News: Nanovetenskap och nanoteknikhttp://www.chalmers.se/sv/nyheterNews related to Chalmers University of TechnologyWed, 30 Nov 2022 05:13:08 +0100http://www.chalmers.se/sv/nyheterhttps://www.chalmers.se/en/news/Pages/Four-Chalmers-projects-receive-KAWs-project-grants-.aspxhttps://www.chalmers.se/en/news/Pages/Four-Chalmers-projects-receive-KAWs-project-grants-.aspxFour Chalmers projects receive KAW's project grants <p><b>​No less than four research projects at Chalmers are awarded SEK 109 million in project grants by the Knut and Alice Wallenberg Foundation (KAW). The projects are evaluated to be of such high quality that they can lead to future scientific breakthroughs. ​</b></p><p class="chalmersElement-P">​<span>Out of a total of 23 research projects Associate Professor Elin Esbjörner, Professor Tünde Fülöp, Professor Christian Müller and Associate Professor Witlef Wieczorek from Chalmers are awarded grants. </span></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">These projects are, following an international evaluation process, considered to have such high scientific potential that they could lead to future scientific breakthroughs. </span></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">&quot;The evaluations are based entirely on international competitiveness and are carried out by a handful of prominent researchers in each project's research area. We are delighted to see that there are so many projects in Sweden that maintain this quality and that more and more women are able to step forward as research leaders,&quot; says Siv Andersson, responsible for basic research issues at the<a href="https://kaw.wallenberg.org/en"> Foundation​</a>. </span></p> <div> </div> <h2 class="chalmersElement-H2"><span>Project: Nanochannel Microscopy for Single Exosome Analysis </span></h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Exosomes are ultrasmall biological packages that cells use to communicate. Exosomes are important for our bodies’ normal functions, but can also confer disease. This project aims to further our fundamental understanding of how exosomes mediate cell-cell communication. To accomplish this goal, new methodology is needed. </p> <div> </div> <p class="chalmersElement-P">In this project, we will therefore develop new microscopy methods and chip-based technologies, using tiny channels and traps to capture and analyse individual exosomes from biological specimen or cell models. This will provide new possibilities to obtain detailed information about the composition and content of different exosome types, which, if tied to their discrete function may open entirely new possibilities for how to use exosomes as diagnostic tools and future therapeutics, especially in the area of targeted delivery of protein- and RNA-based drugs. </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Grant: </strong>SEK 29,100,000 over five years </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Principal investigator:</strong> Associate Professor <a href="/en/staff/Pages/Elin-Esbjörner-Winters.aspx">Elin Esbjörner</a>, Department of Biology and Biological Engineering </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Co-applicants in the project: </strong>Fredrik Westerlund and Christoph Langhammer (Chalmers), Samir EL Anadloussi (Karolinska Institutet) and Giovanni Volpe (Göteborgs universitet)</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <h2 class="chalmersElement-H2">Project: Extreme Plasma Flares  </h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Plasma flares give rise to some of the most beautiful phenomena in the universe, such as the aurora borealis, but they can also cause damage to important technological infrastructure on ground or in space. However, it is still unknown what conditions are required to create eruptions with extremely strong energy flows. The project combines theoretical and experimental competences from both space and laboratory plasma physics to understand which combination of effects creates extreme flares. </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">A better understanding will lead to tools that can warn of such flares, so that sensitive equipment can be protected. But above all, the project will contribute to a basic understanding of some of the most fascinating phenomena in physics. </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Grant:</strong> SEK 26,200,000 over five years  </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Principal investigator: </strong>Professor <a href="/en/Staff/Pages/Tünde-Fülöp.aspx">Tünde Fülöp</a>, Department of Physics </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Co-applicants in the project:</strong> István Pusztai from the same department, Andris Vaivads from KTH Royal Institute of Technology, and Yuri Khotyaintsev from the Swedish Institute of Space Physics. </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <h2 class="chalmersElement-H2">Project: Developing stable and sustainable organic semiconductors  </h2> <p class="chalmersElement-P"><span style="background-color:initial">Orga</span><span style="background-color:initial">nic semiconductors can make the electronics we use more sustainable and provide us with new alternatives to silicon-based technology. This technology could be used in a lot of different areas and greatly improve our lives. For example, organic semiconductors can be used in bioelectronic sensors that can help us monitor our health and wellbeing. Other examples of urgent applications are technologies to capture energy such as organic solar cells. Both research and industry see great needs and opportunities in this area, provided that organic electronics can become more stable. </span></p> <p class="chalmersElement-P"><span style="background-color:initial">Within this project, the researchers will study doping of organic semiconductors. In particular, new insights related to glass-forming materials will be used to develop more stable organic electronics. </span></p> <p class="chalmersElement-P"><strong>Grant</strong>: SEK 27,000,000 over five years  </p> <p class="chalmersElement-P"><strong>Principal investigator:</strong> Professor <a href="/en/staff/Pages/Christian-Müller.aspx">Christian Müller</a>,  Department of Chemistry and Chemical Engineering, Chalmers   </p> <p class="chalmersElement-P"><span style="background-color:initial"><strong>Co-applicants in the project: </strong>Anna Martinelli and Eva Olsson from Chalmers, Simone Fabiano and Mats Fahlman from Linköping University  </span></p> <h2 class="chalmersElement-H2"><span>Project: Light strongly interacting with mechanical motion </span></h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">Scientists use light as a tool to acquire information about objects. This is also the case when laser light is shined onto a mirror. The reflected light field contains information about the mirror’s position. This measurement scheme is for example used in gravitational wave detectors. The information about the mirror’s position can be vastly increased by capturing the light between two mirrors, in so-called cavity optomechanical systems. These systems not only enable measuring the position of the mirror very precisely, but also controlling its motion, even to its quantum mechanical ground state. This has fascinated scientists as it allows exploring the validity of quantum physical laws for larger objects. The next major challenge in this research field is to increase the interaction between light and the motion of the mirror until it is possible to create quantum mechanical states of the mirror directly. </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The aim of this project is to reach the so-called nonlinear regime of quantum optomechanics in chip-based devices. Then, single light particles (photons) and the quantized motion of the mirror (phonons) are linked to each other in a controlled way. If one succeeds with this ambitious goal, one can, for instance, detect individual photons without destroying them and the quantum information that they carry. An important area of application of this ability lies in the field of quantum technology. For example, having access to the nonlinear regime could lead to the development of novel chip-based devices that can detect significantly smaller forces and displacements than what the most advanced technologies allow us to do today.<span> </span> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Grant: </strong>SEK 27,000,000 over five years </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Principal investigator:</strong> Associate Professor <a href="/en/staff/Pages/witlef-wieczorek.aspx">Witlef Wieczorek​</a>, Department of Microtechnology and Nanoscience (MC2)</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Co-applicants in the project:</strong> Andreas Isacsson and Philippe Tassin (Physics) and Janine Splettstoesser (MC2), and encompasses Chalmers' expertise in experiment, theory, and artificial intelligence. </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><strong>Read more: </strong><a href="https://kaw.wallenberg.org/en/research-projects-2022">KAW Research Projects 2022</a></p> <div> </div> <p class="chalmersElement-P"> ​</p>Fri, 14 Oct 2022 09:00:00 +0200https://www.chalmers.se/en/departments/mc2/news/Pages/Dmitrii-Khokhriakov-awarded-with-Arne-Sjögren's-Prize.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Dmitrii-Khokhriakov-awarded-with-Arne-Sj%C3%B6gren's-Prize.aspxDmitrii Khokhriakov awarded with Arne Sjögren's Prize<p><b>​Former MC2 PhD student Dmitrii Khokhriakov has been awarded with the 2021 Arne Sjögren’s Prize. Dmitrii Khokhriakov is the eighth recipient of the prize.“I am tremendously happy that my work has been so well received and recognized with this amazing prize,” he says.</b></p><div>​​Dmitrii Khokhriakov was awarded the prize for his thesis <a href="https://research.chalmers.se/en/publication/523817" target="_blank">“Graphene spin circuits and spin-orbit phenomena in van der Waals heterostructures with topological insulators”</a>. As a matter of fact, it is the second award that he receives for his thesis – earlier this year he was awarded the Graphene Center at Chalmers/2D-tech PhD Awards for 2021. </div> <div><br /></div> <div> </div> <div><img src="/sv/institutioner/mc2/nyheter/PublishingImages/Dmitrii%20Khokhriakov.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:250px" />As a doctoral student, he worked with novel two-dimensional materials and studied their electron and spin transport properties. </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"> Applications in future computing devices</h2> <div> </div> <div>“One of my biggest achievements was my experimental demonstration of an interesting effect arising in heterostructures of graphene and topological insulators, namely their possibility to perform spin-to-charge conversion. This effect may find applications in future computing devices based on spin-orbit technology,” he says.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>The award ceremony took place at the Excellence Initiative Nano Community Building Activity at Varberg earlier this autumn.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>“I was invited to receive the prize and present my results. It was a great event, and I enjoyed discussing my results with experts from different fields,” he says.</div> <div><span id="ms-rterangecursor-start"><br /></span></div> <div>The prize money will come in handy to to buy equipment for his new interest, the FPV drone racing.<br /></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span><h2 class="chalmersElement-H2">Devoted to nanoelectronics - and science fiction<span style="display:inline-block"></span></h2></span>Passionate about the research about and development of nanoelectronics, Dmitrii Khokhriakov says he aims to continue his work within this research field.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div>“I will strive to dedicate my career to developing cutting-edge technologies that improve and advance our society”. </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>In addition to their mutual interest in research and science, one more thing is a shared interest between Arne Sjögren and Dmitrii Khokhriakov: their devotion to science fiction.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>“Sci-fi is one of my favorite genres, both in books and motion picture. I enjoy futuristic stories set in space and dealing with the exploration of the unknown. Recently, I am enjoying a sci-fi novel series titled “The Expanse”. It is about the colonization of the Solar System and beyond. There is also a great TV series based on it.”</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <h2 class="chalmersElement-H2">Read Dmitrii Khokhriakov’s PhD thesis</h2> <div> </div> <div><a href="https://research.chalmers.se/en/publication/523817" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />“Graphene spin circuits and spin-orbit phenomena in van der Waals heterostructures with topological insulators”</a></div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">About Arne Sjögren’s Prize</h2> <div> </div> <div>At his passing in 2012, former chalmerist Arne Sjögren donated SEK 370,000 to Chalmers, the amount on which the prize was based. The prize of SEK 30,000 is awarded annually to the most innovative dissertation in nanoscience.</div>Tue, 04 Oct 2022 14:00:00 +0200https://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Master-Thesis-Fair.aspxhttps://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Master-Thesis-Fair.aspxMaster Thesis Fair – New ideas, skills and valuable real-world experience<p><b>​On October 10 it´s time for the first Energy Master Thesis Fair at Chalmers University of Technology. ”We always want to make our research more relevant for the industry and society. Our main mission at Chalmers is to produce future talents that help the industry becomes more competitive and sustainable. Our young students bring new ideas and skillsets and in return they get valuable real-world experience”, says Sonia Yeh, Professor in Transport and Energy systems, and Vice Director of Chalmers Energy Area of Advance.