News: Centre: Physics Centre related to Chalmers University of TechnologyWed, 19 Feb 2020 10:34:44 +0100–-towards-all-spin-computing.aspx spin circuits – towards all-spin computing<p><b>​Researchers at Chalmers University of Technology have demonstrated spin circuit architectures with large area graphene channels efficiently carrying and communicating the electronic spin information between nanomagnets arranged in different complex geometries consisting of multiple devices. The findings were recently published in the scientific journal Carbon. ​</b></p><div><span style="background-color:initial">Solid-state electronics based on utilizing the electron spin degree of freedom for storing and processing information can pave the way for next-generation spin-based computing. However, the realization of spin communication between multiple devices in complex spin circuit geometries, essential for practical applications, still remained challenging.</span><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/saroj_prasad_dash_350x305.jpg" class="chalmersPosition-FloatLeft" alt="Picture of Saroj Dash." style="margin:5px" />&quot;Our experimental demonstration of spin communication in large area CVD graphene spin circuit architectures is a milestone towards large-scale integration and development of spin-logic and memory technologies”, says Saroj Dash (to the left), associate professor and group leader, who supervised the research project.  </div> <div><br /></div> <div>Dmitrii Khokhriakov, PhD student at the Quantum Device Physics Laboratory at Chalmers University of Technology, carved complicated graphene Y-junction and Hexa-arm spin circuit architectures utilizing nanofabrication techniques compatible with industrial manufacturing processes. </div> <div><br /></div> <div>The researchers demonstrate that the spin-polarized current can be effectively communicated between the magnetic memory elements in different 2D graphene circuit architectures. They take advantage of extraordinary long-distance spin transport observed in commercially available wafer-scale CVD graphene with transport lengths exceeding 34 μm at room temperature. In addition, the researchers also demonstrate that by engineering the graphene channel geometry and orientation of spin polarization, the symmetric and antisymmetric spin precession signals can be tuned in a precise manner.</div> <div><br /></div> <div>This research at Chalmers is funded by the EU Graphene Flagship and the Swedish Research Council (VR).</div> <div><br /></div> <div>Illustration: Dmitrii Khokhriakov​<br /></div> <div>Photo of Saroj Prasad Dash: Oscar Mattsson</div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Read the article &quot;<a href="">Two-Dimensional Spintronic Circuit Architectures on Large Scale Graphene</a>&quot; &gt;&gt;&gt;</span></div>Wed, 12 Feb 2020 09:00:00 +0100 new steps as the Chalmers fence celebrates five years<p><b>​The Chalmers fence at the Gothenburg Horse Show 2020 measures the horse&#39;s jump curve, where the horse has its highest point in relation to the fence. As the Chalmers fence now celebrates its five-year anniversary, two new steps are taken – the technology used will for the first time be based on machine learning, and the previous measurement technology from the fence will move into the Swedish Equestrian Federation&#39;s educational facility Strömsholm.</b></p>​<span style="background-color:initial">The way a horse jumps over a fence differs between both individuals and equipage. Some horses jump off too early or too late, giving the highest point before or after the fence. In an optimal jump, the highest point is just above the fence, meaning the horse used just the right technique and amount of energy for its leap.</span><div><br /></div> <div><strong>First time with machine learning</strong><br /><span style="background-color:initial"></span><div>For this year's fence, the group of students will, for the first time ever, use the Image Processing technique, where a computer is trained through machine learning to detect the horse's hooves in a filmed leap and thereby calculate the coordinates for the highest position in the jump over the fence.</div> <div><br /></div> <div>“This involves some technical difficulties. In previous years, the Chalmers fence has measured one variable at a time. We are measuring both the highest point in a vertical path from the ground, and where that point relates to the fence in a horizontal direction,” says Anna Skötte, student and project manager for the Chalmers fence 2020.</div> <div><br /></div> <div>The Chalmers fence project is run by Chalmers students in collaboration with Gothenburg Horse Show, with the aim of using new smart technology to broaden the knowledge of the horses' jumping technique and thereby provide scientific evidence for sustainable training and competition of horses, as well as breeding. Like last year, the competing riders in the Gothenburg Horse Show are invited to the Chalmers exhibition stand in Scandinavium's foyer to see their own measuring results.</div> <div><br /></div> <div><strong>Swedish Equestrian Federation will use the technology​</strong></div> <div>The Chalmers fence project takes yet another new and important step as the combined experience from five years of measurements at the Gothenburg Horse Show will moves into the Swedish Equestrian Federation's riding house Strömsholm. The national team leaders in the Equestrian Association Federation have made a wish list for more developed scientific technology, and Chalmers University of Technology has been asked to engage, together with the Swedish University of Agricultural Sciences and the National Horse Industry, and further develop the connected riding house at Strömsholm and supplement with cameras and sensors for biomechanics, among other things.</div> <div><br /></div> <div><strong>What does this collaboration mean for the equine industry and equestrian sports in Sweden?</strong></div> <div>“In the horse world we have a lot of commonly accepted truths that we have not been able to test scientifically. With this collaboration we have that opportunity, so from now on it is only our imagination that sets boundaries,” says Tomas Torgersen, competition manager for the Gothenburg Horse Show.</div> <div><br /></div> <div>Daniel Svensson is the head teacher in horse jumping at the Strömsholm Riding School and one of the driving forces behind the collaboration with Chalmers University of Technology.</div> <div><br /></div> <div><strong>What do you hope Chalmers will contribute to the development of Strömsholm's riding house?</strong></div> <div>“Just like national teams in other sports scientifically analyse how they can change their training and achieve better results, we need to examine how the horse behaves, what the riders do and how it affects the horses. Chalmers has developed scientific technology and methods for several years, and we want to share the experience, instead of reinventing the wheel, to investigate what is most favourable to the horse and give the best results in competition,” says Daniel Svensson.</div> <div><br /></div> <div>With the project &quot;<a href="/en/centres/sportstechnology/education/Pages/Tracks-course-Chalmers-Fence.aspx" title="Link to information at">The continuation of the Chalmers fence</a>&quot;, which is part of Chalmers’ new<a href="/en/news/Pages/Tracks-prepares-students-for-the-future.aspx" title="Link to article about Tracks"> educational initiative Tracks</a>, students from different disciplines will continue to develop both new and existing techniques for horse welfare and performance.