Previous years


​Postgraduate courses for previous years are listed below (except for those given joint with undergraduate education).



  • Singular Integral Equations
    Examinator: Andreas Rosén
  • Machine learning algorithms for inverse problems
    Examinator: Larisa Beilina​
  • The Hardy Littlewood Circle Method.
    Examinator: Kirsti Biggs
  • Brownian motion
    Examinator: Jeffrey Steif
  • Introduction to Homogenization
    Examinator: Irina Pettersson



  • Harmonic analysis of measures, Q1-2
    Examiner: Maria Roginskaya
  • Topics in time-series analysis: old to new, Q1-2
    Lecturer: Richard Davis (visiting professor)
    Examiner: Holger Rootzen
  • Introduction to inverse and ill-posed problems, begins Q2
    Examiner: Larisa Beilina
  • Finite element methods, Q3
    Examiner: Axel Målqvist
  • Algebraic topology, Q3
    Examiner: Jan-Alve Svensson
  • Singular integral equations, Q4
    Examiner: Andreas Rosen
  • Seminar course (mathematics), continuous
    Examiner: Main supervisor of student
    Contact: Peter Hegarty (Director of Studies)
  • Seminar course I (mathematical statistics), continuous
    Examiner: Main supervisor of student
    Contact: Johan Tykesson (Director of Studies)
  • Seminar course II (mathematical statistics), continuous
    Examiner: Main supervisor of student
    Contact: Johan Tykesson (Director of Studies)



  • Analysis of Boolean functions, Q1
    Examiner: Jeffrey Steif
  • Fractals, Q2
    Examiner: Julie Rowlett
  • Lie Groups and Discrete Subgroups; Symmetric and Locally Symmetric Spaces, Q3
    Examiner: Genkai Zhang
  • Pseudo-differential Operators, Q 3-4
    Examiner: Magnus Goffeng
  • Markov Decision Processes, Q4
    Examiner: Marina Axelson-Fisk
  • Harmonic Analysis of Measures, Q4
    Examiner: Maria Roginskaya
  • Seminar Course I (mathematical statistics), year-round
    Contact: Johan Tykesson
  • Seminar Course II (mathematical statistics), year-round
    Contact: Johan Tykesson



  • Harmonic analysis on symmetric spaces, Q1
    Examiners: Michael Björklund and Genkai Zhang
  • Random partial differential equations, Q1
    Examiner: Annika Lang
  • Stochastic partial differential equations, Q2
    Examiner: Annika Lang
  • Probability theory, Q3
    Examiner: Jeffrey Steif
  • Approximate Bayesian computation, Q3
    Lecturer: Magnus Röding
    Examiner: Johan Tykesson
  • Computational finance, Q4
    Lecturer: Kristin Kirchner
    Examiner: Stig Larsson
  • Analysis of Boolean functions, Q4*
    Examiner: Jeffrey Steif
  • p-adic Methods in Number Theory, Q4
    Lecturers: Dennis Eriksson, Sebastian Herrero, Anders Södergren
    Examiner: Anders Södergren



  • Descriptive Set Theory, Q1
    Examiner: Maria Roginskaya
  • Complex Analytic Varieties, Q 2-3
    Examiner: Elizabeth Wulcan
  • Advanced Finite Element Programming, Q 2-3
    Examiner: Anders Logg
  • Classical and Quantum Particle Systems, Q 3-4
    Lecturers: Jakob Björnberg and Jules Lamers
    Examiner: Jakob Björnberg
  • Introductory K-theory, Q 3-4
    Lecturers: Magnus Goffeng and Dennis Eriksson
    Examiner: Magnus Goffeng
  • The Ubiquitous Heat Kernel, Q4
    Examiner: Julie Rowlett
  • Introduction to Riemannian Geometry, Q4
    Examiner: Genkai Zhang
  • Computational Mathematical Modeling, Q4 + Summer
    Examiner: Anders Logg



  • Representation theory 1, Q 1-2
    Examiner: Michael Björklund
  • Mathematical methods for kinetic and fluid equations, Q 2-3
    Examiner: Håkan Andreasson
    Lecturers: HA + Simone Calogero
  • Modular forms and generating series, Q 2-3
    Examiner: Martin Westerholt-Raum
  • Berkovich spaces, Q 3-4
    Lecturer: Mattias Jonsson (guest professor from U Michigan)
    Examiner and Local Contact: Dennis Eriksson
  • Analysis of Boolean functions, Q 3-4
    Examiner: Jeff Steif
  • Finite element methods, Q 3
    Examiner: Axel Målqvist
  • Advanced Basics of Geometric Measure Theory, Q 3
    Examiner: Maria Roginskaya
  • Analytic Number Theory, Q 3-4
    Lecturer: Julia Brandes
    Examiner: Peter Hegarty
  • Special Topics in Functional Analysis: The Spectrum of the Laplacian, Q 4
    Examiner: Julie Rowlett


