:16px;font-weight:700;background-color:initial">Economy of neutron research​</span></div> <div><br /></div> <div><span style="font-size:16px;font-weight:700;background-color:initial"></span>During the award ceremony, Ferenc Mezei will give a talk titled “The economy of neutron research”. In what way is economy connected to neutrons?</div> <div><br /></div> <div>”Neutrons are inherently expensive to produce. On one hand, the economy concerns these costs. On the other hand, neutron research primarily hinges on improving our capability of making best economy of the neutrons we can produce. Much of my research addressed this aspect. A further important aspect is the role of neutron beams can play in the economy in broader sense.”</div> <div><br /></div> <div>When he is now awarded a prize that bears Lise Meitner's name, it is with her important research work in mind.</div> <div><br /></div> <div>“Lise Meitner’s work fundamentally shaped history. One aspect of this is that she had to face multiple difficulties, tough conditions, and discriminations. Her elegance of handling all that is also admirable.”</div> <div><br /></div> <div>Text: Lisa Gahnertz</div> ​​​Tue, 06 Sep 2022 15:00:00 +0200 sheds light on what happens in a trillionth of a second<p><b>​What really happens in a billionth of a billionth of a second? That is what professor Anne L'Huillier at Lund University has devoted her research career to shed light on, and for her discoveries she is now rewarded with the 2020 Lise Meitner Award.“It means a lot to me. Lise Meitner is a strong female role model, something that is very important when you are a woman and conduct your research within a subject dominated by men,&quot; she says.</b></p><div>​An attosecond is a trillionth of a second, and it is around laser pulses on that time scale that Professor Anne L'Huillier's research revolves. She has been at the forefront of research into ultrafast lasers for more than 30 years, and it is for those achievements and for paving the way for that research that she is now being awarded the Lise Meitner Award.</div> <div> </div> <div>&quot;It feels great that my research is being recognised in my new home country Sweden,&quot; she says.</div> <div> </div> <div>Born in France, Anne L'Huillier has links to Sweden that go way back. In the mid-80s, she did a postdoc at Chalmers, and worked with professor Göran Wendin.</div> <div> </div> <div>&quot;It was a very rewarding period for me, and it has come to play a big role in my career,&quot; she says.</div> <div> </div> <div><h2 class="chalmersElement-H2">Laid the foundation for attosecond research</h2></div> <h2 class="chalmersElement-H2"> </h2> <div>After some time back in France, she ended up at Lund University in the mid-90s, and for many years she has led a research group in atomic physics that studies the motion of electrons with the help of attosecond pulses. Her research group has helped lay the foundation for attosecond research, and enabled physicists and chemists to visualize the movement patterns of valence electrons. </div> <div> </div> <div><br /></div> <div>In later years, she has also become one of several research leaders in the quantum computer project WACQT, organized by Chalmers University of Technology, where she once again has worked with Göran Wendin.</div> <div> </div> <div>The lecture that Anne L'Huillier will give at the award ceremony is called &quot;What happens in a billionth of a billionth of a second?&quot; and concerns the ultra-short light pulses that her research group uses to study rapid processes and the movement of electrons in matter.</div> <div> </div> <div>&quot;What drives me as a researcher is learning,&quot; she says. “To still be able to learn new things all the time is very exciting. And to then be able to teach what I've learned is also very rewarding. In addition, it is very exciting when my research comes into use for science and for our society.”</div> <div><br /></div> <div>Text: Robert Karlsson</div> <div><br /></div> <div><a href="/en/centres/gpc/activities/lisemeitner/Pages/default.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Read more about the Lise Meitner award</a><br /></div>Tue, 06 Sep 2022 00:00:00 +0200 physicists praised at Chalmers<p><b>​​After a two-year hiatus, it is time again to hand out Gothenburg's Lise Meitner Prize, an annual award to a researcher who has made a breakthrough in physics. At the ceremony on September 8, the 2020 and 2021 awards will be presented, for advances in ultrafast laser technology and neutron supermirrors.– Lise Meitner was an outstanding physicist with a fascinating life. This award is a tribute both to her and to the researchers who have followed in her footsteps and made new ground-breaking discoveries in physics. This year's award ceremony is special because we get the opportunity to pay tribute to two exceptional award winners, says Carina Persson, chairman of the award committee.</b></p>​<span style="background-color:initial">Gothenburg's Lise Meitner Prize has been awarded annually since 2006 to an outstanding physicist, in memory of</span><span style="background-color:initial"> </span><span style="background-color:initial">Lise Meitner, a nuclear physicist who fled to Sweden from Germany in 1938 and subsequently one of the world's most prominent in her field. The prize is awarded by Gothenburg's Physics Centre, a collaboration of four departments at Chalmers and Gothenburg University, to pay tribute to researchers, but also to enrich the research environments and networks in Gothenburg through joint activities.