</div> <div><br /></div> <div><span></span><strong>What significance does the collaboration with Strömsholm have for Chalmers?</strong><span style="font-weight:700"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/MagnusKarlsteen_180130_270x170.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:10px 15px" /></span><strong><br /></strong><span style="background-color:initial">“This means that the technology demo</span><span style="background-color:initial">nstrated at the Gothenburg Horse Show through the Chalmers fence is further developed and given the opportunity to reach into the horse world via Strömsholm. In addition, Chalmers students and alumni will be involved in developing technology that can change equestrian sports at the highest level, in collaboration with people and horses at one of Sweden's finest equestrian facilities, and also at a later stage make the technology available to the ordinary rider,” says Magnus Karlsteen, responsible for the Chalmers fence and Chalmers equestrian sports.</span><strong><br /></strong></div> <div><br /></div></div> <div>Text: Helena Österling af Wåhlberg</div> <div>Photo: Johan Bodell/Mia Halleröd Palmgren/Chalmers</div>Wed, 12 Feb 2020 07:00:00 +0100 opportunities for materials research at Chalmers<p><b>The Swedish Foundation for Strategic Research (SSF) has decided to extend the funding of the SwedNess research school by 100 million SEK until 2025.</b></p><div><div><span></span><span style="background-color:initial"></span><span style="background-color:initial">SwedNess is a graduate school for neutron scattering operated by six Swedish Universities, including Chalmers.</span><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The goal is to educate 20 doctoral students as a base for Sweden's expertise in neutron scattering with respect to the research infrastructure European Spalliation Source (ESS) being built outside Lund right now. </span><br /></div> <div><br /></div> <img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Jan%20Swenson.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;height:100px;width:100px" /><div>&quot;It is important to strengthen the competence in neutron scattering at Chalmers in order to remain successful in materials research and to benefit from ESS,&quot; says Professor Jan Swenson at the Department of Physics at Chalmers, who is SwedNess'  Director of Studies at Chalmers.  </div></div> <div><br /></div> <div><br /></div> <div><a href="/sv/institutioner/fysik/nyheter/Sidor/Nya-mojligheter-for-materialforskningen-pa-Chalmers.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Read a longer article on Chalmers' Swedish homepage. </a></div> <div><br /></div> <div><a href=""><span><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /></span>Read more about SwedNess. ​</a></div> <div></div>Fri, 07 Feb 2020 00:00:00 +0100 for nominations: Gothenburg Lise Meitner award 2020<p><b>​The Gothenburg Physics Centre (GPC) is seeking nominations for the 2020 Gothenburg Lise Meitner Award.  Nominations are due on Monday, 2 March, 2020.​​</b></p>​​The Lise Meitner award honors exceptional individuals for a “<em>groundbreaking discovery in physics</em>”.  <br />In addition to their scientific accomplishments, the candidates must meet the following selection criteria:<br /><ul><li>They have distinguished themselves through public activities of popularizing science and are prepared to deliver the annual Lise Meitner Lecture (middle of September).</li> <li>Their research activity is connected to or benefit activities at GPC.<br /></li></ul> Nominations should include a motivation describing the achievements of the candidate, a short biography/CV, contact details and a local contact person. <br /><br />We would also like to thank those of you who did make an effort to nominate a candidate in the past! In case your nomination has not been chosen, we encourage you to submit her or his name again. As the number of nominations has declined in recent years, we <span style="font-weight:700">strongly </span>encourage all members of GPC to nominate a candidate! Please think broadly! There are certainly outstanding candidates you either know personally or whom you would like to come here to Gothenburg.  ​<br /><br />Nominations should be sent to any member of the of the Lise Meitner Award Committee 2020: <br /><br />Dinko Chakarov <a href=""></a> <br />Hans Nordman <a href=""></a><br />Vitali Zhaunerchyk<a href="">​</a><br />Vitaly Shumeiko <a href="">​</a><br />Andreas Heinz (Chair) <a href=""></a><br /><a href=""></a><br /><a href="/en/centres/gpc/activities/lisemeitner"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />More information about Lise Meitner and the award can be found at the GPC website</a><br /><br />With best regards,<br /><br />The 2020 Lise Meitner Committee​Wed, 29 Jan 2020 07:00:00 +0100 distributions can be a new power source<p><b>​​Researchers from Chalmers, Universidad Autónoma de Madrid, Université Grenoble Alpes and CNRS, show that non-equilibrium distributions can be a new power source. &quot;It is very appealing to think that we might be able to take such a distribution as a resource, and recycle it for power production&quot;, says Janine Splettstößer, professor in theoretical physics at the Applied Quantum Physics Laboratory (AQP) at the Department of Microtechnology and Nanoscience – MC2.</b></p><div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/MC2/News/janine_350x305.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px" />Non-equilibrium distributions of states are all around us, and are often generated as an unwanted by-product of some physical process. In the article &quot;Nonequilibrium System as a Demon&quot;, recently published in the scientific journal Physical Review Letters, the researchers find that such distributions can be a new power source.</span><br /></div> <div>&quot;They generate a paradoxical effect similar to a &quot;Maxwell demon&quot;, whereby they reduce another system's entropy at no apparent cost, suggesting that perpetual motion is possible&quot;, says Janine Splettstößer (to the left).</div> <div>The researchers call this a &quot;N-demon&quot; (with the &quot;N&quot; for non-equilibrium). </div> <div><br /></div> <div>Maxwell's demon is a thought experiment created by the physicist James Clerk Maxwell in 1867 in which he suggested how the second law of thermodynamics might hypothetically be violated. In 1982, the physicist Charles H Bennett showed that the paradox of the Maxwell demon was resolved by treating information as a thermodynamic resource like heat or work.</div> <div>&quot;Similarly, we resolve the paradox of the N-demon by treating &quot;non-equilibrium&quot; as a thermodynamic resource, which is used up as it reduces another system's entropy. This forbids the building of a perpetual motion machine, but does allow us to propose devices that use such resources (in particular non-equilibrium distributions of <span style="background-color:initial">electrons or photons) to generate more power than is conventionally believed possible&quot;, explains Janine Splettstößer.</span></div> <div><br /></div> <div>Her co-authors are Rafael Sánchez, Universidad Autónoma de Madrid, Spain, and Robert S Whitney, Université Grenoble Alpes and CNRS in France.