</b></p><strong>​<img src="https://pbs.twimg.com/profile_images/984740620462936064/638D0NLn_400x400.jpg" alt="Sonia Yeh. Photo: Johan Bodell" class="chalmersPosition-FloatRight" style="margin:5px;width:275px;height:275px" /></strong><span style="background-color:initial"><strong>“We have a total of 25 companies</strong> ranging from multi-national energy company’s like Hitachi Energy, Ericsson, Fortum, Volvo Penta, and DNV – Maritime, local regional companies specializing in power cells, hydropower, and renewable energy, and our research partners like IVL and RISE”, says Sonia Yeh.<br /></span><div><br /></div> <div><div>“We are very pleased to see such high interest from companies wanting to work with our students. We will also encourage our community of energy researchers to participate in supervision that will translate practical problems into high quality theses”.</div> <div><br /></div> <div>There are more than 300 students signed up already from almost every Master Thesis Program at Chalmers.</div> <div><br /></div> <div><strong>What can we expect from the day?</strong></div> <div>Some companies are open to ideas suggested by students, and some already come with concrete projects. It´s a great opportunity for students to meet company representatives to learn more about the companies and discuss these ideas. </div> <div><br /></div> <div><strong>Is it still possible for the students to sign up to the fair?</strong></div> <div>“Yes, they can still sign up online. We hope this initiative will help build a strong energy research and education community around the Master theses”, says Sonia Yeh.</div></div> <div></div> <div><br /></div> <span style="background-color:initial"><strong>More info:<br /></strong></span><a href="/en/areas-of-advance/energy/calendar/Pages/Master-Thesis-Fair-Energy--.aspx" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="https://student.portal.chalmers.se/_layouts/images/ichtm.gif" alt="" />Register for the fair​</a><br /><a href="https://www.johannebergsciencepark.com/evenemang/master-thesis-fair-energy" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="https://student.portal.chalmers.se/_layouts/images/icgen.gif" alt="" />Read more about the event</a><span style="background-color:initial"><strong><br /></strong></span>Mon, 03 Oct 2022 12:00:00 +0200https://www.chalmers.se/en/news/Pages/Research-from-Chalmers-heading-for-Silicon-Valley---.aspxhttps://www.chalmers.se/en/news/Pages/Research-from-Chalmers-heading-for-Silicon-Valley---.aspxResearch from Chalmers heading for Silicon Valley<p><b>​Every year the Swedish innovation agency Vinnova selects research projects for the exclusive incubator program Reach with focus on technology relevant for the ecosystem in Silicon Valley and with the potential to be commercialised. This year, two of the ten selected projects are based on research at Chalmers.   </b></p>​<span style="background-color:initial">The research projects from Chalmers are both about innovations that can contribute in developing new medicines and vaccines. In order for the discoveries to be utilised and commercialised, they are further developed by the startup companies LanteRNA and Envue Technologies. The Swedish projects chosen for Reach are selected from the Royal Swedish Academy of Engineering Sciences &quot;IVA 100 list&quot; and have already been carefully reviewed.  </span><div><br /></div> <div>Below, the researchers comment on how being selected to Reach will affect their projects.   </div> <div><br /></div> <div><strong>Marcus Wilhelmsson</strong>, Professor at the Department of Chemistry and Chemical Engineering and <strong>Elin Esbjörner</strong>, Associate Professor at the Department of Biology and Biological Engineering, about the research project and startup LanteRNA:   </div> <div><br /></div> <div>&quot;We are excited that our academic research from which these ideas originate is now receiving an additional push forward and coaching to become an important tool for drug developers worldwide by shortening lead times for new RNA-based medicines. It shows how important it is for academic research to be ready for new societal challenges, such as a pandemic. The program will help us understand the demands today and in the future from stakeholders where our technologies can be used and thus lead to new academic research projects that can hopefully help solve the next issue in industry and society.&quot; </div> <div><br /></div> <div>Read more about the research: <span style="background-color:initial"><a href="/en/departments/chem/news/Pages/Breakthrough-fortracking-RNA-with-fluorescence-.aspx">Breakthrough for tracking RNA with fluorescence</a></span></div> <div> </div> <div><br /></div> <div><strong>Christoph Langhammer</strong>, Full Professor at the Department of Physics, about the research project and startup Envue Technologies: </div> <div><br /></div> <div>“First of all, this means that we’ve got a good receipt on the relevance of our research and its utilisation potential, which we are of course very happy about. Not the least since the results originate from a project that has had a rather large extent of focus on fundamental research. That tells us once again how import fundamental research is if you want to make new discoveries. Another aspect of what the utilisation in general and the Reach program in particular means for our research is that we can build networks of stakeholders for our technique beyond the purely academic world, which will lead me to new research ideas that I wouldn’t have thought of otherwise.” </div> <div><br /></div> <div><span style="background-color:initial">Read more about the research:​ </span><a href="/en/departments/physics/news/Pages/Nanochannels-light-the-way-towards-new-medicine.aspx">Nanochannels light the way towards new medicine</a></div> <div><br /></div> <div><a href="https://www.iva.se/publicerat/rekordmanga-forskningsprojekt-fran-ivas-100-lista-utvalda-till-silicon-valley/">Read the press release from the Royal Swedish Academy of Engineering Sciences (in Swedish</a>)  </div> <div> </div>Wed, 28 Sep 2022 15:00:00 +0200https://www.chalmers.se/en/areas-of-advance/materials/news/Pages/2022-tandem-seminar.aspxhttps://www.chalmers.se/en/areas-of-advance/materials/news/Pages/2022-tandem-seminar.aspx2022 year's Tandem Webinars<p><b>​Here you will find 2022 all Tandem Webinars. All the webinars can be watched afterwards via Chalmers Play. ​</b></p><div></div> <div><span style="background-color:initial"><b>Upcoming webinars:</b></span></div> <div><b><br /></b><span style="background-color:initial"><b></b><div><span style="background-color:initial;font-weight:700">2 February, 2023. TANDEM SEMINAR</span><span style="background-color:initial">:</span><span style="background-color:initial;font-weight:700"> </span><b>Material recycling –  possibilities, shortcomings and policy instruments<br /></b><strong>Focus: </strong><span style="background-color:initial"><strong>Metal recycling.</strong></span></div> <span></span><div>Welcome to a webinar with Christer Forsgren, Consultant in Industrial Recycling and Christian Ekberg, Prof. Energy and Material, Industrial Materials Recycling and Nuclear Chemistry. <br /><strong>Moderator:</strong> Leif Asp.<br /><strong>Time:</strong> 12:00-13:00<br /><strong>Place:</strong> Online, platform Zoom.<br /><br /><a href="https://ui.ungpd.com/Surveys/51245349-3b86-4eab-b85e-d967630fed3d" style="outline:0px;font-size:16px"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /></a><a href="https://ui.ungpd.com/Surveys/51245349-3b86-4eab-b85e-d967630fed3d" style="font-size:16px"><div style="display:inline !important">Register to the webinar</div></a><br /><br />December, 2022 TBA</div> <br /><b>Wat</b></span><span style="background-color:initial;font-weight:700">ch 2022 year´s seminars on Chalmers Play</span><span style="background-color:initial;font-weight:700">:<br /></span>5 October: <span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="background-color:initial;font-weight:700">– </span><a href="https://play.chalmers.se/media/Tandem%20Webinar%20%E2%80%93%20Metallic%20nanoalloys%20for%20next%20generation%20optical%20hydrogen%20sensors/0_3az34hxt"><span style="background-color:initial">M</span><span style="background-color:initial">etallic nanoalloys for next generation optical hydrogen sensors</span></a></div> <div><span style="background-color:initial">Welcome to Professor Christoph Langhammer and Lars Bannenberg´s Tandem webinar. Hydrogen: clean &amp; renewable energy carrier, with water as the only emission. But it is highly flammable when mixed with air. Very efficient and effective sensors are needed.​ <br /><a href="https://play.chalmers.se/media/Tandem%20Webinar%20%E2%80%93%20Metallic%20nanoalloys%20for%20next%20generation%20optical%20hydrogen%20sensors/0_3az34hxt"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a></span></div> <div><span style="background-color:initial;font-weight:700"><br /></span></div> <div><span style="background-color:initial;font-weight:700">8 September: </span><span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="background-color:initial;font-weight:700">– </span><span style="background-color:initial"><b>New Insulation Materials for High Voltage Power Cables<br /></b>In this webinar two hot topics are covered by Christian Müller, Professor at the Department of Chemistry and Chemical Engineering, Chalmers University of Technology, and Per-Ola Hagstrand,  Expert at Borealis Innovation Centre. Adjunct Professor at Applied Chemistry, Chalmers University of Technology.<br /><span></span><a href="https://play.chalmers.se/media/Tandem%20Webinar%20%20%E2%80%93%20%20New%20Insulation%20Materials%20for%20High%20Voltage%20Power%20Cables/0_qdinuvcl"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play​</a>​<br /><br /><br /></span><div><span style="background-color:initial;font-weight:700">11 April</span><span style="background-color:initial;font-weight:700">: </span><span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="font-weight:700;background-color:initial">– </span><span style="background-color:initial"><b>Perspectives on cellulose nanocrystals<br /></b></span><span style="font-size:16px">In this tandem webinar</span><span style="font-size:16px;background-color:initial"> </span><span style="font-size:16px">we have two hot topics dedicated to Cellulose nanocrystals: Cellulose nanocrystals in simple and not so simple flows &amp; Using liquid crystal phase separation to fractionate cellulose nanocrystals.</span><br /></div> <div><a href="https://play.chalmers.se/media/Tandem%20Webinar%20%E2%80%93%20Perspectives%20on%20cellulose%20nanocrystals/0_lqpv4rvq" style="outline:0px"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a><div><br /></div> <div><div><span style="font-weight:700">Program:</span></div> <div><ul><li>Moderator: Leif Asp, Co-Director Chalmers Area of Advance Materials Science</li> <li>C<span style="background-color:initial">ellulose nanocrystals in simple and not so simple flows, <a href="/en/staff/Pages/roland-kadar.aspx">Roland Kádár</a>, Associate Professor, Chalmers University of Technology.</span></li> <li>U<span style="background-color:initial">sing liquid crystal phase separation to fractionate cellulose nanocrystals.<a href="https://wwwen.uni.lu/recherche/fstm/dphyms/people/jan_lagerwall"> Jan Lagerwall</a>, Professor at the Physics &amp; Materials Science Research Unit in the University of Luxembourg.</span> </li></ul></div></div></div> <div><br /></div> <div><span style="font-weight:700;background-color:initial">30 May: </span><span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="background-color:initial;font-weight:700">– </span><b><span></span>Lipid nanoparticles for mRNA delivery</b><br /><span style="background-color:initial"><a href="https://play.chalmers.se/media/Watch%20the%20webinar%20%E2%80%93%20Lipid%20nanoparticles%20for%20mRNA%20delivery/0_4y0mw1ss"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a><br />Organizer: Chalmers Area of Advance Mater</span><span style="background-color:initial">ials Science.<br /></span>The role of supramolecular lipid self assembly and protein corona formation for functional mRNA delivery to cells. Two hot topics will be covered by Elin Esbjörner and Fredrik Höök​.<br /><div><br /></div> <div><ul><li>Moderator: Maria Abrahamsson, Director of Materials Science Area of Advance </li> <li><a href="/en/staff/Pages/Fredrik-Höök.aspx">Fredrik Höök</a>, <em>Professor, Nano and Biophysics, Department of Physics, Chalmers University of Technology</em>.</li> <li><span style="background-color:initial"><a href="/en/staff/Pages/Elin-Esbjörner-Winters.aspx">Elin Esbjörner</a>, </span><i>Associate Professor, Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology.</i></li></ul></div></div> <div> <div><strong>Read more:</strong></div></div></div> <a href="/en/areas-of-advance/materials/news/Pages/2021-tandem-seminars.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />2021 year's Tandem Webinars</a>​.​Tue, 27 Sep 2022 00:00:00 +0200https://www.chalmers.se/en/departments/bio/news/Pages/Cut-and-stretch-assay-reveals-resistance-genes.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Cut-and-stretch-assay-reveals-resistance-genes.aspxCut and stretch assay reveals resistance genes<p><b>​Which antimicrobial resistance genes are present in bacteria, for example in a hospital ward? For laboratories with limited financial resources characterizing bacterial DNA is difficult, as this often requires expensive equipment. Researchers at Chalmers have now developed a method that can detect specific bacterial genes that encode resistance using standard microscopes, which are already used to diagnose tuberculosis in low-income countries.​</b></p><p class="chalmersElement-P">​<span>Antimicrobial resistance is one of the major health threats globally, as common infections no longer respond to antibiotics. This may result in severe illness and death, for example in neonatal sepsis, i.e., severe bacterial blood infections in new-born children.