Maintenance Optimization with Duration-dependent Costs

A Case Study in Gas Turbine Maintenance Optimization

Markus Bohlin¹
Mathias Wärja²

¹ Swedish Institute of Computer Science AB
² Siemens Industrial Turbomachinery AB
Outline

• Industrial gas turbines
• Problem definition
• Model
• Evaluation
• Multi-unit maintenance
• Evaluation
• Conclusions
What is an Industrial Gas Turbine?

Siemens SGT-800, 47 MW. Siemens Press Image
General Electric J85 Jet Engine. Image by Sanjay Acharya, licensed under Creative Commons Attribution ShareAlike 3.0

Siemens SGT5-8000H, 340 MW. Siemens Press Image

Diagram of a typical gas turbine jet engine. Image by Jeff Dahl, licensed under Creative Commons Attribution ShareAlike 3.0
- An US compressor station pumps on average approximately 20 million m3 of natural gas per day.
- Approximately 4 USD per m3
- Natural gas for 80 M USD per day!
What is Special About Industrial GTs?

Siemens SGT-600 gas turbine used for mechanical drive in a natural gas compressor station in the Edjeleh gas field in southwest Algeria.

If the unit is down, the pumping capacity of the compressor station is lost or is severely reduced.

This is true for many gas turbine applications!

Siemens Press Image
Background

• Maintenance planning software for single turbine
 – Customer: Siemens Industrial Turbomachinery AB
• Deployed early 2008, used mainly for planning after a deviation
• Uses search and heuristics to find solutions
• Global CBM project is in deployment phase
 – PMOpt used in 2 projects
 – Ongoing validation of extended lifetime
• Predicted use is 4-5 operators within 10–15 different operational contracts
• Room for improvement in optimization model
Application Interface

![Application Interface Diagram]

The diagram above illustrates the application interface for managing components and their periodicity in SICS. The table below shows the components along with their periodicity and consumed lifetime.

<table>
<thead>
<tr>
<th>Component</th>
<th>Periodicity</th>
<th>Consumed Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skovlar</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Rotor</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Compressor</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Generator</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Cylinder</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Grunka</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Pzyl</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Grej</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Pyttel</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Foobar</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>

The scenario displayed is 'Test Time periods:', indicating a test scenario for time periods.
Application Interface

![Screenshot of Application Interface]

<table>
<thead>
<tr>
<th>Optimized</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>PackA_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack1_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack2_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack3_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack4_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack5_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack6_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack7_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack8_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack9_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack10_kin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The screenshot shows a table with columns for different years and rows for various entries. The table appears to be part of a software interface, possibly for project management or task tracking.
Problem Specifics

• Downtime is expensive
 – The production value can be several million USD per day!
 – Manpower is relatively cheap, the main cost driver is the duration of the stops

• The production value varies with time
 – Price of oil and gas

• There can be *opportunities* for low-impact maintenance
 – Other equipment at site must also be maintained
 – Upgrades, etc.

• The predicted lifetime of components change
 – Condition-based Maintenance
Activity Model

• Maintenance items \((i)\) are divided into phases \((p \in 1..P)\) of activities (with phase duration \(\Delta_{pi}\))
 – Phase examples: dismantling, maintenance, testing, refitting, warmup and startup.

• Work in each phase is performed in parallel
• Total work duration:

\[
\sum_{p=1}^{P} \max_{i \in I} \Delta_{pi}
\]

i performed at \(t\)
Activity Model

<table>
<thead>
<tr>
<th>Shutdown</th>
<th>Cooling and dismantling</th>
<th>Repair</th>
<th>Testing</th>
<th>Startup</th>
</tr>
</thead>
</table>

Total work duration:
Activity Model

<table>
<thead>
<tr>
<th>Shutdown</th>
<th>Cooling and dismantling</th>
<th>Repair</th>
<th>Testing</th>
<th>Startup</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1.1</td>
<td></td>
<td>R1.3</td>
<td>R2.4</td>
<td>R1.5</td>
</tr>
<tr>
<td>R2.1</td>
<td>R2.2</td>
<td>R3.3</td>
<td>R3.4</td>
<td>R2.5</td>
</tr>
<tr>
<td>R3.1</td>
<td>R3.2</td>
<td>R4.3</td>
<td>R4.4</td>
<td>R3.5</td>
</tr>
<tr>
<td>R4.1</td>
<td>R4.2</td>
<td>R5.3</td>
<td></td>
<td>R4.5</td>
</tr>
<tr>
<td>R5.1</td>
<td>R5.2</td>
<td></td>
<td></td>
<td>R5.5</td>
</tr>
</tbody>
</table>

Total work duration:
Activity Model

Total work duration:
Activity Model

Total work duration:

R2.1 R4.2 R1.3 R3.4 R1.5
Downtime Model

• Each maintenance stop can take days or even weeks

• We must include resting time:
 – Each day, a shift works A hours (usually 10 hours)
 – Sunday’s are off

• Total downtime (w_t is working time at t):

$$v_t = w_t + \max \left(0, (24 - A) \left[\frac{w_t}{A} - 1 \right] + 24 \left[\frac{w_t}{6A} - 1 \right] \right)$$
Downtime Model