</div> <div><br /></div> <div>Text and photo: Michael Nystås</div> <div>Illustration: Janine <span style="background-color:initial">Splettstößer</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">Read the article &quot;Nonequilibrium System as a Demon&quot; in Physical Review Letters &gt;&gt;&gt;</span><br /></div> <div>Rafael Sánchez, Janine Splettstoesser, Robert S. Whitney: <a href="">Nonequilibrium System as a Demon​</a>. Phys. Rev. Lett. 123, 216801 (2019)</div> <div><br /></div> <div><a href="">Read more about Maxwell's demon</a> &gt;&gt;&gt;</div>Mon, 13 Jan 2020 09:00:00 +0100 extension as Wallenberg Academy Fellow<p><b>​Janine Splettstößer, professor of theoretical physics at the Applied Quantum Physics Laboratory (AQP) at the Department of Microtechnology and Nanoscience – MC2, has got a five-year extension of her ongoing Wallenberg Academy Fellow appointment. &quot;I am of course extremely happy about this –​ it’s a great honour!&quot;, she says. ​</b></p><div><span style="background-color:initial">When Janine Splettstößer was appointed as a fellow in 2013, she was the first at MC2, although she belonged to another university at the time of her application. She came to Chalmers in the end of 2013 and has been here since then.</span><br /></div> <div>&quot;Since I have moved here, I have built up my group at the AQP. We have mostly been working on dynamics of time-dependent transport in nano electronic systems, but have moved more and more in the direction of quantum thermodynamics, which is also the topic of the proposal for the extension grant. Since I have arrived here, the first three PhD students have graduated and also some Master students and Postdocs have been part of my group. Some new people will join the group in the coming months&quot;, Janine tells us.</div> <div><br /></div> <div>The extension means five more years to spend on her research. As a fellow, Janine Splettstößer plans to work on a project which deals with the thermodynamics of nanoscale systems. </div> <div>&quot;In particular, I am interested in non-equilibrium and quantum effects and how they can be exploited for possible future applications. For example, one might wonder whether certain non-equilibrium conditions make thermoelectric effects at the nanoscale more efficient.&quot;</div> <div><br /></div> <div>She and her group will work on a wide span of approaches: from developing theoretical methods, to proposing realistic devices and work in collaboration with experimentalists. </div> <div>&quot;I also hope to be able to extend local collaborations in this context. The new people joining my group might also be very helpful for this.&quot;<span style="background-color:initial"> </span></div> <h3 class="chalmersElement-H3">Has being an Academy Fellow opened any doors for you?</h3> <div>&quot;Absolutely! Since I had not worked in Sweden before, being an academy fellow was extremely helpful to meet people, have a mentor, regular meetings with scientists from different Universities and disciplines etc. But of course also the generous funding allowed me to build up a real group from the very beginning! So for me this was really a door-opener!&quot;, says Janine.</div> <div><br /></div> <div>Text and photo: Michael Nystås</div>Thu, 09 Jan 2020 09:00:00 +0100 breakthrough for quantum computers<p><b>​Researchers at Google have for the first time succeeded in solving a problem that is beyond the reach of a regular computer with a quantum computer. In just minutes, their quantum computer performed a computational task that, according to the researchers, would have taken more than ten thousand years for a powerful supercomputer. Göran Johansson, one of the leaders of Chalmers quantum computer project, sees this as a major milestone.</b></p><div><span style="background-color:initial"><strong>How did you feel when you heard of the news?</strong></span><br /></div> <div>“I felt very happy! I knew that Google's research team was starting to get results with their 53-qubit quantum computer Sycamore, but that they have now managed to get such good reliability in their operations that they can perform this kind of calculation – it's a fantastic breakthrough!”</div> <div><br /></div> <div><strong>What lies behind the breakthrough?</strong></div> <div>“Sycamore is quite similar to Google's previous quantum computers in its structure. The breakthrough rather results from careful design of the hardware and software used to control the chip and a thorough analysis of which computational task to choose.”</div> <div><br /></div> <div><strong>Does this mean that quantum computers now outperform regular computers in general?</strong></div> <div>“No, absolutely not. The research team has shown that their quantum computer can solve a single calculation task better than a regular computer. The solved task is completely useless, it was chosen solely because it was judged to be easy to solve for a quantum computer but very difficult for a conventional one. But as quantum computers evolve, they will outperform conventional computers in more and more types of tasks.”</div> <div><br /></div> <div><strong>IBM criticizes Google’s calculations and states that their best supercomputer could solve the task in less than three days. What do you think about that?</strong></div> <div>“If that is the case, it would still be the first time a quantum computer performs something that requires the full capacity of the world's largest supercomputer, for almost three whole days, to reproduce. Whether it's ten thousand years or three days, I see the achievement of Google’s team as a very important step forward.”</div> <div><br /></div> <div><strong>What does this breakthrough mean to Chalmers quantum computer project?</strong></div> <div>“We are aiming for a quantum computer with one hundred well-functioning qubits, and Google has now shown that it is possible to create over fifty qubits that operate at over 99 percent reliability. It is incredibly inspiring and motivating!”</div> <div><br /></div> <div><strong>How does your quantum computer compare to Google’s?</strong></div> <div>“We use the same basic building blocks – superconducting circuits – as Google. So far, we are working, completely according to our plan, with a chip with only two qubits. Our strategy is to first get it to work really, really well on a small scale. For example, Google's qubits have an average lifetime of 16 microseconds, while we have over 80 microseconds. The longer the lifetime, the more computational operations you can do. On the other hand, Google has managed to reach significantly faster operations than we have, but we are working at getting really good at that as well. Then we will start to scale up in fairly large steps.”</div> <div><br /></div> <div><strong>What will be the next milestone in the development of quantum computers?</strong></div> <div>“Finding a useful problem that is beyond the reach of ordinary computers, but which a quantum computer with fifty to a hundred qubits can solve. We work intensively on this in collaboration with our industry partners. Probably, it will be within logistics or simulation of large molecules.”