</span><div>Due to the pandemic, the laureates for 2020 and 2021 will be recognized at the ceremony on September 8-9: Anne L'Huillier, professor at Lund University, and Ferenc Mezei, professor at the Hungarian Academy of Sciences in Budapest who also has a connection to Lund, where until recently he been technical coordinator for one of Sweden's largest research facilities, the European Spallation Source project. <a href="/en/centres/gpc/activities/lisemeitner/Pages/default.aspx"><span>Read more about the award winners and their research</span>.​</a></div> <div><br /></div> <div>Both laureates will give a speech at the award ceremony on September 8, and a symposium will be held in their honor on September 9, where researchers from several Swedish universities will present current research related to the laureates' fields.</div> <div><br /></div> <div>- It will be very exciting to listen to the prize winners' talks about how they made their discoveries, but it will also be an excellent opportunity for us who do research at Chalmers and Gothenburg universities to broaden our collaborations with outstanding researchers at other Swedish universities, says Carina Person.</div> <div><a href="/en/centres/gpc/calendar/Pages/default.aspx">Read more about the planned activities on September 8 and 9 in the calendar</a>.</div> <div><br /></div> <h3 class="chalmersElement-H3">Gothenburg Physics C​​entre</h3> <div>is a collaboration between four departments: Physics, Space, Earth and Environmental Sciences and Microtechnology and Nanoscience at Chalmers University of Technology, as well as the Department of Physics at the University of Gothenburg. The center includes approximately 200 professors, 120 doctoral students and 550 students. The overall goal of the Physics Center is to promote the subject of physics in Gothenburg through a range of different activities.</div> <div>​<br /></div>Tue, 30 Aug 2022 00:00:00 +0200 light the way towards new medicine<p><b>​To develop new drugs and vaccines, detailed knowledge about nature’s smallest biological building blocks – the biomolecules – is required. Researchers at Chalmers University of Technology, Sweden, are now presenting a groundbreaking microscopy technique that allows proteins, DNA and other tiny biological particles to be studied in their natural state in a completely new way.</b></p>​<span style="background-color:initial">A great deal of time and money is required when developing medicines and vaccines. It is therefore crucial to be able to streamline the work by studying how, for example, individual proteins behave and interact with one another. The new microscopy method from Chalmers can enable the most promising candidates to be found at an earlier stage. The technique also has the potential for use in conducting research into the way cells communicate with one another by secreting molecules and other biological nanoparticles. These processes play an important role in our immune response, for example. </span><div><br /></div> <div style="font-size:16px"><strong>Revealing its silhouette </strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Biomolecules are both small and elusive, but vital since they are the building blocks of everything living. In order to get them to reveal their secrets using optical microscopy, researchers currently need to either mark them with a fluorescent label or attach them to a surface.</span></div> <div><span style="background-color:initial"><br /><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Christoph%20Langhammer_320.jpg" alt="Christoph Langhammer" class="chalmersPosition-FloatRight" style="margin:5px;width:200px;height:195px" />“With current methods you can never quite be sure that the labelling or the surface to which the molecule is attached does not affect the molecule’s properties. With the aid of our technology, which does not require anything like that, it shows its completely natural silhouette, or optical signature, which means that we can analyse the molecule just as it is,” says research leader <strong>Christoph Langhammer</strong>, professor at the Department of Physics at Chalmers. He has developed the new method together with researchers in both physics and biology at Chalmers and the University of Gothenburg. </span></div> <div><br /></div> <div>The unique microscopy method is based on those molecules or particles that the researchers want to study being flushed through a chip containing tiny nano-sized tubes, known as nanochannels. A test fluid is added to the chip which is then illuminated with visible light. The interaction that then occurs between the light, the molecule and the small fluid-filled channels makes the molecule inside show up as a dark shadow and it can be seen on the screen connected to the microscope. By studying it, researchers can not only see but also determine the mass and size of the biomolecule, and obtain indirect information about its shape – something that was not previously possible with a single technique.</div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial"><strong>Acclaimed innovation</strong></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The new technique, nanofluidic scattering microscopy, was recently presented in the scientific journal Nature Methods. The Royal Swedish Academy of Engineering Sciences, which every year lists a number of research projects with the potential to change the world and provide real benefits, has also paid tribute to the progress made. The innovation has also taken a step out into society through the start-up company Envue Technologies, which was awarded the “Game Changer” prize in this year’s Venture Cup competition in Western Sweden.