Mathematical Physics

We are interested in mathematical problems inspired by physics.
Our research topics include partial differential equations arising in general relativity theory, kinetic theory, continuum mechanics and quantum physics, special functions in mathematical physics, quantum properties of black holes and connections with representation theory.
Examples of systems that we study are solvable lattice models, the Vlasov-Poisson/Vlasov-Einstein system in galactic dynamics, the Vlasov-Maxwell system in plasma physics, Boltzmann-like kinetic equations in low temperature physics, the Euler equation in fluid dynamics, the Cauchy equations in non-linear elasticity, the Schrödinger and Gross-Pitaevskii equations in quantum mechanics.
We investigate questions regarding existence, asymptotics, stability and topological properties of solutions.
Faculty

Full Professor at Analysis and Probability Theory

Senior Lecturer at Analysis and Probability Theory

Associate Professor at Analysis and Probability Theory

Professor at Analysis and Probability Theory

Senior Researcher at Applied Mathematics and Statistics

Associate Professor at Analysis and Probability Theory

Professor at Applied Mathematics and Statistics

Head of Unit at Algebra and Geometry

Head of Unit at Analysis and Probability Theory

Head of Department at Mathematical Sciences