</div> <div><br /></div> <div>Text: Ingela Roos</div> <div>Photo: Johan Bodell</div> <div><br /></div> <div>The article has previously been published in Swedish in Chalmers magasin #2 2019</div> <div><br /></div> <div><a href="/en/centres/wacqt">Read more about Wallenberg Centre for Quantum Technology​</a> &gt;&gt;&gt;</div>Wed, 18 Dec 2019 09:00:00 +0100 bolometer with ultimate sensitivity created for the first time<p><b>​Researchers at Chalmers University of Technology have managed to create the first cold-electron bolometer in the world with ultimate sensitivity due to an effective on-chip self-cooling. The results were recently published in the scientific journal Communications Physics of Nature group.​</b></p><div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/MC2/News/lkuzmin_350x305.jpg" alt="Photo of Leonid Kuzmin." class="chalmersPosition-FloatRight" style="margin:5px" /></span></div> <div><span style="background-color:initial">Superconducting bolometers are widely used for balloon and space missions and have seen extensive development because of their capacity to test primordial conditions of the Universe. The major improvements consist in lowering the operating temperature to reach higher sensitivities.</span><br /></div> <div>“The big difference between our cold-electron bolometer with an effective self-cooling and other types, is that the latter ones require cooling of the entire sample. Our technology can significantly reduce the cost of future space missions because we can avoid dilution refrigerators”, says Leonid Kuzmin (to the right), professor at the Quantum Device Physics Laboratory at the Department of Microtechnology and Nanoscience – MC2, and main author of the paper.</div> <div><br /></div> <div>In their study, the researchers show that an array of 192 cold-electron bolometers demonstrates photon-noise-limited operation at the cryostat temperature of 310 millikelvin (mK) due to effective self-cooling of the absorber. </div> <div>“This bolometer works at electron temperature less than phonon temperature, thus being a good candidate for future space missions without the use of complicated dilution refrigerators that can’t normally work in space due to absence of gravity”, says Leonid Kuzmin.</div> <div><br /></div> <div>He describes the research as a four-step-process which led to the invention of a bolometer that operates at an electron temperature that is less than the phonon temperature. Attempts and failures along the way stimulated the team to even more intensive thinking for better decisions and suggestions.</div> <div>“As a result, the optimal decision in Step 4 has been found. Instead of a ‘six-legged cuttlefish’, which turned out to be too complicated, the two-legged cold-electron bolometer with only one pair of SIN tunnel junctions was invented”, says Leonid Kuzmin.</div> <div><br /></div> <div>The study suggests that such cold-electron bolometers with internal self-cooling are potential candidates for advanced radio astronomy projects that must avoid dilution refrigerators. </div> <div>“This can solve the main problem of the COrE space mission that was not accepted by the European Space Agency due to necessity to find a compromise between sensitivity, cryogenics and cost. We can develop arrays of cold-electron bolometers practically for any frequency range achieving ultimate sensitivity at 300 mK without dilution refrigerator”, says Leonid Kuzmin.</div> <div><br /></div> <div>The research was a collaboration between Chalmers University of Technology, Nizhny Novgorod State Technical University, Institute for Physics of Microstructures of RAS in Nizhny Novgorod, Russia, and Dipartimento di Fisica, Universita La Sapienza in Rome, Italy.</div> <div><br /></div> <div>The paper has already earned wide interest in the science community, with more than 2 000 accesses. </div> <div><br /></div> <div>Text: Michael Nystås</div> <div>Photo of Leonid Kuzmin: Private</div> <div>Illustration: Leonid Kuzmin</div> <div><br /></div> <div>Contact:</div> <div>Leonid Kuzmin, Professor, Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden, +46 31 772 36 08,</div> <div></div> <div><br /></div> <div><a href="">Read the article “Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for high-performance cosmology missions”</a> &gt;&gt;&gt;<span style="background-color:initial"> </span></div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/lkuzmin_cover_CommPhys_660x330.jpg" alt="Picture of frontcover from journal." style="margin:5px" /><br /><a href="">The findings were also highlighted on the cover of Nature Communications Physics</a><span style="background-color:initial"> &gt;&gt;&gt;</span><span style="background-color:initial"> </span><br /></div> <div><br /></div> <div><a href="">Read a behind-the-paper blog post of Leonid Kuzmin, “Story of the Invention of a Cold-Electron Bolometer”</a> &gt;&gt;&gt;</div> <div><br /></div> <div><strong>Two more papers about Cold Electron Bolometers were selected as &quot;featured article of the issue&quot; of Superconductor Science and Technology in 2019 &gt;&gt;&gt;</strong></div> <div><a href="">Multichroic seashell antenna with internal filters by resonant slots and cold-electron bolometers</a></div> <div><a href="">Absorption and cross-talk in a multipixel receiving system with cold electron bolometers</a></div>Mon, 16 Dec 2019 09:00:00 +0100 Magnetic Graphene in 2D Hybrid Devices<p><b>Researchers at Chalmers University of Technology have found that graphene can be made magnetic when placed in proximity with a layered insulating magnetic material in a van der Waals heterostructure. The findings were recently published in the scientific journal 2D Materials.​</b></p><div><span style="background-color:initial">After graphene, various 2D materials of semiconducting and magnetic properties, among others, were discovered down to one-atom-thick layers. This opened plethora of opportunities for engineering heterostructures by combining the best of different 2D materials in one ultimate unit with different layers held together by weak van der Waals forces.</span><br /></div> <div><br /></div> <div>Here, Bogdan Karpiak, PhD student at the Quantum Device Physics Laboratory at the Department of Microtechnology and Nanoscience – MC2, assemble van der Waals heterostructures of the graphene and layered ferromagnetic insulator Cr2Ge2Te6. The choice of such a ferromagnet is motivated by its layered structure, insulating behavior, perpendicular magnetic anisotropy, and is expected to induce a magnetic exchange interaction in graphene in the heterostructure of the two materials. </div> <div><br /></div> <div>The researchers' measurements show an out-of-plane proximity-induced ferromagnetic exchange interaction in graphene, resulting in significant modification of the spin transport and dynamics in graphene. Furthermore, the observation of a larger lifetime for perpendicular spins in comparison to the in-plane counterpart suggests the creation of a proximity-induced anisotropic spin texture in graphene.</div> <div><br /></div> <div>&quot;This finding will open opportunities for the realization of proximity-induced magnetic interactions and spin-polarized filters in two-dimensional (2D) material heterostructure and can form the basic building blocks for future spintronics and topological quantum technologies&quot;, says Saroj Dash, associate professor and group leader at the Quantum Device Physics laboratory, and supervisor of the work. </div> <div><br /></div> <div>The article combines device fabrication and spin transport measurements in the Saroj Dash Group at Chalmers, magnetization measurements by Peter Svedlindh at Uppsala University, and theory calculation from the Jaroslav Fabian Group at University of Regensburg, Germany and the Stephan Roche Group at ICN2, Barcelona, Spain. This research at Chalmers is funded by the Graphene Flagship and the Swedish Research Council (VR).