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">The genes conferring resistanc</span><span style="background-color:initial">e to bacteria, for example by breaking down antibiotics, are often found on plasmids, the circular DNA molecules that do not belong to the chromosomal bacterial DNA. Plasmids can transfer between bacterial strains and species and can thus spread rapidly in a bacterial population.</span></p> <h2 class="chalmersElement-H2"><span>Microscope already present in many labs​</span></h2> <p class="chalmersElement-P"><span style="background-color:initial">“Effective and simple methods are needed to characterise bacterial plasmids and detect resistance genes when an infection spreads in hospitals. This is a problem for laboratories with limited resources as existing methods require expensive equipment,” says<a href="/sv/institutioner/bio/forskning/kemisk-biologi/Westerlund-lab/Sidor/default.aspx"> Fredrik Westerlund</a>, Professor of Chemical Biology at Chalmers.</span></p> <p class="chalmersElement-P"><span>Thanks to a tuberculosis diagnosis program, many laboratories in low- and middle-income countries are already in possession of standard fluorescence microscopes. This was the starting point for Fredrik Westerlund’s research group. They based their newly developed method on these microscopes, which are present in the hospital laboratory of their collaboration partners in Dar es Salam, Tanzania.  </span></p> <h2 class="chalmersElement-H2">Linear DNA molecule can be detected</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">To find specific genes, the researchers use the so-called gene scissors, CRISPR-Cas9, which can recognize and cut DNA strands at any predetermined sequence, so unique that specific genes can be found.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“If a resistance gene is present on the plasmid, it will be cut by Cas9. The DNA is then stretched on a glass slide and imaged with fluorescence microscopy, and the linear molecule can be detected. The images for analysis, can be acquired by a regular smartphone, which you can easily attach to the microscope eyepiece,” says <a href="/en/Staff/Pages/goyal.aspx">Gaurav Goyal​</a>, a postdoc in the research group.</p> <h2 class="chalmersElement-H2">&quot;Any microbiological lab can perform this plasmid analysis&quot;​<br /></h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">Gaurav Goyal explains that the method is currently intended for epidemiological studies − to characterize bacterial plasmids and to understand the spread of antibiotic resistance. It might for example be relevant to examine how many new-borns in a hospital ward that carry bacteria with resistance genes. In the long run, it could also be used for diagnosis.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We started to develop the method for laboratories with limited resources, but any microbiological lab can perform this plasmid analysis − and get relevant results. In addition to finding resistance genes on plasmids, the method can also be used to determine the size and the number of the plasmids in a sample. Our method is simple and faster than other methods, which can be useful in modern microbiology labs in high-income countries too,” says Fredrik Westerlund.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>Read the study:</strong><a href="https://doi.org/10.1038/s41598-022-13315-w"> A simple cut and stretch assay to detect antimicrobial resistance genes on bacterial plasmids by single-molecule fluorescence microscopy</a> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><strong>Text: </strong>Susanne Nilsson Lindh<br /><strong>Illustration:</strong> Pixabay</p> <p class="chalmersElement-P"> ​</p>Mon, 20 Jun 2022 09:00:00 +0200https://www.chalmers.se/en/departments/physics/news/Pages/Nanochannels-light-the-way-towards-new-medicine.aspxhttps://www.chalmers.se/en/departments/physics/news/Pages/Nanochannels-light-the-way-towards-new-medicine.aspxNanochannels light the way towards new medicine<p><b>​To develop new drugs and vaccines, detailed knowledge about nature’s smallest biological building blocks – the biomolecules – is required. Researchers at Chalmers University of Technology, Sweden, are now presenting a groundbreaking microscopy technique that allows proteins, DNA and other tiny biological particles to be studied in their natural state in a completely new way.</b></p>​<span style="background-color:initial">A great deal of time and money is required when developing medicines and vaccines. It is therefore crucial to be able to streamline the work by studying how, for example, individual proteins behave and interact with one another. The new microscopy method from Chalmers can enable the most promising candidates to be found at an earlier stage. The technique also has the potential for use in conducting research into the way cells communicate with one another by secreting molecules and other biological nanoparticles. These processes play an important role in our immune response, for example. </span><div><br /></div> <div style="font-size:16px"><strong>Revealing its silhouette </strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Biomolecules are both small and elusive, but vital since they are the building blocks of everything living. In order to get them to reveal their secrets using optical microscopy, researchers currently need to either mark them with a fluorescent label or attach them to a surface.</span></div> <div><span style="background-color:initial"><br /><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Christoph%20Langhammer_320.jpg" alt="Christoph Langhammer" class="chalmersPosition-FloatRight" style="margin:5px;width:200px;height:195px" />“With current methods you can never quite be sure that the labelling or the surface to which the molecule is attached does not affect the molecule’s properties. With the aid of our technology, which does not require anything like that, it shows its completely natural silhouette, or optical signature, which means that we can analyse the molecule just as it is,” says research leader <strong>Christoph Langhammer</strong>, professor at the Department of Physics at Chalmers. He has developed the new method together with researchers in both physics and biology at Chalmers and the University of Gothenburg. </span></div> <div><br /></div> <div>The unique microscopy method is based on those molecules or particles that the researchers want to study being flushed through a chip containing tiny nano-sized tubes, known as nanochannels. A test fluid is added to the chip which is then illuminated with visible light. The interaction that then occurs between the light, the molecule and the small fluid-filled channels makes the molecule inside show up as a dark shadow and it can be seen on the screen connected to the microscope. By studying it, researchers can not only see but also determine the mass and size of the biomolecule, and obtain indirect information about its shape – something that was not previously possible with a single technique.</div> <div><span style="background-color:initial"><br /></span></div> <div style="font-size:16px"><span style="background-color:initial"><strong>Acclaimed innovation</strong></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The new technique, nanofluidic scattering microscopy, was recently presented in the scientific journal Nature Methods. The Royal Swedish Academy of Engineering Sciences, which every year lists a number of research projects with the potential to change the world and provide real benefits, has also paid tribute to the progress made. The innovation has also taken a step out into society through the start-up company Envue Technologies, which was awarded the “Game Changer” prize in this year’s Venture Cup competition in Western Sweden.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/barboraspackova-321x366_fotograf%20Aykut%20Argun.jpg" alt="Barbora Spackova" class="chalmersPosition-FloatRight" style="margin:0px 5px;width:200px;height:228px" />“Our method makes the work more efficient, for example when you need to study the contents of a sample, but don’t know in advance what it contains and thus what needs to be marked,” says researcher <strong>Barbora Špačková</strong>, who during her time at Chalmers derived the theoretical basis for the new technique and then also </span><span style="background-color:initial">conducted the first experimental study with the technology​.</span></div> <div><br /></div> <div>The researchers are now continuing to optimise the design of the nanochannels in order to find even smaller molecules and particles that are not yet visible today.  </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">“</span><span style="background-color:initial">The aim is to further hone our technique so that it can help to increase our basic understanding of how life works, and contribute to making the development of the next generation medicines more efficient” says Langhammer.</span></div> <div><br /></div> <div><strong>More about the scientific article and the research:</strong></div> <div><span style="background-color:initial"><br /></span></div> <div><ul><li><span style="background-color:initial">The article </span><a href="https://doi.org/10.1038/s41592-022-01491-6" style="outline:0px">Label-Free Nanofluidic Scattering Microscopy of Size and Mass of Single Diffusing Molecules and Nanoparticles</a><span style="background-color:initial"> was published in Nature Methods, and was written by Barbora Špačková, Henrik Klein Moberg, Joachim Fritzsche, Johan Tenghamn, Gustaf Sjösten, Hana Šípová-Jungová, David Albinsson, Quentin Lubart, Daniel van Leeuwen, Fredrik Westerlund, Daniel Midtvedt, Elin K. Esbjörner, Mikael Käll, Giovanni Volpe and Christoph Langhammer. The researchers are active at Chalmers and the University of Gothenburg. Barbora Špačková is currently starting up her own research group at the Czech Academy of Sciences in Prague.</span></li></ul></div> <div><span style="background-color:initial"><br /></span></div> <div><ul><li><span style="background-color:initial">The research has been mainly funded by the Swedish Foundation for Strategic Research, as well as by the Knut and Alice Wallenberg Foundation. Part of the research was conducted at the Chalmers Nanofabrication Laboratory at the Department of Microtechnology and Nanoscience (MC2) and under the umbrella of the Chalmers Excellence Initiative Nano.</span></li></ul></div> <div><br /></div> <div><strong>How the technique works:</strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/750x340/Toppbild_ENG_Mikroskopet%20som%20kan%20visa%20genva╠êgen%20till%20ny%20medicin_750x340px.jpg" alt="New microscopy method" style="margin:5px;width:600px;height:269px" /><br /><br /><ul><li><span style="background-color:initial">The molecules or particles that the researchers want to study are placed in a chip containing tiny nano-sized tubes, nanochannels, that are filled with test fluid. </span></li> <li><span style="background-color:initial">The chip is secured in a specially adapted optical dark-field microscope and illuminated with visible light. </span></li> <li><span style="background-color:initial">On the screen that shows what can be seen in the microscope, the molecule appears as a dark shadow moving freely inside the nanochannel. This is due to the fact that the light interacts with both the channel and the biomolecule. The interference effect that then arises significantly enhances the molecule’s optical signature by weakening the light just at the point where the molecule is located. </span></li> <li><span style="background-color:initial">The smaller the nanochannel, the greater the amplification effect and the smaller the molecules that can be seen. </span></li> <li><span style="background-color:initial">With this technique it is currently possible to analyse biomolecules from a molecular weight of around 60 kilodaltons and upwards. It is also possible to study larger biological particles, such as extracellular vesicles and lipoproteins, as well as inorganic nanoparticles.</span></li></ul></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="https://chalmersuniversity.app.box.com/s/x48gk32sl6h4kdgalfceoj2hlprghbkx"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/NSM_technique.png" alt="Video" style="margin:5px;width:500px;height:138px" /></a><br /><br /></span></div> <div><span style="background-color:initial"><strong>Video</strong>: <a href="https://chalmersuniversity.app.box.com/s/x48gk32sl6h4kdgalfceoj2hlprghbkx">Watch a video from the microscope​</a>, showing a biomolecule inside a nanochannel. It shows up as a dark shadow and it can be seen on the screen connected to the microscope. By studying it, researchers can not only see but also determine the mass and size of the biomolecule, and obtain indirect information about its shape – something that was not previously possible with a single technique.<br /></span></div> <div><br /></div> <div><strong>For more information, contact: </strong></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="/en/Staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer</a>, Professor, Department of Physics, Chalmers University of Technology<br />+46 31 772 33 31, </span><a href="mailto:clangham@chalmers.se">clangham@chalmers.se​</a></div> <div><br /></div> <div>Text: Lisa Gahnertz and Mia Halleröd Palmgren<br />Photo/illustration: ​<span style="background-color:initial">Maja Saaranen/Envue Technologies (photo collage), </span><span style="background-color:initial">Yen Strandqvist/ Chalmers University pf Technology and Daniel Spacek/ Neuroncollective (illustration),</span><span style="background-color:initial"> </span><span style="background-color:initial">Anna-Lena Lundqvist (portrait picture of Langhammer), Aykut Argun (portrait picture of </span><span style="background-color:initial">Špačková).