Kursplan för Flervariabelanalys

Kursplan fastställd 2021-02-05 av programansvarig (eller motsvarande).

Kursöversikt

  • Engelskt namnMultivariable calculus
  • KurskodMVE270
  • Omfattning7,5 Högskolepoäng
  • ÄgareTKIEK
  • UtbildningsnivåGrundnivå
  • HuvudområdeMatematik
  • InstitutionMATEMATISKA VETENSKAPER
  • BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd

Kurstillfälle 1

  • Undervisningsspråk Svenska
  • Anmälningskod 51121
  • Max antal deltagare220
  • Sökbar för utbytesstudenterNej
  • Endast studenter med kurstillfället i programplan.

Poängfördelning

0108 Tentamen 7,5 hp
Betygsskala: TH
0 hp0 hp7,5 hp0 hp0 hp0 hp
  • 12 Mar 2022 fm J
  • 10 Jun 2022 fm J
  • 16 Aug 2022 em J

I program

Examinator

Gå till kurshemsidan (Öppnas i ny flik)

Behörighet

Grundläggande behörighet för grundnivå
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Särskild behörighet

Samma behörighet som det kursägande programmet.
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Kursspecifika förkunskaper

Kursen förutsätter kunskaper som svarar mot I-programmets kurser Matematisk analys i en variabel och Linjär algebra.

Syfte

Flervariabelanalysdelen skall ge den komplettering till kurserna Matematisk analys i en variabel och Linjär algebra som krävs för att man skall ha de baskunskaper i matematik som är gemensamma för många olika utbildningar, såväl nationellt som internationellt. För en stor del av de tillämpningar som bygger på matematik är kunskaper i flervariabelanalys en nödvändig bakgrund.

Lärandemål (efter fullgjord kurs ska studenten kunna)

I all matematik är terminologin ett viktigt moment för att man skall kunna kommunicera. I flervariabelanalysdelen skall man förutom att behärska den centrala terminologin och de centrala begreppen dels kunna behandla problem som gäller optimering av funktioner av flera variabler dels kunna tillämpa integraler av funktioner av flera variabler. Sådana tillämpningar förekommer naturligt i tekniska och statistiska sammanhang.

Innehåll

Först behandlas olika grafiska representationer som funktionsytor och nivåkurvor/ytor. Vidare generaliseras begreppen gränsvärde, kontinuitet och derivata till funktioner av flera variabler. Detta leder till studier av begrepp som gradient och riktningsderivata. Den både för teorin och tillämpningarna viktiga kedjeregeln generaliseras också till funktioner av flera variabler. För att kunna undersöka hur en funktion uppför sig i närheten av en punkt, studerar vi taylorutveckling. Med hjälp av denna och resultat från linjär algebra genomför vi sedan lokala extremvärdesundersökningar. Undersökningar av största och minsta värden är viktiga i olika ekonomiska tillämpningar. I kursen behandlas sådana med och utan bivillkor. För den första situationen används Lagranges multiplikatormetod. Multipelintegraler definieras och metoder för beräkning studeras, inklusive variabelsubstitution. Olika tillämpningar, främst fysikaliska och statistiska, betraktas.

Organisation

Undervisningen ges i första hand i form av föreläsningar samt lektioner i mindre grupper. Mer detaljerad information ges på kursens webbsida före kursstart

Litteratur

Kurslitteraturen anges på kursens hemsida i god tid före kursstart

Examination inklusive obligatoriska moment

Skriftlig examination

Kursens examinator får examinera enstaka studenter på annat sätt än vad som anges ovan om särskilda skäl föreligger, till exempel om en student har ett beslut från Chalmers om pedagogiskt stöd på grund av funktionsnedsättning.