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/barboraspackova-321x366_fotograf%20Aykut%20Argun.jpg" alt="Barbora Spackova" class="chalmersPosition-FloatRight" style="margin:0px 5px;width:200px;height:228px" />“Our method makes the work more efficient, for example when you need to study the contents of a sample, but don’t know in advance what it contains and thus what needs to be marked,” says researcher <strong>Barbora Špačková</strong>, who during her time at Chalmers derived the theoretical basis for the new technique and then also </span><span style="background-color:initial">conducted the first experimental study with the technology​.</span></div> <div><br /></div> <div>The researchers are now continuing to optimise the design of the nanochannels in order to find even smaller molecules and particles that are not yet visible today.  </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">“</span><span style="background-color:initial">The aim is to further hone our technique so that it can help to increase our basic understanding of how life works, and contribute to making the development of the next generation medicines more efficient” says Langhammer.</span></div> <div><br /></div> <div><strong>More about the scientific article and the research:</strong></div> <div><span style="background-color:initial"><br /></span></div> <div><ul><li><span style="background-color:initial">The article </span><a href="" style="outline:0px">Label-Free Nanofluidic Scattering Microscopy of Size and Mass of Single Diffusing Molecules and Nanoparticles</a><span style="background-color:initial"> was published in Nature Methods, and was written by Barbora Špačková, Henrik Klein Moberg, Joachim Fritzsche, Johan Tenghamn, Gustaf Sjösten, Hana Šípová-Jungová, David Albinsson, Quentin Lubart, Daniel van Leeuwen, Fredrik Westerlund, Daniel Midtvedt, Elin K. Esbjörner, Mikael Käll, Giovanni Volpe and Christoph Langhammer. The researchers are active at Chalmers and the University of Gothenburg. Barbora Špačková is currently starting up her own research group at the Czech Academy of Sciences in Prague.</span></li></ul></div> <div><span style="background-color:initial"><br /></span></div> <div><ul><li><span style="background-color:initial">The research has been mainly funded by the Swedish Foundation for Strategic Research, as well as by the Knut and Alice Wallenberg Foundation. Part of the research was conducted at the Chalmers Nanofabrication Laboratory at the Department of Microtechnology and Nanoscience (MC2) and under the umbrella of the Chalmers Excellence Initiative Nano.</span></li></ul></div> <div><br /></div> <div><strong>How the technique works:</strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/750x340/Toppbild_ENG_Mikroskopet%20som%20kan%20visa%20genva╠êgen%20till%20ny%20medicin_750x340px.jpg" alt="New microscopy method" style="margin:5px;width:600px;height:269px" /><br /><br /><ul><li><span style="background-color:initial">The molecules or particles that the researchers want to study are placed in a chip containing tiny nano-sized tubes, nanochannels, that are filled with test fluid. </span></li> <li><span style="background-color:initial">The chip is secured in a specially adapted optical dark-field microscope and illuminated with visible light. </span></li> <li><span style="background-color:initial">On the screen that shows what can be seen in the microscope, the molecule appears as a dark shadow moving freely inside the nanochannel. This is due to the fact that the light interacts with both the channel and the biomolecule. The interference effect that then arises significantly enhances the molecule’s optical signature by weakening the light just at the point where the molecule is located. </span></li> <li><span style="background-color:initial">The smaller the nanochannel, the greater the amplification effect and the smaller the molecules that can be seen. </span></li> <li><span style="background-color:initial">With this technique it is currently possible to analyse biomolecules from a molecular weight of around 60 kilodaltons and upwards. It is also possible to study larger biological particles, such as extracellular vesicles and lipoproteins, as well as inorganic nanoparticles.</span></li></ul></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href=""><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/NSM_technique.png" alt="Video" style="margin:5px;width:500px;height:138px" /></a><br /><br /></span></div> <div><span style="background-color:initial"><strong>Video</strong>: <a href="">Watch a video from the microscope​</a>, showing a biomolecule inside a nanochannel. It shows up as a dark shadow and it can be seen on the screen connected to the microscope. By studying it, researchers can not only see but also determine the mass and size of the biomolecule, and obtain indirect information about its shape – something that was not previously possible with a single technique.<br /></span></div> <div><br /></div> <div><strong>For more information, contact: </strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="/en/Staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer</a>, Professor, Department of Physics, Chalmers University of Technology<br />+46 31 772 33 31, </span><a href="">​</a></div> <div><br /></div> <div>Text: Lisa Gahnertz and Mia Halleröd Palmgren<br />Photo/illustration: ​<span style="background-color:initial">Maja Saaranen/Envue Technologies (photo collage), </span><span style="background-color:initial">Yen Strandqvist/ Chalmers University pf Technology and Daniel Spacek/ Neuroncollective (illustration),</span><span style="background-color:initial"> </span><span style="background-color:initial">Anna-Lena Lundqvist (portrait picture of Langhammer), Aykut Argun (portrait picture of </span><span style="background-color:initial">Špačková).