</span></div> <div><br /></div> <div><br /></div> ​Thu, 16 Jun 2022 07:00:00 +0200https://www.chalmers.se/en/departments/chem/news/Pages/New-material-paves-the-way-for-remote-controlled-medication-and-electronic-pills.aspxhttps://www.chalmers.se/en/departments/chem/news/Pages/New-material-paves-the-way-for-remote-controlled-medication-and-electronic-pills.aspxNew material paves the way for remote-controlled medication and electronic pills<p><b>​Biomedicines are produced by living cells and are used to treat cancer and autoimmune diseases among other things. One challenge is that the medicines are very expensive to produce, something that limits global access. Now researchers from Chalmers have invented a material that uses electrical signals to capture and release biomolecules. The new and efficient method may have a major impact in the development of biomedicines and pave the way for the development of electronic pills and drug implants.</b></p><div>​<span style="background-color:initial">The new material is a polymer surface* which at an electrical pulse changes state from capturing to releasing biomolecules. This has several possible applications, including use as a tool for the efficient separation of a medicine from the other biomolecules that cells create in the production of biological medicines. The results of the study were recently published in the scientific journal “Angewandte Chemie”.</span></div> <div> </div> <div>Biomedicines are very expensive to produce due to the lack of an efficient separation technique, and new techniques with a higher drug yield are required to reduce production costs and ultimately the cost of treating patients. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Gustav%20FD%20elektrokemi%20biomolekyler/Gustav_Ferrand_Drake_220x230.jpg" class="chalmersPosition-FloatRight" alt="portrait Gustav Frennad Drake del Castillo " style="margin:5px" />“Our polymer surfaces offer a new way of separating proteins by using electrical signals to control how they are bound to and released from a surface, while not affecting the structure of the protein,” says Gustav Ferrand-Drake del Castillo, who publicly defended his doctoral thesis in chemistry at Chalmers and is the lead author of the study.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The conventional separation technique – chromatography – binds biomolecules tightly to the surface and strong chemicals are required to make them release, which leads to losses and a poor yield. Many new medicines have proved to be highly sensitive to strong chemicals, which creates a major production problem for the next generation of biomedicines. The lower consumption of chemicals results in a benefit to the environment, while the fact that the surfaces of the new material can also be reused through several cycles is a key property. The process can be repeated hundreds of times without affecting the surface.</div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Functions in biological fluids</h2> <div> </div> <div> </div> <div> </div> <div>The material also functions in biological fluids with a buffering capacity, in other words fluids with the ability to counteract changes in the pH value. This property is remarkable since it paves the way for the creation of a new technique for implants and electronic “pills” that release the medicine into the body via electronic activation. </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>“You can imagine a doctor, or a computer program, measuring the need for a new dose of medicine in a patient, and a remote-controlled signal activating the release of the drug from the implant located in the very tissue or organ where it’s needed,” says Gustav Ferrand-Drake del Castillo.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>Local, activated drug release is available today in the form of materials that change their state in the event of a change in the surrounding chemical environment. For example, tablets of pH-sensitive material are produced where you want to control the release of a drug in the gastrointestinal tract, which is an environment with natural variations in pH value. But in most of the body’s tissues there are no changes in pH value or other chemical parameters. </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>“Being able to control the release and uptake of proteins in the body with minimal surgical interventions and without needle injections is, we believe, a unique and useful property. The development of electronic implants is only one of several conceivable applications that are many years into the future. Research that helps us to link electronics with biology at a molecular level is an important piece of the puzzle in such a direction,” says Gustav Ferrand-Drake del Castillo.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>Another advantage of the new method is that it does not require large amounts of energy. The low power consumption is due to the fact that the depth of the polymer on the surface of the electrode is very thin, on the nanometre scale, which means that the surface reacts immediately to small electrochemical signals. </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>“Electronics in biological environments is often limited by the size of the battery and the moving mechanical parts. Activation at a molecular level reduces both the energy requirement and the need for moving parts,” says Gustav Ferrand-Drake del Castillo.</div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">The breakthrough began as a doctoral thesis</h2> <div> </div> <div> </div> <div> </div> <div>The research behind the technique was conducted during the period when Ferrand-Drake del Castillo was a doctoral student in Chalmers professor Andreas Dahlin’s research team in the Division of Applied Surface Chemistry. The project involved polymer surfaces that change state between being neutral and charged depending on the pH value of the surrounding solution. The researchers then succeeded in creating a material that was strong enough to stay on the surface when subject to repeated electrical signals, while also being thin enough to actually change pH value as a result of the electrochemistry on the surface. </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/elektroniska%20papper%20Anderas%20Dahlin/Andreas_Dahlin%20220x230.jpg" class="chalmersPosition-FloatRight" alt="portrait Andreas Dahlin " style="margin:5px" />“Shortly afterwards we discovered that we could use the electrical signals to control the binding and release of proteins and biomolecules, and that the electrode material works in biological solutions such as serum and centrifuged blood. We believe and hope that our discoveries may be of great benefit in the development of new medicines,” says Andreas Dahlin.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>In the past year, the Chalmers researchers’ results have been passed on to product development, carried out by the spin-off company Nyctea Technologies. The company already has customers among leading pharmaceutical researchers and companies. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>* Polymers are chemical compounds that consist of very long chains made up of repeated smaller units. Common plastics are a form of polymer.</div> <div> </div> <h3 class="chalmersElement-H3"> </h3> <div> </div> <h3 class="chalmersElement-H3">More about the research:</h3> <div> </div> <div> </div> <div> </div> <div>Read the full study in Angewandte Chemie: </div> <div> </div> <div> </div> <div> </div> <div><a href="https://doi.org/10.1002/anie.202115745" title="link to scientific article ">Electrically Switchable Polymer Brushes for Protein Capture and Release in Biological Environments</a></div> <div> </div> <div> </div> <div> </div> <div>The article is written by Gustav Ferrand-Drake del Castillo, Maria Kyriakidou, Rebekah Hailes, Zeynep Adali, Kunli Xiong and Andreas Dahlin.  </div> <div> </div> <div> </div> <div> </div> <div>The researchers are active at Chalmers and in Nyctea Technologies.</div> <div> </div> <div> </div> <div> </div> <div>The research is funded by the Knut and Alice Wallenberg Foundation.</div> <h3 class="chalmersElement-H3"> </h3> <h3 class="chalmersElement-H3"> </h3> <h3 class="chalmersElement-H3"> </h3> <h3 class="chalmersElement-H3">For more information, contact:</h3> <div> </div> <div> </div> <div> </div> <div>Gustav Ferrand-Drake del Castillo, Doctor in Chemistry and CEO of Nyctea Technologies: +46 (0)70 274 61 05 gustavd@chalmers.se </div> <div> </div> <div> </div> <div> </div> <div><a href="/en/staff/Pages/Andreas-Dahlin.aspx" title="link to personal profile page ">Andreas Dahlin</a>, Associate Professor, Department of Chemistry and Chemical Engineering at Chalmers University of Technology</div> <div><br /></div> <div>Text: Karin Wik and Gustav Ferrand-Drake del Castillo <br /></div> <div> </div> <div> </div> <div> </div> <div>​<br /></div> <div> </div> <div> </div> ​​Wed, 15 Jun 2022 19:00:00 +0200https://www.chalmers.se/en/news/Pages/IVA-100-list-2022.aspxhttps://www.chalmers.se/en/news/Pages/IVA-100-list-2022.aspxMost projects from Chalmers on IVA’s 100 list 2022 <p><b>The 100-list highlights up-to-date research with business potential from Swedish universities. The theme for this year is technology in the service of humanity. Thirteen projects from Chalmers have been selected. </b></p>​The researchers have contributed with research projects that offer great value and potential for utilisation for society, through avenues such as industrial commercialisation, business development, or other types of impact. ​<div>“It is gratifying that we are so well represented on the 100 list. Chalmers has a strong focus on innovation and entrepreneurship” says Mats Lundqvist, Vice President of Utilisation at Chalmers University of Technology.</div> <div><br /><div><div><strong style="background-color:initial">The selected projects from Chalmers 2022:</strong><br /></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"><br /></span></div> <div><strong style="background-color:initial"></strong><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Architecture and Civil Engineering Project: </span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"></span><strong style="font-family:inherit;background-color:initial">Real time optimization of drinking water treatment</strong></div></div> <div> <div><span style="background-color:initial">The innovation of Kathleen Murphy and fellow colleagues measure the quality and reactivity of freshwater resources in real time, and predict the success of drinking water treatment. Their solution will be used to optimize operational conditions at drinking water treatment plants, reducing the need for chemicals and infrastructure and reducing emissions and waste. The patent pending solution, including the teams unique algorithms, will make drinking water treatment cheaper and more sustainable.</span></div> <div>Researcher: <a href="/en/Staff/Pages/murphyk.aspx">Kathleen Murphy</a></div> <div><a href="/en/departments/ace/news/Pages/Real-time-optimized-drinking-water-treatment-on-IVA100-list.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Real time optimized drinking water treatment</a></div> <div><br /></div> <div><div> ​<span style="background-color:initial;color:rgb(33, 33, 33);font-family:inherit;font-size:20px">Biology and Biological Engineering</span></div> <p class="chalmersElement-P">Project: <strong>Fungi for the production of protein of the future</strong></p> <p class="chalmersElement-P"><span style="background-color:initial">Alternative protein sources such as fungi (mycoprotein) can lead to 95 percent less carbon dioxide emissions than beef. The vision is that the protein of the future is produced by fungi, which convert bio-based residual streams from industry. The fungi are grown in closed bioreactors with little impact on the external environment. </span> ​</p> <p class="chalmersElement-P"><span style="background-color:initial">Researchers: </span><a href="/en/Staff/Pages/nygardy.aspx">Yvonne Nygård </a><span style="background-color:initial">and </span><a href="/en/Staff/Pages/eric-oste.aspx">Eric Öste </a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P">Project: <strong>Stabilizing seafood side-streams allowing full use for food production </strong><br /></p> <p class="chalmersElement-P">The demand for fish is steadily increasing in response to dietary recommendations, population growth and wishes to consume more climate-friendly protein sources. We therefore need to convert more of each landed fish into food, as today mainly the fillet is used, i.e., only 40-50 per cent of the weight. <br /></p> <p class="chalmersElement-P"><span style="background-color:initial">Researchers: </span><a href="/en/staff/Pages/Ingrid-Undeland.aspx">Ingrid Undeland</a><span style="background-color:initial">, </span><a href="/en/Staff/Pages/haizhou.aspx">Haizhou Wu,​</a><span style="background-color:initial"> </span><a href="/en/staff/Pages/khozaghi.aspx"> Mehdi Abdollahi</a><span style="background-color:initial"> and </span><a href="/en/Staff/Pages/bita-forghani.aspx">Bita Forghani</a></p> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/Projects-on-sustainable-food-on-IVA’s-100-list.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Projects on sustainable food on IVA’s 100 list</a></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span style="font-family:inherit;font-size:20px;background-color:initial">Chemistry and Chemical Engineering  </span><br /></p> <p class="chalmersElement-P">Project: <strong>Recycling and remanufacturing of indium based semiconductor materials. </strong></p> <p class="chalmersElement-P"><span>You are probably reading this text looking through a transparent conductive material called indium tin oxide (ITO). It is the backbone of all electronic screen​s (LCD, LED, and touch screens), and some solar cell technologies. During the manufacturing of these devices, 30 - 70% of the material becomes production waste. Almost 75% of indium is used for ITO manufacturing and it is accepted as a critical raw material due to its importance in the electronic industry. It is a minor element of the earth’s crust and is unevenly distributed. It's recycling from industrial waste is challenging and requires several stages. In our technology, indium recovery is simplified instead of complicated processing stages and integrated into the ITO powder production to reproduce ITO material.