  • Multivectors, spinors and index theorems, Q1-2
    Examiner: Andreas Rosén
  • Arithmetic Combinatorics, Q 1-2
    Examiners: Michael Björklund, Peter Hegarty and Maria Roginskaya
  • Scheme Theory, Q 3-4
    Examiners: Per Salberger, Amos Turchet and Dennis Eriksson
  • Lie Groups and Discrete Subgroups, Q 4
    Examiner: Genkai Zhang
  • Algebraic topology, Q4
    Examiner: Jan-Alve Svensson

Mathematical statistics

  • Integration theory
  • Statistical climatology (Petter Guttorp, to be confirmed)



  • Singular integrals (part 2), Q1
    Examiner: Peter Sjögren
  • Topics in optimal transportation, Q 1-2
    Examiner: Robert Berman
  • Markov chains and mixing times, Q 3-4
    Examiner: Jeff Steif
  • Ergodic theory with connections to additive combinatorics, Q 3-4
    Examiner: Michael Björklund
  • Riemannian geometry, Q4
    Examiner: Genkai Zhang
  • Introduction to the theory, numerical methods and applications of ill-posed problems, Nov. 4-12
    Lecturer: Anatoly Yagola (Moscow)
    Contact: Larisa Beilina
  • Inverse problems of vibrational spectroscopy, Nov. 4-12
    Lecturer: Gulnara Kuramshina (Moscow)
    Contact: Larisa Beilina
  • Biomathematics, runs the whole year
    Lecturers: Approximately 10 different invited lecturers
    Contact: Torbjörn Lundh

Mathematical statistics

  • FMVE100 Integration theory (Johan Jonasson)
  • Weak convergence​ (Serik Sagitov)
  • High-dimensional data analysis (Holger Rootzén, 10 p, Sept-Nov)
  • Genetic Epidemiology (Staffan Nilsson)
  • MSF100-MVE325 Statistical Inference Principles (Rebecka Jörnsten)
  • Spatial Statistics (Aila Särkkä) 
  • Markov chains and mixing times (Jeff Steif)
  • Markov random fields (Olle Häggström)
  • MSF200-MVE330 Stochastic processes (Serik Sagitov)



  • Perspectives on mathematics - concept formation and learning, Q 1-2
    Examiners: Christian Bennet and Thomas Lingefjärd (IDPP)
  • Singular Integrals, Q4
    Examiner: Peter Sjögren
  • Industrial perspectives on Systems Biology and Bioinformatics, Q4
    Examiner: Marija Cvijovic
  • Modular forms, Q4
    Examiner: Stefan Lemurell
  • Geometric Mechanics and Geometric Integration, Q4
    Lecturers: Klas Modin, Robert McLachlan and Olivier Verdier
    Contact: Stig Larsson
  • Social Network Analysis, Q2
    Organisers: Vilhelm Verendel, Anton Törnberg, Petter Törnberg
  • Levy processes, Q2
    Organiser: Adam Andersson

Mathematical statistics

  • FMVE100 Integration theory (Johan Jonasson)
  • Chaos expansion on Poisson spaces with some applications in stochastic geometry (Günter Last, Sergei Zuyev)
  • Applied Bayesian Methods (Petter Mostad)
  • Statistics of extremes (study group, Holger Rootzén)
  • Experimental design. Reading course based on Box, Hunter, Hunter: Statistics for Experimenters (Petter Mostad)
  • Brownian motion and diffusion (Mats Rudemo and Magnus Röding
  • MSF200-MVE330 Stochastic Processes (Serik Sagitov)
  • MSF400-MVE315 Martingale Theory (Anton Muratov, Serik Sagitov)
  • Industrial perspectives on Systems Biology and Bioinformatics (Marija Cvijovic)​
  • External course: Extremes in Space and Time (Thomas Mikosch, University of Copenhagen)



  • Stochastic homogenisation theory, Q1
    Examiner: Nils Svanstedt
  • Introduction to K-theory and its applications, Q1
    Examiners: Alexander Stolin and Lyudmila Turowska
  • Electromagnetic fields and waves: Mathematical models and numerical methods, Q 1-2
    Examiner: Larisa Beilina
  • Probabilistic methods in combinatorics, number theory and computer science, Q2
    Examiners: Devdatt Dubhashi, Peter Hegarty and Jeff Steif
  • Ornstein-Uhlenbeck theory in finite dimension, Q2
    Examiner: Peter Sjögren
  • Riemann surfaces, Q 2-3
    Examiner: Bo Berndtsson
  • Hilbert space methods for PDEs, Q 2-3 (start in december)
    Examiner: Grigori Rozenblioum
  • Basics of geometric measure theory, Q3
    Examiner: Maria Roginskaya
  • The mathematical theory of finite element methods, Q3
    Examiner: Stig Larsson
  • Financial mathematics, Q3
    Examiner: Christer Borell
  • Percolation theory, Q3
    Examiner: Olle Häggström
  • Classical mechanics, Q4
    Examiner: Bernt Wennberg
  • Riemannian geometry, Q4
    Examiner: Genkai Zhang
  • Probabilistic methods in combinatorics, number theory and computer science (part 2), Q4
    Examiners: Devdatt Dubhashi, Peter Hegarty and Jeff Steif
  • Stochastic control theory, March 19-23 and April 2-5
    Lecturer: Boualem Djehiche (KTH)
    Contact: Stig Larsson
  • Introduction to computational geometry, Q4
    Lecturer: Ömer Egecioglu (UC Santa Barbara)
    Contact: Peter Hegarty
  • Evolutionary game theory and mean-field games, May 21-25 and June 18-21
    Lecturer (part 1): Sander van Doorn (Bern)
    Lecturer (part 2). TBA. Someone from Université Dauphine, Paris
    Contact: Bernt Wennberg