</span></div> <div><br /></div> <div><br /></div> ​Thu, 16 Jun 2022 07:00:00 +0200 Pázsit named Doctor Honoris Causa of Budapest University of Technology and Economics<p><b>​In appreciation of his internationally reputed activities, Imre Pázsit has been named Doctor Honoris Causa of Budapest University of Technology and Economics (BME).</b></p>​<img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/ImrePaszit.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:201px;height:271px" /><span style="background-color:initial"><br /></span><div><span style="background-color:initial">The award recognises <strong>Imre Pázsit</strong>, Professor at the Department of Physics, for achieving great international regard for his own outstanding achievements while contributing to the global appreciation of BME through teaching and research activities. </span><div><br /><span style="background-color:initial"></span><div>The ceremony of handing over the award will be held on May 28, 2022, at the festive meeting of the University Senate. <a href="">Follow the event on Youtube.</a></div> <div><br /></div> </div></div>Mon, 23 May 2022 10:00:00 +0200 research projects from Physics on IVA 100 List 2022<p><b>​The next generation of nanotechnology and a 2D-semiconductor in a new material is research from the Department of Physics that is highlighted on this year's IVA 100 list. For the fourth year in a row, the Royal Swedish Academy of Engineering Sciences has put the spotlight on research from Swedish universities that benefits society.</b></p>​<span style="background-color:initial">Technology in the service of humanity is the theme of this year's <a href="">IVA 100 list from the Royal Swedish Academy of Engineering Sciences (IVA)​</a>. The purpose of the list is to present current research with business potential from Sweden's higher education institutions.</span><div><br /></div> <div>Included in this year's list are two research projects linked to the Department of Physics. Research leaders for the selected projects are <strong>Christoph Langhammer</strong>, Professor at the division of Chemical Physics, and <strong>Timur Shegai</strong>, Associate Professor at the division of Nano and Biophysics.</div> <div><br /></div> <div>Read more about their research projects below and see links to the companies within which the research results are realized.</div> <div><br /></div> <div style="font-size:16px"><strong>Nanofluidic Scattering Microscopy </strong><span style="font-weight:700">–</span><strong> the next generation of nanotechnology that can provide ground-breaking discoveries</strong></div> <div><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/400_ChristophLanghammerfarg.jpg" class="chalmersPosition-FloatRight" alt="Christoph Langhammer" style="margin:5px;width:180px;height:236px" />Research leader: <a href="/en/staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer</a></div> <div><br /></div> <div>&quot;In Life Science, studies of biomolecules such as proteins, DNA and RNA are crucial for understanding diseases and developing new drugs and vaccines. The problem is that these biomolecules are in the nanoworld and are too small to study with conventional microscopes. We have developed the next generation of nanotechnology to study and analyse individual biomolecules and at the same time generate important information about them. We do this with an optical instrument combined with nanofluidic chips and software with machine learning/AI. By offering researchers this new tool, they can answer their questions in a completely new way, thereby accelerating their research in order to make ground-breaking discoveries.”</div> <div><br /></div> <div>Read more at Envue Technologies: <a href=""></a></div> <div><br /></div> <div style="font-size:16px"><strong>2D semiconductor with perfect edges – a game-changing material</strong></div> <div><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Timur%20Shegai-webb.jpg" alt="Timur Shegai" class="chalmersPosition-FloatRight" style="margin:5px;width:180px;height:228px" />Research leader: <a href="/en/Staff/Pages/Timur-Shegai.aspx">Timur Shegai</a></div> <div><br /></div> <div>“We at Smena have developed a new game-changing material, which is useful for numerous applications. The starting point of our material is an abundant mineral called molybdenite, whose price is only 5 dollar per kilogram. Using a scalable, patented, and environmentally friendly process, we managed to produce a large number of edges in flakes of natural molybdenite. These edges contain many &quot;active sites&quot;, which are useful for sensing gas molecules and electrocatalytic water splitting (production of hydrogen).”</div> <div><br /></div> <div>Read more at Smena tech: <a href="">​</a></div> <div><br /></div> <div>Read more about the other projects from Chalmers on this year's IVA 100 List: <a href="/en/news/Pages/IVA-100-list-2022.aspx">Most projects from Chalmers on IVA’s 100 list 2022​</a></div> ​​Tue, 10 May 2022 09:00:00 +0200 for ICT seed projects 2023<p><b> Call for proposals within ICT strategic areas and involving interdisciplinary approaches.