​</span><strong><br /></strong></p> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/Burcak-Ebin.aspx">Burcak Ebin</a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><a href="/en/staff/Pages/Burcak-Ebin.aspx"></a>Project: <strong>High-Quality Graphene and Highly Thermal Conductive Graphene Films Produced in Eco-friendly ways</strong><br /></p> <p class="chalmersElement-P"><strong></strong><span style="background-color:initial">The heat generated from ubiquitous miniaturized electronic devices needs to be dissipated by materials that are highly thermally conductive, lightweight, flexible, mechanically robust and, most importantly, manufactured in a sustainable way. Our idea includes two interconnected steps: 1) Eco-friendly production of high-quality graphene in a large-scale; and 2) Production of highly thermal-conductive graphene films with low environmental impact and low cost. The graphene films are expected to replace the current metal films and other thermally conductive films produced in the high cost of environment, and therefore contribute to the transition to a green industry.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/ergang.aspx">Ergang Wang</a></p> <p class="chalmersElement-P"><br /></p> <span></span><p class="chalmersElement-P"><span style="background-color:initial">Project: <span style="font-weight:700">Adsorbi - cellulose-based foams for air pollutants capture  </span></span><br /></p> <p class="chalmersElement-P"><span style="background-color:initial">After finishing her doctoral studies at the department of Chemistry and Chemical Engineering Kinga Grenda founded the start-up company Adsorbi together with Romain Bordes, researcher at the department. She was recently named one of ten entrepreneurs to keep an eye on by Swedish Incubators and Science Parks.</span></p> <p class="chalmersElement-P">Researcher: <span style="background-color:initial">Kinga Grenda  </span><br /></p> <p class="chalmersElement-P"></p> <p class="chalmersElement-P"><span style="background-color:initial"><a href="https://adsorbi.com/" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />More about the research and start-up company Adsorbi </a></span><span style="background-color:initial"><font color="#1166aa"><span style="font-weight:700">(external link)</span></font></span></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><a href="/en/staff/Pages/ergang.aspx"></a><a href="/en/departments/chem/news/Pages/Chemistry-research-on-IVA-100-list-.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Chemistry research on IVA 100 list | Chalmers​ </a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="font-family:inherit;font-size:20px;background-color:initial">Computer Science and Engineering ​</span><br /></p> <div>Project: <strong>EmbeDL </strong><br /></div> <div>AI has achieved remarkable successes but at a price – neural network models are very large and need a lot of resources to train and deploy, thus leaving a very large energy footprint. Our research is about how to reduce the size of the neural networks, without sacrificing much in accuracy, and making the best use of diverse hardware so that AI can be deployed in an efficient and less energy consuming way to solve a specific problem. <br /></div> <div><br /></div> <div>Project:<strong>Repli5 </strong><br /></div> <div>The research is about creating digital twins and synthetic data. A digital twin is a replica of the real world in silico, which can be used to test and verify systems very efficiently and cheaply instead of tests in the real world which are costly, slow and error prone. Digital twins can be used to generate synthetic data to train AI systems efficiently without the need to collect real world data and annotating them manually which is costly, slow, noisy and error prone. <br /></div> <div><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/dubhashi.aspx">Devdatt Dubhashi </a></div> <div><br /></div> <div><span style="background-color:initial">Project: </span><strong style="background-color:initial">Dpella</strong><br /></div> <div>The world is collecting a massive amount of individuals data with the intention of building a human-centered future based on data insights. The huge challenge is how to achieve these insights that will shape the future, respecting privacy of individuals and complying with GDPR. We solve this by developing a technology for creating privacy-preserving analytics based on the mathematical framework of Differential Privacy – a new gold standard for data privacy. With our patented IP research, we provide a Privacy-as-a-service solution will enable data flows, creating the inter-organization value required to achieve a digital human-centred future.</div> <div><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><a href="/en/staff/Pages/russo.aspx">Alejandro Russo</a></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="/en/staff/Pages/russo.aspx"></a></span><span style="background-color:initial">Project: <strong>ZeroPoint Technologies </strong></span></div> <div><span style="background-color:initial"></span><span style="background-color:initial">The dramatic increase of computers' processing power places high demands on efficient memory storage. A few players today have control over processor development by owning and controlling processor architectures. Chalmers with the spin-off company ZeroPoint Technologies develops technologies for computers' internal memory that are faster and less energy-intensive and are developed to fit into an open processor architecture. This provides basic conditions for smart industry. </span></div> <div><span style="background-color:initial"></span><span></span><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><a href="/en/staff/Pages/per-stenstrom.aspx">Per Stenström​</a></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Industrial and Materials Science</span><br /></div> <div> <div>Project: <strong>Design for energy resilience in the everyday</strong><br /></div> <div>Our increasing dependence on electrical and connected products is unsustainable from a resource point of view. It also makes us vulnerable in a future energy system where more renewable sources and climate change increase the probability of power shortages and power outages. To be able to handle disruptions in electricity deliveries, and at the same time live a good and meaningful everyday life, knowledge, new design guidelines for product development and energy-independent alternatives are required.<br /></div> <div><span style="background-color:initial">Researcher: </span><a href="/en/Staff/Pages/helena-stromberg.aspx">Helena Strömberg</a><br /></div> <div><a href="/en/departments/ims/news/Pages/Design-for-energyresilience-in-the-everyday.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Design for energy resilience in the everyday</a> </div></div> <div><br /></div> <div><p class="chalmersElement-P" style="font-size:20px">Physics</p> <p class="chalmersElement-P">Project: <strong>Nanofluidic Scattering Microscopy </strong></p> <div> </div> <p class="chalmersElement-P">We have developed the next generation of nanotechnology to study and analyse individual biomolecules and at the same time generate important information about them. We do this with an optical instrument combined with nanofluidic chips and software with machine learning/AI. By offering researchers this new tool, they can answer their questions in a completely new way, thereby accelerating their research in order to make ground-breaking discoveries.<br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer </a><br /></p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">P</span><span style="background-color:initial">roject:</span><strong style="background-color:initial">2D semiconductor with perfect edges </strong><br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">We at Smena have developed a new game-changing material, which is useful for numerous applications. The starting point of our material is an abundant mineral called molybdenite, whose price is only 5 dollar per kilogram. Using a scalable, patented, and environmentally friendly process, we managed to produce a large number of edges in flakes of natural molybdenite. <br /></span></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><span></span><a href="/en/Staff/Pages/Timur-Shegai.aspx">Timur Shegai ​</a><br /></span></p> <div> </div> <p class="chalmersElement-P"><a href="/en/departments/physics/news/Pages/Two-research-projects-from-Physics-on-IVA-100-List.aspx">Two research projects from Physics on IVA 100 List 2022</a></p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"></p> <div> </div> <div><a href="/en/departments/physics/news/Pages/Two-research-projects-from-Physics-on-IVA-100-List.aspx">​</a><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Mathematical Sciences </span></div> <div> </div> <p class="chalmersElement-P">​Project: <strong>PressCise</strong></p> <div> </div> <p class="chalmersElement-P"><strong></strong>​We work with clinical partners to identify problems with today's products, and to test and verify our own inventions. We use mathematical theories to solve real problems and we realize our solutions in genuine smart textile products. </p> <p class="chalmersElement-P">Researchers: <a href="/en/Staff/Pages/torbjorn-lundh.aspx">Torbjörn Lundh</a><span style="background-color:initial">, in collaboration with Josefin Damm and Andreas Nilsson. </span></p> <div> </div> <p class="chalmersElement-P"><a href="https://www.presscise.com/" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />PressCise AB</a></p> <div> </div> <p></p> <div> </div> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="background-color:initial"><em>I</em></span><span style="background-color:initial"><em>VA's 100 List presents selected research projects believde to have </em></span><span style="background-color:initial"><em>the potientalto be developed into ninnovations, to promote buisness  </em></span><span style="background-color:initial"><em>development or to provide other benefits. The list reflects a diverse range of research </em></span><span style="background-color:initial"><em>projects and researcher experise from Sweden's universities in a given field. </em></span><span style="background-color:initial"><em>​</em></span><br /></p> <em> </em><p class="chalmersElement-P"><span style="background-color:initial"><font color="#1166aa"><em> </em></font></span><span style="background-color:initial;color:rgb(0, 0, 0)"><em>The complete list can be found on </em><a href="https://www.iva.se/en/"><em>www.iva.se</em></a></span></p> <p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"></span> </p> <div><p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"><br /></span></p></div> <div><p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"><br /></span></p></div> <a href="/en/news/presidents-perspective/Pages/IVAs-100-list-Chalmers-technology-in-the-service-of-humanity.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />The Presidents perspective on Chalmers' contribution to technology in the service of humanity</a><p></p></div> <div><br /></div> <p class="chalmersElement-P"><a href="/en/departments/chem/news/Pages/Chemistry-research-on-IVA-100-list-.aspx"></a></p> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/Projects-on-sustainable-food-on-IVA’s-100-list.aspx"></a></p> <p class="chalmersElement-P"><a href="/en/Staff/Pages/eric-oste.aspx"></a></p></div></div> ​</div>Tue, 10 May 2022 16:00:00 +0200https://www.chalmers.se/en/departments/chem/news/Pages/Converting-solar-energy-to-electricity-on-demand.aspxhttps://www.chalmers.se/en/departments/chem/news/Pages/Converting-solar-energy-to-electricity-on-demand.aspxConverting solar energy to electricity on demand<p><b>​The researchers behind an energy system that makes it possible to capture solar energy, store it for up to eighteen years and release it when and where it is needed have now taken the system a step further. After previously demonstrating how the energy can be extracted as heat, they have now succeeded in getting the system to produce electricity, by connecting it to a thermoelectric generator. Eventually, the research – developed at Chalmers University of Technology, Sweden – could lead to self-charging electronics using stored solar energy on demand.​</b></p><div><img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Most%20steg%202%20Kasper%20Moth%20Poulsen/porträtt_Kasper_Moth_Poulsen_200x200.jpg" class="chalmersPosition-FloatRight" alt="portait Kasper Moth-Poulsen " style="margin:5px 10px" />“This is a radically new way of generating electricity from solar energy. It means that we can use solar energy to produce electricity regardless of weather, time of day, season, or geographical location. It is a closed system that can operate without causing carbon dioxide emissions,” says research leader Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering at Chalmers.<br /><br /></div> <div>The new technology is based on the solar energy system MOST – Molecular Solar Thermal Energy Storage Systems, developed at Chalmers University of Technology. Very simply, the technology is based on a specially designed molecule that changes shape when it comes into contact with sunlight. The research has already attracted great interest worldwide when it has been presented at earlier stages.</div> <div><br /></div> <div>The new study, published in Cell Reports Physical Science and carried out in collaboration with researchers in Shanghai, takes the solar energy system a step further, detailing how it can be combined with a compact thermoelectric generator to convert solar energy into electricity.