Mathematical statistics

  • MSF300 Probabilities and Expectations (1st half, Torgny Lindvall)
  • Probabilistic methods in combinatorics, number theory and computer science (2nd half, Devdatt Dubhashi, Peter Hegarty, Jeff Steif)
  • Bootstrap and resampling methods (2nd half and 1st part of spring, reduced speed, Rebecka Jörnsten)
  • Percolation Theory (1st half, Olle Häggström)
  • MSF400/MVE315 Martingale Theory (1st half, Anton Muratov, Sergei Zuyev)
  • MSF100 Statistical Inference Principles (1st half, Rebecka Jörnsten)
  • Stochastic control theory (April-May, Boualem Djehiche)
  • Introduction to R for biologists (April-May, Krzysztof Bartoszek)
  • Statistical Inference and Supervised Learning (May, Mats Rudemo, Magnus Röding)



  • Kinetic Theory of Gases, Q1
    Examiner: Bernt Wennberg
  • Financial Mathematics, Q2
    Examiner: Christer Borell
  • Asymptotical Methods in Analysis,  Q2
    Examiner: Grigori Rozenblioum
  • Triumphs in Mathematics, Q3
    Examiner: Johan Wästlund
  • Lie Groups and Discrete Subgroups, Q4
    Examiner: Genkai Zhang
  • Interacting Particle Systems, Q4
    Examiner: Jeff Steif
  • Algebraic Topology, Q4
    Examiner: Jan-Alve Svensson

Mathematical statistics

  • MSF300 Probabilities and Expectations (1st half, Torgny Lindvall)
  • Introduction to Statistical Genetics (September, Simon Tavaré, Olle Nerman
  • Regression Models and Graphs (October, Nanny Wermuth)
  • MCMC methods in Bayesian inference (2nd half, Petter Mostad)
  • MSF400/MVE315 Martingale Theory (2nd half, Erik Broman)
  • Interacting Particle Systems (2nd half, Jeff Steif)


For postgraduate courses in mathematics the years 2009/2010, 2008/2009 and 2007/2008, see the Swedish page



Mathematical statistics

  • MSF300 Probabilities and Expectations (1st half, Torgny Lindvall)
  • Noise sensitivity and sharp thresholds (Oct-Dec, Jeff Steif)
  • Chaos Expansions, Finite Elements, and Randomly Forced Equations (Krzysztof Podgorski, Igor Rychlik)
  • Introduction to Graphical Markov models (Oct-Dec, Nanny Wermuth)
  • Weak Convergence (1st half, Sergei Zuyev)
  • MSF100 Statistical Inference Principles (1st half, Rebecka Jörnstam)
  • MSF200 Stochastic Processes (1st half, Patrik Albin)
  • Gaussian Stationary Processes (2nd half, Anastassia Baxevani)
  • Elements of Statistical Learning (2nd half, Jenny Jonasson, Mats Rudemo)
  • Robust konstruktionsmetod för ökad tillförlitlighet (anm senast 29 jan 2010, Jacques de Mare)
  • Size-biased random trees and limit theorems in branching processes (May, K. B. Athreya, Peter Jagers)
  • ABC-techniques and Applications (June, Simon Tavaré, Olle Nerman)



Mathematical statistics

  • Sannolikheter och väntevärden (Torgny Lindvall) 7,5 points
  • Linear-fractional Galton-Watson processes (Serik Sagitov) 4,5 points
  • N.s. konvergens (Torgny Lindvall) 7,5 points
  • Forensic statistics (studiecirkel, Alexandra Jauhiainen, Petter Mostad och Jacques de Maré)  7,5 points
  • Konvergenshastigheter för Markovkedjor  (Johan Jonasson) 7,5 points
  • Inferensteori  (Rebecka Jörnsten) 7,5 points
  • Stokastiska differentialekvationer  (Patrik Albin) 7,5 points


Page manager Published: Wed 15 Jun 2022.