​</b></p><h3 class="chalmersElement-H3" style="color:rgb(153, 51, 0)"><br /></h3> <h3 class="chalmersElement-H3">Important dates:</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li><b>NEW! Submission date: </b><span>9 May, at 09.00</span>, 2022</li> <li><b>Notification:</b> mid-June, 2022</li> <li><b>Expected start of the project:</b> January 2023</li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Background</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The Information and Communication Technology (ICT) Area of Advance</b> (AoA) provides financial support for SEED projects, i.e., projects involving innovative ideas that can be a starting point for further collaborative research and joint funding applications. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>We will prioritize research projects that <strong>involve researchers from different research communities</strong> (for example across ICT departments or between ICT and other Areas of Advances) and who have not worked together before (i.e., have no joint projects/publications). </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>Research projects involving a <strong>gender-balanced team and younger researchers</strong>, e.g., assistant professors, will be prioritized. Additionally, proposals related to <strong>sustainability</strong> and the UN Sustainable Development Goals are encouraged.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b><em>Note: </em></b><em>Only researchers employed at Chalmers can apply and can be funded. PhD students cannot be supported by this call.  Applicants and co-applicants of research proposals funded in the 2021 and 2022 ICT SEED calls cannot apply. </em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><em><br /></em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The total budget of the call is 1 MSEK.</b> We expect to fund 3-5 projects</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Details of the call</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li>The project should include at least two researchers from different divisions at Chalmers (preferably two different departments) who should have complementary expertise, and no joint projects/publications.</li> <li>Proposals involving teams with good gender balance and involving assistant professors will be prioritized.</li> <li>The project should contribute to sustainable development. </li> <li>The budget must be between 100 kSEK and 300 kSEK, including indirect costs (OH). The budget is mainly to cover personnel costs for Chalmers employees (but not PhD students). The budget cannot cover costs for equipment or travel costs to conferences/research visits. </li> <li>The project must start in early 2023 and should last 3-6 months. </li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">What must the application contain?</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The application should be at most 3 pages long, font Times–Roman, size 11. In addition, max 1 page can be used for references. Finally, an additional one-page CV of each one of the applicants must be included (max 4 CVs). Proposals that do not comply with this format will be desk rejected (no review process).</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The proposal should include:</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>a)<span style="white-space:pre"> </span>project title </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>b)<span style="white-space:pre"> </span>name, e-mail, and affiliation (department, division) of the applicants</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>c)<span style="white-space:pre"> </span>the research challenges addressed and the objective of the project; interdisciplinary aspects should be highlighted; also the applicant should discuss how the project contributes to sustainable development, preferably in relation to the <a href="" title="link to UN webpage">UN Sustainable Development Goals (SDG)</a>. Try to be specific and list the targets within each Goal that are addressed by your project.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>d)<span style="white-space:pre"> </span>the project description </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>e)<span style="white-space:pre"> </span>the expected outcome (including dissemination plan) and the plan for further research and funding acquisition</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>f)<span style="white-space:pre"> </span>the project participants and the planned efforts</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>g)<span style="white-space:pre"> </span>the project budget and activity timeline
</div> <div><div><br /></div> <h3 class="chalmersElement-H3">Evaluation criteria</h3> <div><ul><li>Team composition</li> <li>Interdisciplinarity</li> <li>Novelty</li> <li>Relevance to AoA ICT and Chalmers research strategy as well as to SDG</li> <li>Dissemination plan</li> <li>Potential for further research and joint funding applications</li> <li>Budget and project feasibility​</li></ul></div></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">Submission</span></div> <div> </div> <div> </div> <div> </div> <div>The application should be submitted as <b>one PDF document</b>.<span style="background-color:initial"></span></div> <div><br /></div> <div><a href="" target="_blank" title="link to submission"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Submit​</a></div> <div><br /></div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span><br /></span></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="background-color:initial">The proposals will be evaluated by the AoA ICT management group and selected Chalmers researchers.