</div> <div><br /></div> <div><a href="">Read the article &quot;Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene&quot;</a> &gt;&gt;&gt;</div>Wed, 11 Dec 2019 09:00:00 +0100 researcher gets major grant from The European Research Council<p><b>​Åsa Haglund, Professor at the Photonics Laboratory at MC2, has been awarded a Consolidator Grant from the European Research Council. &quot;This is the best Christmas present you can receive as a researcher and I am truly honored to be awarded with this prestigious grant. This is the beginning of something big&quot;, she says.</b></p><div><span style="background-color:initial">The ERC Consolidator Grant is one of the finest personal research grants available from the European Research Council (ERC). Competition is razor sharp. Åsa Haglund is one of only ten Swedish researchers and one of only two at Chalmers who receives the award. Of the 2 453 applicants from all over Europe, only 301 were successful in this round. They were granted a total of 600 million euro.</span><br /></div> <div><br /></div> <div>Åsa Haglund receives around 2 million euro to lead the five-year project &quot;Out of the blue: membrane-based microcavity lasers from the blue to the ultraviolet wavelength regime&quot; or in short &quot;UV-LASE&quot;. </div> <div>&quot;It feels fantastic of course! This will allow me to strengthen my team, concentrate on research and invest in more high-risk ideas that will hopefully pay off in the long run. A necessity if we are going to realize our dream that is now also a project goal; the demonstration of an electrically driven ultraviolet-emitting vertical-cavity surface-emitting laser&quot;, she says.</div> <div><br /></div> <div>Her project is focused on pushing the wavelength of microcavity lasers really into the ultraviolet. </div> <div>&quot;Our approach is based upon a unique membrane technique we have developed over the past three years to enable vertical cavity lasers with highly reflective dielectric mirrors on both sides of the cavity – a device concept previously un-realizable for UV-lasers. Once realized these lasers would be of interest for a wide range of applications such as water purification, photolithography, enhancing health-promoting substances in plants, gas sensing, medical diagnostics and treatments, and UV curing&quot;, Åsa Haglund explains.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/ahaglund_191129_11_350x305.jpg" alt="Photo of Åsa Haglund." class="chalmersPosition-FloatRight" style="margin:5px" />But at first, she didn't plan to apply for the grant at all. She tells us that she was uncertain about having the time to deliver an application strong enough to be successful in the harsh competition. In the end, Peter Andrekson, head of the Photonics Laboratory, managed to convince her:</div> <div>&quot;Reprioritize! he said, which I managed to do despite the fact that my daughter got the stomach flue in this period! Luckily, this was the most fun application I have written so far. Thanks to my great team at Chalmers and our excellent collaborators, in particular in the group of professor Michael Kneissl and Tim Wernicke at TU Berlin in Germany, I had a lot of exciting and promising results to put into the application&quot;, Åsa tells us.</div> <div><br /></div> <div>The ERC has high demands on its applicants. They have to undergo a serious evaluation process including an interview at the ERC headquarter in Brussels. There, they are given two slides and 5 minutes sharp to present their research proposal and themselves, followed by a 20 minutes question session by the reviewers. Åsa tells us about nervous candidates returning from their interviews with a look of resignation on their faces.</div> <div>&quot;This is a very stressful event, and maybe even more so before the interview when many candidates are waiting in the same room for about two hours for their turn. But I really enjoyed the interview! I was given the opportunity to describe my research project and respond to a lot of relevant questions posted by the reviewers. Many of these questions were in fact the same as those my colleagues at Chalmers had posed to me at my mock-up interview. Normally when you apply for funding you are never given the opportunity to explain things that might be misinterpreted in the application nor to oppose the criticism and explain your point of view. In my opinion this is an important part of a thorough evaluation process.&quot;</div> <div><br /></div> <div>Åsa Haglund is in good company at MC2. Her laboratory has been successful in getting ERC Grants, Åsa Haglund is the third grant holder from Photonics in recent years.</div> <div>&quot;I believe this is the best Christmas present you can receive as a researcher and I am truly honored to be awarded with this prestigious grant&quot;, says Åsa.</div> <div>She continues:</div> <div>&quot;As a side note, when I checked into the hotel the day before my interview in Brussel there was a note book on the desk with the following statement &quot;This may be the beginning of something big (or just some bad handwriting)&quot;. For me, being awarded with an ERC Consolidator grant is indeed the beginning of something big. Now I have the opportunity to focus on research for five years with the aim to realize a dream – the demonstration of an electrically driven ultraviolet-emitting vertical-cavity surface-emitting laser.&quot; </div> <div><br /></div> <div>Åsa Haglund is one of the most talented and successful young researchers at MC2. She got her PhD from Chalmers in 2005. In 2012 she was able to start her own group when she was awarded with a young researcher grant from The Swedish Research Council (VR). And as late as 2018, she got a consolidator grant from the same council.</div> <div><br /></div> <div>Besides Åsa, Fredrik Westerlund, Professor at the Department of Biology and Biology Engineering, managed to get an ERC Consolidator Grant in this round.</div> <div><br /></div> <div>Text: Michael Nystås</div> <div>Photo: Johan Bodell</div> <div><br /></div> <div><a href="">Read pressrelease from ERC​</a> &gt;&gt;&gt;</div> <div><br /></div> <div><a href="">Read more about the ERC Consolidator Grant</a> &gt;&gt;&gt;</div> <div><br /></div> <div><a href="/en/departments/bio/news/Pages/ERC-grant-for-next-generation-DNA-repair-analysis.aspx">Read interview with Fredrik Westerlund who also recieved an ERC Consolidator Grant​</a> &gt;&gt;&gt;</div>Tue, 10 Dec 2019 00:00:00 +0100 the algorithms that are crucial for nuclear reactor modelling<p><b>Chalmers Professor and reactor physicist Christophe Demazière is worried about the fact that nuclear engineering educational programmes are being phased out at universities throughout Europe.  Recently he released a book on nuclear reactor modelling. It describes the methods and algorithms used for representing, with computer models, the behaviour of such systems, and their multi-physics and multi-scale aspects. ​</b></p>​<img src="/SiteCollectionImages/Institutioner/F/350x305/Christophe%20Demazire350x305.