Kursplan för Funktionalanalys

Kursplanen innehåller ändringar
Se ändringar

Kursplan fastställd 2021-02-26 av programansvarig (eller motsvarande).

Kursöversikt

  • Engelskt namnFunctional analysis
  • KurskodTMA401
  • Omfattning7,5 Högskolepoäng
  • ÄgareMPENM
  • UtbildningsnivåAvancerad nivå
  • HuvudområdeMatematik
  • InstitutionMATEMATISKA VETENSKAPER
  • BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd

Kurstillfälle 1

  • Undervisningsspråk Engelska
  • Anmälningskod 20112
  • Sökbar för utbytesstudenterJa

Poängfördelning

0101 Tentamen 7,5 hp
Betygsskala: TH
7,5 hp0 hp0 hp0 hp0 hp0 hp
  • 27 Okt 2021 fm J
  • 05 Jan 2022 fm J
  • 17 Aug 2022 em J

I program

Examinator

Gå till kurshemsidan (Öppnas i ny flik)

Behörighet

Grundläggande behörighet för avancerad nivå
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Särskild behörighet

Engelska 6
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Kursspecifika förkunskaper

Linjär algebra samt matematisk analys i en eller flera variabler.

Syfte

Kursen ger en inledning till funktionalanalys, som utgör ett fundamentalt verktyg inom bl a följande centrala områden av matematik och tillämpad matematik nämligen, ordinära och partiella differentialekvationer, matematisk statistik och numerisk analys.

Lärandemål (efter fullgjord kurs ska studenten kunna)

- Redogöra för begreppen vektorrum, normerat rum, Banachrum och Hilbertrum. - Redogöra för grundläggande teori för linjära operatorer på Hilbertrum och speciellt för kompakta och själadjungerade operatorer. - Använda spektralsatsen för kompakta, självadjungerade operatorer. - Tillämpa fixpunktssatser på differential- och integralekvationer. - Kommunicera de logiska sammanhangen mellan de i kursen förekommande begreppen i tal och skrift.

Innehåll

Vektorrum. Normerade rum. Banach- och Hilbertrum. Orientering om Lebesgueintegralen. Kontraktiva avbildningar. Fixpunktssatser. Kompakthet. Operatorer i Hilbertrum. Spektralteori för kompakta, självadjungerade operatorer. Fredholms alternativsats. Sturm-Liouvilleteori. Tillämpningar på differential- och integralekvationer.

Organisation

Se kursens webbsida.

Litteratur

L. Debnath/P. Mikusinski: Introduction to Hilbert Spaces with Applications, 2nd ed, Academic Press, 1999.

P. Kumlin: Lecture Notes  (se kursens webbsida)

Examination inklusive obligatoriska moment

Skriftlig tentamen.

Kursens examinator får examinera enstaka studenter på annat sätt än vad som anges ovan om särskilda skäl föreligger, till exempel om en student har ett beslut från Chalmers om pedagogiskt stöd på grund av funktionsnedsättning.

Kursplanen innehåller ändringar

  • Ändring gjord på tentamen:
    • 2022-04-23: Tentamensdatum Tentamensdatum ändrat av Elisabeth Eriksson
      [33631, 55822, 3], Ny tenta för läsår 2021/2022, ordinal 3 (ej nedlagd kurs)
    • 2021-08-31: Tentamensdatum Tentamensdatum ändrat av Elisabeth Eriksson
      [33631, 55822, 2], Ny tenta för läsår 2021/2022, ordinal 2 (ej nedlagd kurs)