</span></div> <div><span style="background-color:initial"><b><br /></b></span></div> <div><span style="background-color:initial"><b>Questions</b> can be addressed to <a href="">Erik Ström</a></span></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">General information about the ICT Area of Advance can be found at <a href="/en/areas-of-advance/ict/Pages/default.aspx"> ​</a></span><br /></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div> </div> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/About%20us/IKT_logo_600px.jpg" alt="" /><span style="background-color:initial">​​<br /></span></div>Wed, 30 Mar 2022 00:00:00 +0200 learning platform that simplifies communication<p><b>​Two students at Chalmers University of Technology have developed a new learning platform for the study of mathematics, engineering and physics in higher education. The platform provides teachers and students with a common educational environment and access to the same information, so that students have equal learning opportunities regardless of geographical location and individual level of knowledge. They have now been awarded the Bert-Inge Hogsved Award for Best Entrepreneurship by the Forum for Engineering Physicists at Chalmers.  </b></p><div><span style="background-color:initial"><strong>Simon Pettersson Fors</strong> and <strong>Eric Lindgren</strong> are the recipients of this year’s <a href="">Bert-Inge Hogsved Award for Best Entrepreneurship</a>. The award was established in 2011 by <strong>Bert-Inge Hogsved</strong>, himself an engineering physicist. The award is presented annually to students studying the programmes Engineering Physics, Engineering Mathematics or Chemical Physics with Engineering Physics. The intention is to highlight entrepreneurial initiative among students at Chalmers. </span></div> <div><br /></div> <div><span style="background-color:initial"></span>A study conducted by the Swedish Board of Student Finance (CSN) in 2020 revealed that diminished mental wellbeing is significantly more common among students than skilled workers. Studies were perceived as overly demanding and stressful. </div> <div><br /></div> <div>“As a student, one is often frustrated, unable to make progress, something that creates stress. On our learning platform, it is easy to get help. Anyone can ask a question and it can be answered by both other students and teachers. All students remain anonymous in order to remove the stigma attached to ignorance,” Simon Pettersson Fors, doctoral student at the Department of Microtechnology and Nanoscience.</div> <div><br /></div> <div>The learning platform, Yata, is an open forum that facilitates joint discussion to solve various problems. As all questions and answers are available to everyone, the platform can help many students simultaneously. All information is saved for posterity, making the learning platform a knowledge bank for future students and a tool for streamlining teaching.</div> <div><br /></div> <div>For teachers, the primary benefit is saved time. A teacher can speak to the entire group at once, rather than emailing individual students. It also provides them with an opportunity to check that students are on the right track in their reasoning and plan the next stage of teaching based on ongoing discussions in the forum. They can also use earlier pedagogical posts by former teachers and students. </div> <div><br /></div> <div>“There are many learning platforms on the market but few aimed at learning physics, engineering and mathematics at higher education level. It’s great to be involved in solving problems that one has personal experience of as a student,” says Eric Lindgren, doctoral student at the Department of Physics. </div> <div><br /></div> <div style="font-size:16px">For more information, please contact:</div> <div><a href="/en/Staff/Pages/forssi.aspx">Simon Pettersson Fors</a></div> <div><a href="/en/Staff/Pages/Eric-Lindgren.aspx">Eric Lindgren</a></div> <div><br /></div> <div><strong>Text and photo:</strong> <a href="">Hogia</a></div> ​Tue, 29 Mar 2022 13:00:00 +0200 with a personal touch awarded at Physics<p><b>​​Magnus Rahm is the winner of the Department of Physics' annual prize for best doctoral thesis. A thesis that is not only distinguished by its playful cover and strong scientific impact – but also by its personal appeal and pedagogical features.</b></p>​​<span style="background-color:initial">The Department of Physics' Best Thesis Award for the academic year 2020/2021 goes to Dr. <span style="font-weight:700">Magnus Rahm</span>, for his dissertation entitled &quot;There is an Alloy at the End of the Rainbow: Structure and Optical Properties From Bulk to Nano&quot;.</span><span></span><div><br /></div> <div style="font-size:15px">The award committee's motivation for the award is:</div> <div><em>&quot;This year's award for the best PhD thesis goes to Magnus Rahm. The committee selected his thesis for its strong scientific impact as well as its pedagogical qualities. The thesis reflects Dr. Rahm's ability to solve complex problems requiring not only a profound and comprehensive understanding of physics and materials science, but also advanced technical skills in data analysis and software development. The thesis is easy to read and succeeds to introduce a complex subject to readers not familiar with the field. The committee also appreciated the author's personal touch throughout the thesis and in the cover art.”</em></div> <div><br /></div> <div><span style="font-weight:700">How does it feel to receive this award?