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><span style="background-color:initial">“</span>There is a real danger that the society cannot maintain a sufficient level of knowledge and expertise for the more than 100 nuclear reactors operating in Europe and providing more than 25 percent of the electricity. One of the pillars of nuclear power safety relies on the demonstration that the system remains controllable under postulated scenarios. This demonstration heavily depends on numerical simulations. It is thus essential that the analysts and engineers using such tools are fully aware of the algorithms on which these tools are built, and their limitations,” says Christophe Demazière, who has more than 20 years of experience in nuclear reactor modelling. <div><h2 class="chalmersElement-H2">New pedagogical approaches</h2> <div><div>He describes the book as an accessible and pedagogical guide to the advanced methods used to model nuclear reactor systems. It also includes more than 70 short lectures summarizing the main concepts and related quizzes the readers can train on. </div> <div>“The video lectures and the quizzes represent a new pedagogical concept – to help the reader building a conceptual understanding of the topics. The recorded lectures are meant to extract the main features of each topic covered, the details being presented in the book. The quizzes ensure that the reader comprehends the subject and process it exercising high-order thinking skills. Feedback and additional information are also provided to the reader when answering the quizzes.”</div></div> <div><h2 class="chalmersElement-H2">Presenting the big picture ​</h2></div> <div>​<span style="background-color:initial">Beyond the new pedagogical approaches, the book has also some unique features content wise. </span></div> <div> <div>“In my own education, I had the feeling that the knowledge provided in terms of modelling was very fragmented and scattered, focusing on some specific methods without clearly explaining the relation between those and the overall modelling of such complex systems. <span style="background-color:initial">T</span><span style="background-color:initial">he main purpose of the book is to provide an overview of all important aspects of nuclear reactor modelling, during normal and abnormal situations not leading to core damage.&quot;</span></div> <div><span style="background-color:initial">The book is written with a holistic approach to the subject, presenting the big picture before focusing on the details. Furthermore, since nuclear reactors are by essence multi-physics systems, several interdependent fields of physics need to be simultaneously modelled in order to properly describe the behaviour of such systems. </span><br /></div> <div>&quot;Until recently, the modelling of such systems was carried out in a mono-physics mindset by different “scientific communities”, each community having its own paradigms, the coupling with the other physics being introduced artificially or in simplistic terms. I really wanted to break this conservatism in the approach to nuclear reactor modelling, so that the students are equally knowledgeable in all fields that are important and relevant from a modelling viewpoint.” <span style="background-color:initial">​</span></div></div> <h2 class="chalmersElement-H2">Built on feedback from students</h2> <div>Christophe Demazière has written the book with the reader’s experience in focus, capitalizing on feedback given by his students while teaching this subject at Chalmers for more than ten years. Now he hopes that master’s and PhD students as well as experts in the field will find the book, the videos and the quizzes useful and interesting. Careful attention was paid, while preparing the book and its digital resources, to enriching the reader’s experience.​</div> <div><br /></div> <div> “In addition to get the overall picture of the modelling of nuclear reactors, the algorithms detailed in the book are derived from scratch and the introduced approximations are thus clearly stated. With the increased complexity of the simulation software used these days, the analysts and engineers tend to use the modelling tools as “black boxes” without clearly knowing the underlying principles and assumptions used. I wanted to make the readers of the book fully aware of the methods and approximations, so that they can use the tools with confidence, in the range of validity the tools and methods were developed for.”<span style="background-color:initial"> </span></div> <h2 class="chalmersElement-H2">Sharing the true marvel of nuclear reactor modelling</h2> <div><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Modelling%20algorithms_webb.jpg" class="chalmersPosition-FloatRight" alt="" style="background-color:initial" /><div>Christophe Demazière arranges courses and workshops in nuclear reactor modelling on a regular basis. Besides the nuclear power safety aspects, he also enjoys inspiring others by sharing his enthusiasm in modelling these complex systems. </div> <div><br /></div> <div>&quot;The modelling of nuclear reactor systems is something that always fascinated me, and especially how to represent the behavior of neutrons (having a femto-metre size) in a strongly heterogeneous system of several meters in size. Moreover, with the interplay existing between the heat produced by fission, the cooling of the reactor, and the corresponding influence on the distribution of neutrons, being able to faithfully represent the behavior of such systems requires a lot of ingenuity. This is especially true when considering the development of modelling techniques that are affordable in computing time. Whereas the book focuses more on conceptual understanding, the workshops target hands-training exercises and more active forms of learning. More specifically, the students have to develop and implement from scratch some of the methods described in the book for modelling a nuclear reactor. With the workshops, I really want the students to understand the true marvel of the computing methods and be aware of the limitations of the codes they have been developing, using or will use in their career. In the forthcoming workshops that I will organize, I will heavily rely on the book, videos and quizzes, as a way for the students to get prepared to such workshops in an efficient manner.”<span style="background-color:initial">​</span></div></div> <div></div> <div><br /></div> <div><strong>Text and photo:</strong> Mia Halleröd Palmgren, <a href=""></a></div> <div><br /></div> <div><a href=""><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read more about the book &quot;<span style="background-color:initial">Modelling of Nuclear Reactor Multi-physics – </span><span style="background-color:initial">From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics&quot;</span></a></div> <div><br /></div> <div><a href=""><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" /><span style="background-color:initial">Read a portrait of Christophe Demazière: &quot;</span><span style="background-color:initial">Reactor physicist passionate about pedagogy and nuclear safety</span></a><span style="background-color:initial"><a href="">​&quot;<br /></a></span></div></div> <div><span style="background-color:initial"><a href=""><br /></a></span></div> <div><h2 class="chalmersElement-H2" style="font-family:&quot;open sans&quot;, sans-serif">For more information, contact:  </h2> <div><a href="/sv/personal/Sidor/Christophe-Demazière.aspx">Christophe Demazière​</a>, Professor, Department of Physics, Chalmers, +46 31 772 30 82, <span style="background-color:initial"><a href="">​​</a></span></div> <span style="background-color:initial"><a href=""></a></span></div>Tue, 10 Dec 2019 00:00:00 +0100 scientist becomes Wallenberg Academy Fellow<p><b>Witlef Wieczorek, Assistant Professor at the Quantum Technology Laboratory at MC2, has been honoured with a prestigious Wallenberg Academy Fellow assignment. &quot;It feels just great and I am overwhelmed by this decision and award,&quot; says Witlef.