</div> <div><h2 class="chalmersElement-H2">Ultra-thin chip converts heat into electricity</h2> <div>The Swedish researchers sent their specially designed molecule, loaded with solar energy, to colleagues Tao Li<br />and Zhiyu Hu at Shanghai Jiao Tong University, where the energy was released and converted into electricity <img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Most%20steg%202%20Kasper%20Moth%20Poulsen/porträtt_Zihang_Wang_200x200.jpg" class="chalmersPosition-FloatLeft" alt="portrait Zhihang Wang " style="margin:5px 10px" /><br />using the generator they developed there. Essentially, Swedish sunshine was sent to the other side of the world and converted into electricity in China. <br /><br /></div> <div><div>“The generator is an ultra-thin chip that could be integrated into electronics such as headphones, smart watches and telephones. So far, we have only generated small amounts of electricity, but the new results show that the concept really works. It looks very promising,” says researcher Zhihang Wang from Chalmers University of Technology.</div> <h2 class="chalmersElement-H2"><span><br />Fossil</span><span> free</span><span>, emissions free </span></h2></div> <div>The research has great potential for renewable and emissions-free energy production. But a lot of research and development remains before we will be able to charge our technical gadgets or heat our homes with the system's stored solar energy.</div> <div><br /></div> <div>“Together with the various research groups included in the project, we are now working to streamline the system. The amount of electricity or heat it can extract needs to be increased. Even if the energy system is based on simple basic materials, it needs to be adapted to be sufficiently cost-effective to produce, and thus possible to launch more broadly,” says Kasper Moth-Poulsen.<br /></div></div> <h3 class="chalmersElement-H3">More about the Most technology</h3> <div><img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Most%20steg%202%20Kasper%20Moth%20Poulsen/mostlabbet%20350x305.jpg" class="chalmersPosition-FloatRight" alt="Image from the Mostlabb" style="margin:5px 10px" />Molecular Solar Thermal Energy Storage Systems, Most, is a closed energy system based on a specially designed molecule of carbon, hydrogen and nitrogen, which when hit by sunlight changes shape into an energy-rich isomer – a molecule made up of the same atoms but arranged together in a different way. The isomer can then be stored in liquid form for later use when needed, such as at night or in winter. The researchers have refined the system to the point that it is now possible to store the energy for up to 18 years. A specially designed catalyst releases the saved energy as heat while returning the molecule to its original shape, so it can then be reused in the heating system. Now, in combination with an micrometer-thin thermoelectric generator, the energy system can also generate electricity to order.</div> <div><br /></div> <div>Photo above to the right: Maria Quant and Zhihang Wang, postdocs in the Most research group, in the front a modell of the specially designed molecule <span style="background-color:initial;color:rgb(17, 102, 170);font-family:&quot;open sans&quot;, arial, sans-serif;font-size:12px">​</span><br /></div> <div><h3 class="chalmersElement-H3" style="font-family:&quot;open sans&quot;, sans-serif">Read previous press releases about the energy system Most</h3> <div><ul><li>​<a href="https://news.cision.com/chalmers/r/window-film-could-even-out-the-indoor-temperature-using-solar-energy%2cc3205508" title="Link to press release ">Window film can even out the temperature using solar energy</a></li> <li><a href="https://news.cision.com/chalmers/r/emissions-free-energy-system-saves-heat-from-the-summer-sun-for-winter%2cc3179315" title="Link to press release ">Emission-free energy system saves heat from the summer sun to the winter​</a></li></ul></div></div> <h3 class="chalmersElement-H3">More about the research and the scientific article </h3> <div><ul><li>​The study <a href="https://doi.org/10.1016/j.xcrp.2022.100789" title="Link to scientific article ">Chip-scale solar thermal electrical power generation</a> is published in Cell Reports Physical Science. The article is written by Zhihang Wang, Zhenhua Wu, Zhiyu Hu, Jessica Orrego-Hernández, Erzhen Mu, Zhao-Yang Zhang, Martyn Jevric, Yang Liu, Xuecheng Fu, Fengdan Wang, Tao Li and Kasper Moth-Poulsen. The researchers are active at Chalmers University of Technology in Sweden, Shanghai Jiao Tong University and Henan Polytechnic University in China, as well as at the Institute of Materials Science in Barcelona and the Catalan Department of Research and Advanced Studies, ICREA, in Spain.<br /><br /></li> <li>The research has been funded by the Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research, the Swedish Research Council Formas, the Swedish Energy Agency, the European Research Council (ERC) under grant agreement CoG, PHOTHERM - 101002131, the Catalan Institute of Advanced Studies (ICREA), and the European Union's Horizon 2020 Framework Programme under grant agreement no. 951801.</li></ul></div> <h3 class="chalmersElement-H3">For more information contact:</h3> <div><a href="/en/staff/Pages/zhihang.aspx" title="Link to personal profile page ">Zhihang Wang</a>, Post Doc, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden</div> <div><br /></div> <div><a href="/en/Staff/Pages/kasper-moth-poulsen.aspx" title="Link to personal profile page ">Kasper Moth-Poulsen</a>, Professor, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden</div> <div><br /></div> <div>Text: Jenny Holmstrand, Mia Halleröd Palmgren, Joshua Worth <br />Credit for images above and video material: <span style="background-color:initial">Chalmers University of Technology | Per Erséus, Språng kommunikation</span></div> <div>Credit for illustration: Chalmers University of Technology | Daniel Spacek, neuroncollective.com<br />Credit portrait Kasper Moth-Poulsen: Oscar Mattsson |<span style="background-color:initial">Chalmers University of Technology</span><span style="background-color:initial"> </span><span style="background-color:initial">​</span></div> <div>Credit portrait Zhihang Wang: Sandra Nayeri <span></span><span style="background-color:initial">|</span><span style="background-color:initial">Chalmers University of Technology​</span></div> <div><br /></div> <div><br /></div> <div>​<br /></div> ​​​​Mon, 11 Apr 2022 07:00:00 +0200https://www.chalmers.se/en/areas-of-advance/ict/news/Pages/Call-for-ICT-seed-projects-2022.aspxhttps://www.chalmers.se/en/areas-of-advance/ict/news/Pages/Call-for-ICT-seed-projects-2022.aspxCall for ICT seed projects 2023<p><b> Call for proposals within ICT strategic areas and involving interdisciplinary approaches.​</b></p><h3 class="chalmersElement-H3" style="color:rgb(153, 51, 0)"><br /></h3> <h3 class="chalmersElement-H3">Important dates:</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li><b>NEW! Submission date: </b><span>9 May, at 09.00</span>, 2022</li> <li><b>Notification:</b> mid-June, 2022</li> <li><b>Expected start of the project:</b> January 2023</li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Background</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The Information and Communication Technology (ICT) Area of Advance</b> (AoA) provides financial support for SEED projects, i.e., projects involving innovative ideas that can be a starting point for further collaborative research and joint funding applications. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>We will prioritize research projects that <strong>involve researchers from different research communities</strong> (for example across ICT departments or between ICT and other Areas of Advances) and who have not worked together before (i.e., have no joint projects/publications). </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>Research projects involving a <strong>gender-balanced team and younger researchers</strong>, e.g., assistant professors, will be prioritized. Additionally, proposals related to <strong>sustainability</strong> and the UN Sustainable Development Goals are encouraged.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b><em>Note: </em></b><em>Only researchers employed at Chalmers can apply and can be funded. PhD students cannot be supported by this call.  Applicants and co-applicants of research proposals funded in the 2021 and 2022 ICT SEED calls cannot apply. </em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><em><br /></em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The total budget of the call is 1 MSEK.</b> We expect to fund 3-5 projects</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Details of the call</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li>The project should include at least two researchers from different divisions at Chalmers (preferably two different departments) who should have complementary expertise, and no joint projects/publications.</li> <li>Proposals involving teams with good gender balance and involving assistant professors will be prioritized.</li> <li>The project should contribute to sustainable development. </li> <li>The budget must be between 100 kSEK and 300 kSEK, including indirect costs (OH). The budget is mainly to cover personnel costs for Chalmers employees (but not PhD students). The budget cannot cover costs for equipment or travel costs to conferences/research visits. </li> <li>The project must start in early 2023 and should last 3-6 months. </li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">What must the application contain?</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The application should be at most 3 pages long, font Times–Roman, size 11. In addition, max 1 page can be used for references. Finally, an additional one-page CV of each one of the applicants must be included (max 4 CVs). Proposals that do not comply with this format will be desk rejected (no review process).</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The proposal should include:</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>a)<span style="white-space:pre"> </span>project title </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>b)<span style="white-space:pre"> </span>name, e-mail, and affiliation (department, division) of the applicants</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>c)<span style="white-space:pre"> </span>the research challenges addressed and the objective of the project; interdisciplinary aspects should be highlighted; also the applicant should discuss how the project contributes to sustainable development, preferably in relation to the <a href="https://www.un.org/sustainabledevelopment/sustainable-development-goals/" title="link to UN webpage">UN Sustainable Development Goals (SDG)</a>. Try to be specific and list the targets within each Goal that are addressed by your project.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>d)<span style="white-space:pre"> </span>the project description </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>e)<span style="white-space:pre"> </span>the expected outcome (including dissemination plan) and the plan for further research and funding acquisition</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>f)<span style="white-space:pre"> </span>the project participants and the planned efforts</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>g)<span style="white-space:pre"> </span>the project budget and activity timeline
</div> <div><div><br /></div> <h3 class="chalmersElement-H3">Evaluation criteria</h3> <div><ul><li>Team composition</li> <li>Interdisciplinarity</li> <li>Novelty</li> <li>Relevance to AoA ICT and Chalmers research strategy as well as to SDG</li> <li>Dissemination plan</li> <li>Potential for further research and joint funding applications</li> <li>Budget and project feasibility​</li></ul></div></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">Submission</span></div> <div> </div> <div> </div> <div> </div> <div>The application should be submitted as <b>one PDF document</b>.<span style="background-color:initial"></span></div> <div><br /></div> <div><a href="https://easychair.org/conferences/?conf=aoaictseed2023" target="_blank" title="link to submission"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Submit​</a></div> <div><br /></div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span><br /></span></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="background-color:initial">The proposals will be evaluated by the AoA ICT management group and selected Chalmers researchers.