</span></div> <div>”I’m of course very happy. You put a lot of time and energy into your thesis so the fact that someone has read and appreciated it is of course delightful. I was a little surprised, there were many good theses this year,and it almost feels a bit unfortunate that not everyone can get an award. But I was very happy with my own thesis.”</div> <div><br /></div> <div><span style="font-weight:700">What do you examine in your thesis?</span></div> <div>“I have done simulations of materials, it is about material physics so they always start on the atomic or electron scale. I have looked at several different materials, but the common denominator is that there is some connection to nanoparticles and alloys, ie a mixture of metals. There is also a connection to hydrogen, as my project is partly funded by a larger project run by Professor Christoph Langhammer, which deals with hydrogen sensors made of nanoparticles.”</div> <div><br /></div> <div><span style="font-weight:700">Why did this topic attract you?</span></div> <div>”Doing physics through computer simulations appealed to me very much. Partly because I am clumsy in the lab, partly because this is the perfect way to do experiments as you have a precise view of what is happening. I also like data analysis and programming, so it was probably the combination of things I was drawn to.”</div> <div><br /></div> <div><span style="font-weight:700">Your thesis is called &quot;There is an alloy at the end of the rainbow&quot;. What is it at that you find at the end of the rainbow, more precisely?</span></div> <div>“It’s those fantastic materials that you can only imagine before you have them. Through simulations you can search for materials in a simpler way than through physical experiments. You can test more variants and you do not have the same limitations, it does not cost time or money to change an element, so you are free to search the entire periodic table. In terms of results, it is difficult to point to one single thing because the thesis consists of several different articles with quite different orientations, but what I think will perhaps have the biggest impact in the long run is the software we developed in the group during the time of my thesis.”</div> <div><br /></div> <div><span style="font-weight:700">In their motivation, the award committee writes that your thesis is easy to read and succeeds in introducing the reader to a complex subject. How was your writing process?</span></div> <div>”It is a fairly scattered thesis - my challenge was to turn it into a whole. The thing that tied it all together at the end was the explanation for why I chose the subject from the beginning. I spent a lot of time writing an introduction that would tie everything together. I also think it's fun to write and to articulate, and I had a lot of help from discussions with my supervisor Professor <strong>Paul Erhart</strong>.”</div> <div><br /></div> <div><span style="font-weight:700">What did you find difficult during the writing process?</span></div> <div>”In addition to getting the whole thing together, I could sometimes have a writer’s block and difficulty getting started, but the most important thing then was to just start writing about what felt motivating for the moment, instead of thinking that I had to write it from the beginning to the end.”</div> <div><br /></div> <div><span style="font-weight:700">Your dissertation also has a very special cover. Tell us more about it!</span></div> <div>“In the world of physics for the past 10–20 years, it has been popular with photorealistic 3D renderings of nanoparticles, small atoms, and so on. I have made these types of illustrations myself and wanted to do something else. I googled around and stuck to an illustration with video game aesthetics that I was inspired by. That way I could get all the different parts and details in the same picture. In addition, the cover indicates that the thesis is about something digital, simulations with ones and zeros. I put way too many hours on the cover!”</div> <div><br /></div> <div><span style="font-weight:700">What are you doing now?</span></div> <div>”I'm still in Paul Erhart's group, now as a postdoc. So I now do research on other materials, but in the same place.”</div> <div><br /></div> <div><span style="font-weight:700">Last but not least, do you have any good advice for those about to write a thesis themselves?</span></div> <div>”That you should not be afraid to be personal. In everything else you write within academia, several names appear as the sender and you write for scientific journals with strict guidelines. In a thesis, it is not quite the same. The product of five years of doctoral studies is not only the articles, but also yourself – you have become a doctor. I think that the thesis to some extent can reflect who you are, so if you think that sounds like a good idea, you should not be afraid to be a little bold. I tried to put my personal stamp on the thesis by having a twinkle in the eye where it suited, especially in the introductory chapter, but also in the introduction of each chapter. Everything does not have to be bone dry!”</div> <div><br /></div> <div><a href="" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read Magnus Rahm's thesis via</a></div> <div style="font-size:15px"><br /></div> <div style="font-size:15px">About the Best Thesis Award</div> <div>The Best Thesis Award was founded in 2013, as one among several initiatives at the Department of Physics, to maintain and improve the research quality, as well as to show appreciation for the PhD students' hard work.