</b></p><div><div>The Wallenberg Academy Fellow is a five-year grant which provides young researchers with opportunities to make important scientific breakthroughs by providing long-term research funding in Sweden. Witlef Wieczorek is funded with 7.5 MSEK for the years 2020-2024 with a possibility to apply for five years extension after that.</div> <div>&quot;It feels just great and I am overwhelmed by this decision and award. The Wallenberg Academy Fellow means much to me as it provides me with the opportunity to pursue a long-term and challenging research project, here at Chalmers,&quot; he says.</div> <div><br /></div> <div>Witlef joined MC2 in 2017 as tenure-track Assistant Professor in the Excellence Initiative Nano. Since then, he built up a lab and a research group, whose focus lies on research with mechanical-based quantum devices.</div> <div> </div> <div>As a Wallenberg Academy Fellow, he will pursue his research project entitled &quot;Levitated superconducting mechanical resonators: a novel platform for quantum experiments and sensing&quot;.</div> <div>&quot;The big goal of the project is to prepare a micrometer-sized object in a spatial superposition state. Though superposition states are at the heart of the flourishing field of quantum technologies, such big objects have never been brought into such states.&quot;</div> <div>  </div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/Witlef%20december2019/witlef_puffbild_portratt_350x305_IMG_8291_adj.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:300px;height:260px" />Witlef gives us an example:</div> <div>&quot;Erwin Schrödinger, one of the founders of quantum mechanics, invented the gedankenexperiment of a cat being dead and alive at the same time. Though, such a state of a cat is in principle allowed by the laws of quantum mechanics, we have never observed superposed cats. The current record in superposition size is held by impressive experiments that observe the interference of large molecules. My project aims to superpose 10 million times heavier objects. This goal is ambitious! Therefore, we construct a novel experimental platform that should make this possible: levitated micrometer-sized superconducting objects that are coupled to superconducting circuitry,&quot; he explains.</div> <div> </div> <div>The Knut and Alice Wallenberg Foundation is announcing 29 new Wallenberg Academy Fellows on 3 December 2019. The underlying intention of this investment is to strengthen Sweden as a research nation by retaining the greatest talent in the country, while also recruiting young international researchers to Sweden.</div> <div>&quot;To make scientific breakthroughs, it is important to concentrate on your research for a long period and have good resources. Wallenberg Academy Fellows provides these conditions, and they are available during what could be the most creative phase of their research careers. They also have the opportunity to participate in a mentoring program, which helps boost their scientific leadership,&quot; says Göran K. Hansson, Secretary General of the Royal Swedish Academy of Sciences.</div> <div><br /></div> <div>Text and photo: Michael Nystås</div> <div><br /></div> <div><div>Read about Witlef Wieczorek's research in brief </div> <div><a href="" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Can Schrödinger’s cat weigh ten million times as much?​​</a></div> <div><br /></div> <div><div>Read pressrelease from The Knut and Alice Wallenberg Foundation</div> <div><a href="" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Twenty nine young researchers become Wallenberg Academy Fellows 2019​</a></div></div> <div><br /></div> <div><a href="" target="_blank"></a>Read more about the other two Chalmers researchers who received a research grant through the Wallenberg Adacemy Fellows: </div> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/New-Wallenberg-Academy-Fellow-2019.aspx" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Elin Esbjörner - </a><span style="background-color:initial;color:rgb(51, 51, 51)"><a href="/en/departments/bio/news/Pages/New-Wallenberg-Academy-Fellow-2019.aspx" target="_blank">New Wallenberg Academy Fellow seeks to prevent neurodegenerative disorders</a></span></p> <p class="chalmersElement-P"><a href="/en/departments/math/news/Pages/The-mathematics-of-shape-is-addressed-by-new-Wallenberg-Academy-Fellow.aspx" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Klas Modin - The mathematics of shape is addressed by new Wallenberg Academy Fellow</a><br /></p></div> <div><br /></div> <div>Read an interview from January 2018 with Witlef Wieczorek</div> <div><a href="/en/departments/mc2/news/Pages/Setting-up-a-new-laboratory-for-mechanical-quantum-device-research.aspx" target="_blank" title="Setting-up-a-new-laboratory-for-mechanical-quantum-device-research"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />New laboratory for mechanical quantum device research</a></div> <div><br /></div></div>Tue, 03 Dec 2019 10:00:00 +0100 insights on protective oxide films in high temperature materials<p><b></b></p><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/oxid_colliander_750x.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;height:189px;width:300px" /><div>High temperature materials, such as superalloys and high temperature steels, are often employed in extreme conditions where they experience a combination of severe mechanical loads at elevated temperatures in the presence of a corrosive environment. <span style="background-color:initial">To operate  under such conditions these materials rely on the formation and integrity of a thin protective oxide scale, typically less than a micrometer in thickness. </span></div> <div><br /> Anand H S Iyer, Krystyna Stiller and Magnus Hörnqvist Colliander at the Department of Physics at Chalmers recently published new results on microscale fracture of chromia scales in the journal Materialia. </div> <div><br /></div> <div>In their paper they present a new micro-mechanical testing method, which has been shown to be highly effective in measuring the properties of these extremely thin oxide films. </div> <div><br /></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/anand_270x.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;width:170px;height:155px" />&quot;This allows the development of better models for understanding and predicting how and when the protective oxide scales will fail,&quot; says </span>Anand H S Iyer, Doctoral Student <span style="background-color:initial">at the Department of Physics at Chalmers and lead author of the scientific paper. </span></div> <div><br /></div> <div>The study was performed through a collaboration between the researchers at Chalmers and colleagues in Finland and Switzerland. </div> <div><br /></div> <div><br /></div> <div><span style="background-color:initial">Tex</span><span style="background-color:initial">t: Mia Halleröd Palmgren, </span><a href="">​</a><br /></div> <div><div><div></div></div> <div><br /></div> <div><span style="background-color:initial"><a href=""><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /></a></span><a href=""><span style="background-color:initial"><span>Read the paper </span>&quot;</span><span style="background-color:initial"><font color="#5b97bf"><b>Microscale fracture of chromia scales&quot;</b></font></span> in Materialia.