</span></div> <div><span style="background-color:initial"><b><br /></b></span></div> <div><span style="background-color:initial"><b>Questions</b> can be addressed to <a href="mailto:erik.strom@chalmers.se">Erik Ström</a></span></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">General information about the ICT Area of Advance can be found at <a href="/en/areas-of-advance/ict/Pages/default.aspx">www.chalmers.se/ict ​</a></span><br /></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div> </div> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/About%20us/IKT_logo_600px.jpg" alt="" /><span style="background-color:initial">​​<br /></span></div>Wed, 30 Mar 2022 00:00:00 +0200https://www.chalmers.se/en/news/Pages/Prestigious-ERC-grants-to-Chalmers-researchers-.aspxhttps://www.chalmers.se/en/news/Pages/Prestigious-ERC-grants-to-Chalmers-researchers-.aspxThey get prestigious ERC-grants <p><b>​The European Research Council has awarded the prestigious ERC Consolidator Grant and the ERC Starting Grant. Out of the Swedish researchers receiving funding, three are from Chalmers University of Technology: Christoph Langhammer, Christian Müller and Simone Gasparinetti. </b></p>​<span style="background-color:initial">The research grants from the European Research Council, ERC, are aimed at tackling major questions across all scientific disciplines. This year, two researchers at Chalmers are receiving the ERC Consolidator Grant: Professor <a href="/en/Staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer</a> at the Department of Physics, and Professor <a href="/en/staff/Pages/Christian-Müller.aspx">Christian Müller </a>at the Department of Chemistry and Chemical Engineering. </span><div><span style="background-color:initial"><a href="https://erc.europa.eu/funding/consolidator-grants">The Consolidator Grant</a> is given to researchers with 7–12 years of experience since completion of PhD, a scientific track record showing great promise and an excellent research proposal. </span></div> <div> <div>The <a href="https://erc.europa.eu/funding/starting-grants">ERC Starting Grant</a> is awarded to early-career scientists who have already produced excellent supervised work, is ready to work independently and shows potential to be a research leader. It is given to Assistant Professor <a href="/en/staff/Pages/simoneg.aspx">Simone Gasparinetti</a>, at the Department of Microtechnology and Nanoscience. </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Here, the researchers present their projects.</span></div> <h2 class="chalmersElement-H2">Looking for new methods to advance sustainable energy technologies </h2> <div><span style="background-color:initial"><img src="/SiteCollectionImages/20220101-20220630/Christoph%20Langhammer_180px.png" class="chalmersPosition-FloatRight" alt="" style="margin:15px" />It is the second time around that Christoph Langhammer receives an ERC grant. With his new project, he hopes to achieve a deeper understanding of chemical reactions on surfaces of nanoparticles, which is important for advancing sustainable energy technologies and synthesis of chemicals.  </span><br /></div> <div><br /></div> <div>“The research we will conduct focuses on developing a nanofluidics-based optical microscopy method that will enable the study of chemical reactions that occur on individual nanoparticles in a completely new way. The method that we will develop has the potential to study catalysis at the individual particle level in a quantitative way and at technically directly relevant conditions with relevant materials. I am also convinced that the project will establish the foundation for integrated ”labs on a chip” in the area of catalysis science,” says Christoph Langhammer. </div> <div><br /></div> <div>“ERC funding is unique in the way that it allows and actually encourages risk taking and thus also allows making mistakes to learn from. We are given an incitament to be creative, bold and visionary, which I think is the best part of being a scientist because when given this freedom there is a real chance for true breakthroughs to happen.” </div> <div><span style="background-color:initial">Christoph Langhammer receives 2,3 million euro for his project. </span><br /></div> <h3 class="chalmersElement-H3">More about Christoph Langhammer’s research </h3> <div><ul><li><span style="background-color:initial"><a href="/en/centres/gpc/news/Pages/Portrait-Christoph-Langhammer.aspx">His research is paving the way for the hydrogen vehicles of the future </a></span></li> <li><span style="background-color:initial"><a href="/en/departments/physics/news/Pages/The-importance-of-good-neighbours-in-catalysis.aspx">The importance of good neighbours in catalysis </a></span></li> <li><span style="background-color:initial"><a href="/en/departments/physics/news/Pages/Physics-innovations-in-the-spotlight.aspx">Physics innovations in the spotlight ​</a></span></li></ul></div> <div><span style="background-color:initial"> </span><br /></div> <h2 class="chalmersElement-H2"><span>He wants to weave electronic textiles with conducting plastics   </span></h2> <div><img src="/SiteCollectionImages/20220101-20220630/Christian%20Muller_180.png" class="chalmersPosition-FloatRight" alt="" style="margin:15px" /><span style="background-color:initial">Polymers, also known as plastics, shape almost every aspect of our lives. Christian Müller is fascinated by a type of polymer that can conduct electricity. He sees large potential in using them in electronic devices such as solar cells and sensors, but their properties need to be improved and further developed. With the ERC grant and together with his research group he will now continue to address that challenge. They are especially focusing on new types of stimuli responsive fibers, yarns, and fabrics in the field of electronic textiles. </span></div> <div><span style="background-color:initial"><br /></span></div> <div>“My vision as a researcher is that, in a not-too-distant future, our clothes will have additional functions that cannot be realized with existing electronics alone. Electronic textiles may help us to connect our physical and virtual selves through sensing and interacting with our environment. They can bring a very positive impact for us as individuals and for our society in many ways.”    </div> <div><span style="background-color:initial">Christian Müller receives 2 million euro for his project. </span><br /></div> <div><div> </div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">More about Christi</span><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">an Müller’s research   </span></div></div> <div><ul><li><a href="/en/departments/chem/news/Pages/Exploring-new-ways-to-power-wearable-electronics.aspx">Exploring new ways to power electronics   </a><br /></li> <li><a href="/en/departments/chem/news/Pages/New%20insulation%20material%20improves%20electricity%20transport.aspx">New material improves electricity transport  </a></li> <li><a href="/en/departments/chem/news/Pages/cellulose-thread.aspx">Huge potential for cellulose thread in electronic textiles​</a>   </li></ul></div> <div><span style="background-color:initial"> </span><br /></div> <div><h2 class="chalmersElement-H2">Can the laws of quantum mechanics be harnessed to gain advantages in engines or batteries? <br /></h2> <div><div><img src="/SiteCollectionImages/20220101-20220630/Simone%20Gasparinetti_180px.png" class="chalmersPosition-FloatRight" alt="" style="margin:15px" />Simone Gasparinetti and his group,<a href="https://202q-lab.se/"> 202Q-lab</a>, will carry out an extensive experimental search for quantum advantages in thermodynamics. To do so, they will use superconducting circuits similar to those that are being used to build quantum information processors at companies such as Google and IBM, as well as locally at the Wallenberg Centre for Quantum Technology (<a href="/en/centres/wacqt/Pages/default.aspx">WACQT​</a>). </div> <div><br /></div> <div>&quot;We will find out whether, and how, the laws of quantum mechanics can be harnessed to gain an advantage in the performance of an engine, or the charging time of a battery. In addition, the quantum thermal machines that we will develop are seamlessly compatible with quantum information processing units. Therefore, they may be used to carry out tasks such as energy-efficient reset of quantum bits or autonomous stabilization of quantum states.&quot;<span style="background-color:initial"> </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">&quot;This grant presents me with a nice opportunity to carry out fundamental research complementary to the more applied one that my group is pursuing in the context of WACQT and other EU-funded projects.&quot;</span></div></div> <div>Simone Gasparinetti receives 2 million euro for his project. <span style="background-color:initial"><br /></span></div> <h3 class="chalmersElement-H3"><span>More about Simone Gasparinetti's research</span></h3> <div><ul><li><a href="/en/departments/mc2/news/Pages/Novel-thermometer-can-accelerate-the-development-of-quantum-computers.aspx">​Novel thermometer can accelerate quantum computer development</a></li> <li><a href="/en/departments/mc2/news/Pages/Novel-thermometer-can-accelerate-the-development-of-quantum-computers.aspx">New project for future supercomputers​​</a></li></ul></div></div> <div><em><br /></em></div> <h2 class="chalmersElement-H2">About the ERC Consolidator Grant </h2> <div><span style="background-color:initial">Out of the 2,652 applicants who submitted proposals for the ERC Consolidator Grant, 12 percent will receive funding from the European Research Council at a total of 632 million euro. The average grant is 2 million euro paid across five years. This year, 15 researchers from Sweden received the grant. </span></div> <div><span style="background-color:initial">Read more in <a href="https://erc.europa.eu/news/erc-2021-consolidator-grants-results">the press release from the European Research Council, ERC​</a>. </span><br /></div> <div><br /></div> <div>Read about the <a href="/en/research/our-scientists/Pages/ERC-funded-scientists.aspx">Chalmers researchers who have previously received one of the three ERC grants ​</a>(ERC Advanced Grant, ERC Consolidator Grant and ERC Starting Grant.)</div> <div><br /></div> </div>Thu, 17 Mar 2022 00:00:00 +0100https://www.chalmers.se/en/areas-of-advance/ict/news/Pages/the-allwise-alvis.aspxhttps://www.chalmers.se/en/areas-of-advance/ict/news/Pages/the-allwise-alvis.aspx​Time to inaugurate all-wise computer resource<p><b>​Alvis is an old Nordic name meaning &quot;all-wise&quot;. An appropriate name, one might think, for a computer resource dedicated to research in artificial intelligence and machine learning. The first phase of Alvis has been used at Chalmers and by Swedish researchers for a year and a half, but now the computer system is fully developed and ready to solve more and larger research tasks.​</b></p><br /><div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/300x454_Alvis_infrastructure_1.png" alt="A computer rack" class="chalmersPosition-FloatRight" style="margin:10px;width:270px;height:406px" />Alvis is a national computer resource within the <strong><a href="https://www.snic.se/">Swedish National Infrastructure for Computing, SN​IC,</a></strong> and started on a small scale in the autumn of 2020, when the first version began being used by Swedish researchers. Since then, a lot has happened behind the scenes, both in terms of use and expansion, and now it's time for Chalmers to give Swedish research in AI and machine learning access to the full-scale expanded resource. The digital inauguration will take place on <span style="font-weight:normal"><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">February 25, 202</a>2.</span></div> <div><br /></div> <div><b>What can Alvis contribute to, then? </b>The purpose is twofold. On the one hand, one addresses the target group who research and develop methods in machine learning, and on the other hand, the target group who use machine learning to solve research problems in basically any field. Anyone who needs to improve their mathematical calculations and models can take advantage of Alvis' services through SNIC's application system – regardless of the research field.</div> <div><span style="background-color:initial">&quot;Simply put, Alvis works with pattern recognition, according to the same principle that your mobile uses to recognize your face. What you do, is present very large amounts of data to Alvis and let the system work. The task for the machines is to react to patterns - long before a human eye can do so,&quot; says <b>Mikael Öhman</b>, system manager at Chalmers e-commons.</span><br /></div> <div><br /></div> <h3 class="chalmersElement-H3">How can Alvis help Swedish research?</h3> <div><b>Thomas Svedberg</b> is project manager for the construction of Alvis:</div> <div>&quot;I would say that there are two parts to that answer. We have researchers who are already doing machine learning, and they get a powerful resource that helps them analyse large complex problems.</div> <div>But we also have those who are curious about machine learning and who want to know more about how they can work with it within their field. It is perhaps for them that we can make the biggest difference when we now can offer quick access to a system that allows them to learn more and build up their knowledge.&quot;</div> <div><br /></div> <div>The official inauguration of Alvis takes place on February 25. It will be done digitally, and you will find all <a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">information about the event here.</a></div> <div><br /></div> <h3 class="chalmersElement-H3">Facts</h3> <div>Alvis, which is part of the national e-infrastructure SNIC, is located at Chalmers. <a href="/en/researchinfrastructure/e-commons/Pages/default.aspx">Chalmers e-commons</a> manages the resource, and applications to use Alvis are handled by the <a href="https://www.snic.se/allocations/snac/">Swedish National Allocations Committee, SNAC</a>. Alvis is financed by the <b><a href="https://kaw.wallenberg.org/">Knut and Alice Wallenberg Foundation</a></b> with SEK 70 million, and the operation is financed by SNIC. The computer system is supplied by <a href="https://www.lenovo.com/se/sv/" target="_blank">Lenovo​</a>. Within Chalmers e-commons, there is also a group of research engineers with a focus on AI, machine learning and data management. Among other things, they have the task of providing support to Chalmers’ researchers in the use of Alvis.</div> <div> </div> <h3 class="chalmersElement-H3">Voices about Alvis:</h3> <div><b>Lars Nordström</b>, director of SNIC: &quot;Alvis will be a key resource for Swedish AI-based research and is a valuable complement to SNIC's other resources.&quot;</div> <div><br /></div> <div><span style="background-color:initial"><strong>Sa</strong></span><span style="background-color:initial"><strong>ra Mazur</strong>, Director of Strategic Research, Knut and Alice Wallenberg Foundation: &quot;</span>A high-performing national computation and storage resource for AI and machine learning is a prerequisite for researchers at Swedish universities to be able to be successful in international competition in the field. It is an area that is developing extremely quickly and which will have a major impact on societal development, therefore it is important that Sweden both has the required infrastructure and researchers who can develop this field of research. It also enables a transfer of knowledge to Swedish industry.&quot;<br /></div> <div><br /></div> <div><b>Philipp Schlatter</b>, Professor, Chairman of SNIC's allocation committee Swedish National Allocations Committee, SNAC: &quot;Calculation time for Alvis phase 2 is now available for all Swedish researchers, also for the large projects that we distribute via SNAC. We were all hesitant when GPU-accelerated systems were introduced a couple of years ago, but we as researchers have learned to relate to this development, not least through special libraries for machine learning, such as Tensorflow, which runs super fast on such systems. Therefore, we are especially happy to now have Alvis in SNIC's computer landscape so that we can also cover this increasing need for GPU-based computer time.