</div> <div>The management of the department also hopes that this award can help doctoral students receive an extra boost in their careers after the defence. These particular theses can serve as good examples for doctoral students in the early stages of their own thesis writing. Besides the honour, the award consists of a diploma and a monetary prize of SEK 10.000.</div> <div><br /></div> <div>Members of the Best PhD Thesis Award Committee: Riccardo Catena, Hana Jungová, Yasmine Sassa, Philippe Tassin (chairman), Paolo Vinai, Björn Wickman, Julia Wiktor.</div> <div><br /></div> <div>For more information, please contact:<br />Magnus Rahm</div> <div><br /></div> <div>Text: Lisa Gahnertz</div> <div>Photo: Magnus Rahm (illustration), Lisa Gahnertz (portrait photo)</div> <div><br /></div> ​Wed, 02 Mar 2022 16:00:00 +0100ünde-Fülöp-.aspx’ pedagogical award given to Tünde Fülöp<p><b>​Tünde Fülöp, Professor at the Department of Physics, receives the students' pedagogical award Guldäpplet (“the Golden Apple”) for her course Vector Fields and Classical Physics. The purpose of the award is to draw attention to outstanding contributions for students in applied physics and applied mathematics at Chalmers.</b></p><strong>​</strong><span style="background-color:initial"><strong>What does it mean for you to receive this prize?</strong></span><div>“I am very happy and honoured. It is great to know that the students appreciated my lectures. As a former Engineering Physics student (enrolled 1991) I feel a strong connection with the students. I got lots of positive energy from them during the whole course. And that they even nominated me for this fantastic prize, it is unbelievable!”</div> <div><br /></div> <div><strong>How did you set up the course to make the students feel committed, and what do you think of as success factors in your teaching?</strong></div> <div><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Tunde%20Fulop.jpg" class="chalmersPosition-FloatRight" alt="Tünde Fülöp" style="margin:5px;width:215px;height:284px" />“Above all, I really enjoy teaching. It feels a bit like walking on clouds, and I suspect that feeling may be contagious. I do my best to create a relaxed atmosphere, so that the students can feel that they can ask any questions, like in a happy family. My aim is that it should feel like a dialogue between me and the students. It does not always work out like that, but this group of students was really fantastic.”</div> <div><br /></div> <div>“One way to make my lectures more personal is to tell anecdotes about the scientists that are relevant for the material. I am a bit of a science history nerd, knowing about how the subject developed and who have been involved is a way for me to understand the big picture. But beyond the pedagogical value, I think it is a lot of fun to share such information. <span style="background-color:initial">To become a physicist is a journey and it is much more fun if you get to know your travel companions, whether they are dead or alive.”</span></div> <div><br /></div> <div><strong>Were there any challenges in teaching the course during the pandemic, and if so, how did you address them?</strong></div> <div><span style="background-color:initial">“</span><span style="background-color:initial">We were lucky in that sense. Almost all the restrictions were lifted during that period. I chose to have all activities on campus and booked the largest lecture halls available. In some cases, when students could not attend due to illness, we tried to help them by sending them notes. </span><br /></div> <div>As far as I know, there were no major issues, and the examination showed that the students managed to learn the material.”</div> <div><br /></div> <div><strong>What does teaching and meeting with the students give back to you?</strong></div> <div>“It gives me a lot of joy and strength. There is not much that can compete with the energy that comes from a classroom full of interested students. Something magical happens there and it is hard to explain that to outsiders. As a physicist, I think of resonance phenomena, but it is better than that, it is not something that happens just then and there, the feeling remains for a longer time. I still feel happy when I think back to the lectures and students from the fall term.”</div> <div><br /></div> <div><strong>Last but not least, how are you going to celebrate?</strong></div> <div>“I will go to the section dinner on Saturday and celebrate together with the students.”</div> <div><br /></div> <div><br /></div> <div style="font-size:15px">The motivation for the award Guldäpplet 2022 by the Student Board of Physics:</div> <div><em>With her burning interest and inspiring lectures, Tünde has made the course &quot;Vector fields and classical physics&quot; a favourite among many students. By responding to students' questions with kindness together with a great commitment to the course content, the course has maintained a high quality and a good structure throughout the study period. In addition to this, Tünde has also taught in a way that made it very entertaining to follow the lectures.</em></div> <span style="background-color:initial"><em>This is why Tünde Fülöp is awarded Guldäpplet 2022.</em></span><div><span style="background-color:initial"><em><br /></em></span></div> <div><span style="background-color:initial"><strong>For more information, please contact:</strong><br /><a href="/en/Staff/Pages/Tünde-Fülöp.aspx">Tünde Fülöp</a></span></div> <div><br /></div> <div>Text: Lisa Gahnertz</div> <div>Photo: Anna-Lena Lundqvist</div>Fri, 25 Feb 2022 09:00:00 +0100