​​</a></div></div> <div><br /></div> <h2 class="chalmersElement-H2">For more information, contact: </h2> <div><div><strong></strong><span style="background-color:initial"><strong><a href="/en/Staff/Pages/harihara.aspx">Anand H S Iyer</a></strong>, PhD Student, Department of Physics, Chalmers University of Technology, <a href=""></a>, +46 31 772 67 08</span></div> <div><span style="background-color:initial"><br /></span></div> <div><strong><a href="/en/staff/Pages/Krystyna-Marta-Stiller.aspx">Krystyna Stiller​</a></strong>, Professor, Department of Physics, Chalmers University of Technology, <a href=""></a>, +46 31 772 33 20</div> <div><br /></div> <div><strong><a href="/en/Staff/Pages/Magnus-Hörnqvist.aspx">Magnus Hörnqvist Colliander</a></strong>, Senior researcher, Department of Physics, Chalmers University of Technology<span></span>, <a href="">​</a>, +46 31 772 33 06</div></div>Thu, 21 Nov 2019 00:00:00 +0100 participants on the fourth Centre Day<p><b>​With around 130 participants, the fourth joint day of the GigaHertz Centre and ChaseOn also became a success. &quot;We gather Sweden&#39;s industry and academia in wireless research, probably the best in Sweden,&quot; says Jan Grahn, director of the GigaHertz Centre.</b></p><div><img src="/SiteCollectionImages/Institutioner/MC2/News/centreday_191106_IMG_8116_665x330.jpg" alt="Picture from Centre Day 2019." style="margin:5px" /><br /><span style="background-color:initial">It was a huge agenda in Palmstedtsalen in the student union building on 6 November. And Gustav Adolf's baking was of course a mandatory element in honor of the day. One new feature for this year was a &quot;poster flash presentation&quot; where all the poster exhibitors held an elevator presentation of about a minute about their respective posters.</span><br /></div> <div><br /></div> <div>A number of speakers from Chalmers, the business community, other educational institutions and organisations replaced each other on the stage. Particularly invited keynote speaker was Dr Thomas Merkle from Fraunhofer IAF in Freiburg, Germany. </div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/centreday_191106_IMG_8155_isab_toppbild_750x340.jpg" alt="Picture from Centre Day 2019." style="margin:5px" /><br /><span style="background-color:initial">For the first time, all members of the International Scientific Advisory Board (ISAB) were also gathered, from left to right Christoph ​Mecklenbräuker, TU Vienna, Riana Geschke, Fraunhofer FHR, Christophe Gaquière, Univ. de Lille, IEMN, and Wolfgang Heinrich, FBH, Berlin.</span><br /></div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/centreday_191106_wolfgang_IMG_7924_350x305.jpg" alt="Picture from Centre Day 2019." class="chalmersPosition-FloatRight" style="margin:5px" />Professor Heinrich also gave a speech explaining why wireless is an ever-present area:</div> <div>&quot;Microwaves are everywhere, even in space. If you want to communicate between galaxies, you can only use microwaves. If you are looking for extraterrestrial life - either human or not - you can only use... that's right! ... microwaves&quot;, he said among other things.</div> <div>He predicted a bright future:</div> <div>&quot;Our biggest challenge is to make millimeter waves 5g-compatible.&quot;</div> <div><br /></div> <div>The Centre Day was organized by the departments Microtechnology and Nanoscience - MC2, Electrical Engineering and Computer Science and Engineering. This year the GigaHertz Centre hosted the event.</div> <div>&quot;What is unique about these events is the high industrial participation with Chalmers researchers and students&quot;, says Jan Grahn.</div> <div><br /></div> <div>Text and photo: Michael Nystås</div> <div><span style="background-color:initial"> </span><br /></div> <div><a href="/en/centres/ghz">Read more about the GigaHertz Centre​</a><span style="background-color:initial"> &gt;&gt;&gt;</span><br /></div> <div><br /></div> <div><a href="/en/centres/chaseon">Read more about ChaseOn</a> &gt;&gt;&gt;<span style="background-color:initial">​</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/MC2/News/centreday_191106_IMG_8009_665x330.jpg" alt="Picture from Centre Day 2019." style="margin:5px" /><br /></span><em style="background-color:initial">Jan Grahn, head of the GigaHertz Centre, and Erik Ström, head of ChaseOn, were pleased with the Centre Day 2019.</em><span style="background-color:initial"><br /></span></div>Tue, 19 Nov 2019 10:00:00 +0100 are on the right track!<p><b>​​The first three Tracks students from Chalmers have been examined. Tilda Sikström, Elin Lorin and Pontus Ljungqvist held their final presentations at the arena Nya Ullevi in Gothenburg in the beginning of November in 2019.</b></p><div><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/tracks_examinerade750x.jpg" alt="" style="margin:5px" /><br /><br />The theme was the continuation of <a href="/en/news/Pages/This-year%27s-Chalmers-Fence-measure-the-horse%27s-speed.aspx">the Chalmers fence </a>and Associate Professor Magnus </div> <img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/MagnusKarlsteen_180130_270x170.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;height:107px;width:170px" /><span style="background-color:initial"></span><div>Karlsteen, <span style="background-color:initial">responsible for Chalmers horse sports venture</span><span style="background-color:initial">, was their examiner. </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">​The students' work received positive feedback from the organising team for the Gothenburg Horse show. The project, including measurement equipment for horse training, will therefore be further developed in a cooperation between Chalmers’ entrepreneur initiatives and the horse community.</span><br /></div> <div><br />Chalmers’ new educational initiative, Tracks, offers interdisciplinary and individualised studies. It will make students better prepared to solve future societal challenges, such as energy supply, transport and more efficient use of resources. <span></span><span style="background-color:initial">Tracks gives the students great opportunities to broaden their knowledge outside of their chosen main area.</span><span style="background-color:initial"> </span></div> <div><br /></div> <div>Text: Mia Halleröd Palmgren, <a href="">​</a></div> <div> </div> <div><a href="/en/news/Pages/Tracks-prepares-students-for-the-future.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Read an earlier news article about Tracks.</a><br /></div> <div><a href=""><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" /><span style="background-color:initial">Read more about Tracks – </span><span style="background-color:initial">one of the biggest investments in education in </span><span style="background-color:initial">Chalmers' history</span><span style="background-color:initial">. </span></a></div>Thu, 14 Nov 2019 00:00:00 +0100