&quot;</div> <div><br /></div> <div><strong>Scott Tease</strong>, Vice President and General Manager of Lenovo’s High Performance Computing (HPC) and Artificial Intelligence (AI) business: <span style="background-color:initial">“Lenovo </span><span style="background-color:initial">is grateful to be selected by Chalmers University of Technology for the Alvis project.  Alvis will power cutting-edge research across diverse areas from Material Science to Energy, from Health care to Nano and beyond. </span><span style="background-color:initial">Alvis is truly unique, built on the premise of different architectures for different workloads.</span></div> <div>Alvis leverages Lenovo’s NeptuneTM liquid cooling technologies to deliver unparalleled compute efficiency.  Chalmers has chosen to implement multiple, different Lenovo ThinkSystem servers to deliver the right NVIDIA GPU to their users, but in a way that prioritizes energy savings and workload balance, instead of just throwing more underutilized GPUs into the mix. Using our ThinkSystem SD650-N V2 to deliver the power of NVIDIA A100 Tensor Core GPUs with highly efficient direct water cooling, and our ThinkSystem SR670 V2 for NVIDIA A40 and T4 GPUs, combined with a high-speed storage infrastructure,  Chalmers users have over 260,000 processing cores and over 800 TFLOPS of compute power to drive a faster time to answer in their research.”</div> <div><br /></div> <div><br /></div> <div><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" /></a><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">SEE INAUGURATION PROGRAMME​</a></div> <div><br /></div> <div><em>Text: Jenny Palm</em></div> <em> </em><div><em>Photo: Henrik Sandsjö</em></div> <div><em>​<br /></em></div> <div><em><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/750x422_Alvis_infrastructure_3_220210.png" alt="Overview computor" style="margin:5px;width:690px;height:386px" /><br /><br /><br /></em></div> <div><br /></div> <div><br /></div> ​Sun, 13 Feb 2022 00:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/develops-high-speed-lasers-with-support-from-erc.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/develops-high-speed-lasers-with-support-from-erc.aspxDevelops high speed lasers with support from ERC<p><b>​In 2017, Victor Torres Company received a prestigous five-year Consolidator Grant from the European Research Council (ERC) for his research on developing high speed laser technology. Now, the ERC has granted him a Proof of Concept grant with the aim to bring his research closer to the market. </b></p><div>Photonics researcher Victor Torres Company's research regards the developing of a &quot;chip scale frequency comb&quot;, a special type of ultra-fast high-precision laser with a wide range of different application areas.</div> <div> </div> <div><br /></div> <div> </div> <div>&quot;It can be used for fiber optic communication systems, which is the most interesting area for our research group. But the technology could also be used for distance measurements in self-driving cars, spectroscopy to diagnose diseases, and to calibrate telescopes used for finding exoplanets, that is planets outside of our solar system”, he says.</div> <div> </div> <div><br /></div> <div> </div> <div>In 2018, work began within the five-year prestigious Consolidator Grant, which he received from the European Research Council for his research on developing the frequency comb. At that time, he was one of only 14 researchers in Sweden who received such a grant, the only one at Chalmers. As the grant approached its final stage (&quot;time surely flies&quot;), Victor Torres Company applied for a Proof of Concept grant, also from the ERC.</div> <div> </div> <div><h2 class="chalmersElement-H2">Supports possibilities of commercialisation</h2></div> <div> </div> <div>&quot;The Proof of Concept grant provides support to test and evaluate the steps required to commercialize the research that has been carried out in the previous grant,&quot; says Victor Torres Company. “It can only be applied for by those who already have a previous grant from the ERC. I tried to apply for it last year, and now I tried again and succeeded.”</div> <div> </div> <div><br /></div> <div> </div> <div>The support that the Proof of Concept grant can provide may, for instance, involve applying for patents or conducting market analyses. The grant is initially valid for one year, with the possibility of being extended for six months, and it will start in 2022.</div> <div> </div> <div><br /></div> <div> </div> <div>Although he emphasizes that the grant is not a very large amount of money, the Proof of Concept grant will have a major impact on Victor Torres Company and his research group. In March 2021 he started the company Iloomina AB, together with PhD students Marcello Girardi and Oskar Helgason.</div> <h2 class="chalmersElement-H2"> </h2> <div><h2 class="chalmersElement-H2">Opens future opportunities</h2></div> <div>&quot;We want to commercialize and test the scalability of the technology we have developed,&quot; he says.  “Once the company has started, I will leave it to the doctoral students so that they can continue to develop it. I see it as an opportunity for them to develop their careers. On my hand, I want to continue to do research and teaching.” </div> <div><br /></div> <div> </div> <div>Receiving a Proof of Concept grant will not only help Victor Torres Company to take the necessary steps to commercialize his research. It will also open further future opportunities for him and his groups’ research.  Last year, the European Union opened its European Innovation Council (EIC), an innovation programme to identify and develop breakthrough technologies, and one way that makes it possible to apply for an EIC grant is to have a prior Proof of Concept grant.<br /></div> <div> </div> <div><br /></div> <div> &quot;It would be great to take a couple of steps closer to a final application, something that would be beneficial both for Chalmers and for Iloomina. But that lies further ahead – for now, we have to work on the steps required in the Proof of Concept grant,&quot; says Victor Torres Company.</div> <div><br /></div> <span><div><a href="http://www.vtc-lab.com/" target="_blank">Read more about Victor Torres Company's research on his web page (external link)</a></div></span><div><span> </span></div> <h2 class="chalmersElement-H2">Contact</h2> <div> </div> <div>Victor Torres Company, professor, <a href="mailto:torresv@chalmers.se">torresv@chalmers.se</a>, +46317721904</div> <div> </div> <div><br /></div> <div> </div> <div>Text: Robert Karlsson</div> <div> </div> <div>Photo: Michael Nystås<br /></div>Tue, 08 Feb 2022 10:00:00 +0100https://www.chalmers.se/en/departments/bio/news/Pages/Graphene-sensors-can-detect-bacterial-pathogens.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Graphene-sensors-can-detect-bacterial-pathogens.aspxGraphene sensors can detect bacterial pathogens<p><b>​When vulnerable people develop life-threatening infections in hospitals, time is the crucial factor for survival. Researchers are therefore working intensively to find more rapid and safer methods for detecting bacterial pathogens. Graphene is considered to be an especially suitable material for use in biosensors and diagnostic devices. A research group has now shown that the two-dimensional sheet structure of graphene can very rapidly distinguish between types of bacteria. The aim is to make the sensors sensitive enough.​</b></p><p class="chalmersElement-P">​<span>Sepsis, which accounts for one in five deaths globally, is a strong immune response and circulatory collapse that infection can cause. Sepsis is especially serious for people who develop it in a hospital, and 30 per cent die because too much time elapses between determining which microorganism caused it and quickly applying effective treatment. Currently this takes hours, but developments within sensor technology might shorten this time markedly.</span></p> <div> </div> <p class="chalmersElement-P">&quot;We developed a simple prototype sensor comprising pristine graphene. We measured tiny changes in the electrical resistance of the material and could thereby differentiate types of bacteria. The prototype demonstrates how graphene can quickly and easily distinguish two types of bacteria. We are now striving to find the properties that characterise the bacteria that most frequently cause sepsis in the healthcare system. Based on that, we will modify the graphene sensors so that they can become sensitive enough to help in a hospital setting,&quot; explains <a href="/en/staff/Pages/Ivan-Mijakovic.aspx">Ivan Mijakovic</a>, Professor at Chalmers and the Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark.</p> <div> </div> <h2 class="chalmersElement-H2">Prototype with great potential​</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Interest in developing biosensors to detect pathogenic bacteria and viruses is growing rapidly. Among nanomaterials, graphene is gaining attention because of its special surface properties and electrical conductivity, which enable extremely small and sensitive sensors. Graphene is a two-dimensional sheet of carbon atoms arranged into a honeycomb lattice, which provides a large and very sensitive surface area.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;The carbon atoms have a sphere of electrons above and below the ultra-thin carbon layer. By attaching electrodes at opposite ends, we can measure electrical resistance, making the surface sensitive to anything in the vicinity. In our new study, we show – to our own great surprise – that graphene is so sensitive that we can not only detect whether bacteria are present through small shifts in the electrical charge but also differentiate between different types of bacteria to some extent,&quot; says Ivan Mijakovic.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Bacteria typically range in size from 0.5 to 5 µm, and have distinct shapes – spherical, rod-shaped and spiral. In addition, most bacteria are encapsulated by a cell wall comprising a peptidoglycan made of negatively charged N-acetylglucosamine and N-acetylmuramic acid. This layer is thicker in gram-positive bacteria and thinner in gram-negative bacteria.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;This is mainly a prototype to demonstrate the potential of this type of sensor. Without altering anything at the graphene surface, we can therefore detect whether bacteria are present and distinguish their small differences in surface. Naturally, this type of sensor may be useful on surfaces that must be kept completely bacteria-free, such as implants, but our prototype is more a proof of concept that the technology is possible. Now we can take the concept a step further,&quot; explains Santosh Pandit, researcher at Chalmers and the lead author of the study.</p> <div> </div> <h2 class="chalmersElement-H2">The study is p​art of a major European project</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The prototype study is therefore only the first step in a major European project aiming to develop sensors that can quickly and accurately identify the pathogenic bacteria that currently pose the greatest problem in healthcare.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;The human body has thousands of species of bacteria, most of which are actually harmless or often beneficial. We therefore must be able to differentiate between them and thus we need to determine how to functionalise the graphene surface with antibodies or other receptors that are selective to specific bacteria,&quot; says Santosh Pandit.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The researchers in this international project are therefore collaborating with hospitals to collect the most relevant and problematic pathogens.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;We then 'shave' the surface of these bacteria to reveal which proteins and biomarkers characterise the pathogens. We can then either create antibodies against the peptides or build small, organic chemical receptors for these surface molecules, as we are doing in collaboration with Nina Kann, Professor in Organic Chemistry at Chalmers,&quot; explains Santosh Pandit.</p> <div> </div> <h2 class="chalmersElement-H2">Hospitals need specific and rapid devices</h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">The researchers hope that they can use these diverse types of strategies to further develop the prototype version of the graphene sensor into far more advanced chips.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;Hospitals are looking for a device that is both very specific and very rapid. If this technology succeeds, we would be able to reduce the response time from hours to perhaps minutes so that doctors can respond faster and thus save more lives. The initial target is therefore the bacteria that cause sepsis in hospitals and thus threaten the lives of the most compromised people, but once we have the technology fully developed, we also aim to use it for less urgent applications such as chronic infections or in implants,&quot; concludes Ivan Mijakovic.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Text:</strong> Morten Busch, <a href="https://sciencenews.dk/en">Sciencenews </a></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial"><strong>R</strong></span><span style="background-color:initial"><strong>ead the scientific article </strong><a href="https://doi.org/10.3390/s21238085">Graphene-Based Sensor for Detection of Bacterial Pathogens</a></span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">by the a</span><span style="background-color:initial">uthors Santosh Pandit, Yanyan Chen, Shadi Rahimi, Vrss Mokkapati, Alessandra Merlo and Prof. Ivan Mijakovic at the Department of Biology and Biological Engineering, Chalmers, and Mengyue Li and Prof. August Yurgens at the Department of Microtechnology and Nanoscience (MC2), Chalmers.</span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p>Thu, 03 Feb 2022 09:00:00 +0100