<table>
<thead>
<tr>
<th>Shutdown</th>
<th>Cooling and dismantling</th>
<th>Repair</th>
<th>Testing</th>
<th>Startup</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1.1</td>
<td></td>
<td>R1.3</td>
<td>R2.4</td>
<td>R1.5</td>
</tr>
<tr>
<td>R2.1</td>
<td>R2.2</td>
<td></td>
<td>R2.5</td>
<td></td>
</tr>
<tr>
<td>R3.1</td>
<td>R3.2</td>
<td>R3.3</td>
<td>R3.4</td>
<td></td>
</tr>
<tr>
<td>R4.1</td>
<td>R4.2</td>
<td>R4.3</td>
<td>R4.4</td>
<td></td>
</tr>
<tr>
<td>R5.1</td>
<td>R5.2</td>
<td>R5.3</td>
<td>R4.5</td>
<td></td>
</tr>
</tbody>
</table>

Total work duration:

<table>
<thead>
<tr>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night</td>
<td>Night</td>
<td>Night</td>
<td>Night</td>
<td>Night</td>
<td>Rest</td>
<td>Night</td>
<td>Night</td>
</tr>
</tbody>
</table>
Downtime Model

Total work duration:

Tuesday Wednesday Thursday Friday Saturday Sunday Monday Tuesday
R2.1 Night R4.2 Night Night Night R3.4 Night Rest Night Night
Objective

\[
\min_{x,y,v,w,r^N,r^W} f = \sum_{i=1}^{I} \sum_{t=1}^{H} C_i x_{it} + \sum_{t=1}^{H} S_t y_t + \sum_{t=1}^{H} D_t v_t
\]

- **Maintenance Costs**
- **Setup Costs**
- **Production Loss**

\[+ \varepsilon \sum_{i \in I} \sum_{t=1}^{H} (H - t) x_{it}\]

- **Earliness**
Model (1)

\[
\begin{align*}
&\sum_{j=t}^{t+T_i} (x_{ij} + \sum_{i' \in N_i} x_{i'j}) \geq 1 \\
&\sum_{j=1}^{T_i-O_i} (x_{ij} + \sum_{i' \in N_i} x_{i'j}) \geq 1 \\
x_{it} \leq y_t \\
\Delta_{pi} x_{it} \leq w_{pt} \\
r_t^N \geq \frac{\sum_{p=1}^{P} w_{pt}}{A} - 1 \\
r_t^W \geq \frac{\sum_{p=1}^{P} w_{pt}}{WA} - 1 \\
\end{align*}
\]

\(\forall i \in I, t \in 1..H - T_i\) \hspace{1cm} (2)

\(\forall i \in I\) where \(T_i - O_i \leq H\) \hspace{1cm} (3)

\(\forall i \in I, t \in 1..H\) \hspace{1cm} (4)

\(\forall i \in I, p \in 1..P, t \in 1..H\) \hspace{1cm} (5)

\(\forall t \in 1..H\) \hspace{1cm} (6)

\(\forall t \in 1..H\) \hspace{1cm} (7)
Model (2)

\[v_t = \sum_{p=1}^{P} w_{pt} + (24 - A)r_t^N + 24r_t^W \quad \forall t \in 1..H \]

\[v_t \leq k_{pt} \quad \forall t \in 1..H \]

\[\sum_{t=1}^{H} v_t \leq (24 \cdot 7 \cdot H)(1.0 - \alpha) \]

\[r_t^N, r_t^W \geq 0, \text{ integer} \quad \forall t \in 1..H \]

\[x_{it}, y_h \text{ binary} \quad \forall i \in I, t \in 1..H \]
Experimental Setup

- 15-year contract, week level
- Standard and extended-life schedules
- Movement of up to 12 weeks from deadline possible
- Mean result of 10 runs

- **Fix**: Downtime fixed at 100 per hour
- **Var**: Downtime cost from $N(100,50)$ per hour
- **Opp**: 10% zero-cost opportunities
- **Sync**: Equal wear for all components
- **Rnd**: Random wear from uniform distribution
- **Block**: Perform maintenance at deadline
- **Opt**: Optimized maintenance
Varying Allowed Activity Mvmt.

Standard Life Varying Prod. Value 10% Opportunities

Allowed Movement (weeks)
Varying Duration Limit

Capacity = Factor of maximum item duration

Standard Life Varying Prod. Value 10% Opportunities Max 12w. mvmt.
Activity Inclusion

• Common that activities include each other:
 – A major overhaul includes all work in a minor overhaul
 – A minor overhaul includes an oil change
 – An oil change includes a visual inspection
 – A visual inspection includes nothing

• What effect does this have?
Effect of Dependencies

Varying Prod. Value
10% Opportunities
Infinite Movmt.
Redundant Gas Turbines

• The system consists of n turbines
• Out of these, k turbines have to work
 – Otherwise some production capacity is lost
 – Common in oil and gas applications
• High availability due to redundancy
• Redundant turbines in cold standby
Multi-Unit Model, k-out-of-n

$$\min_{x,y,z,w,v} f = \sum_{u=1}^{k} \sum_{i=1}^{I} \sum_{t=1}^{H} C_i x_{uit} + \sum_{t=1}^{H} S_t y_t + \frac{28}{A} \sum_{t=1}^{H} D_t v_t$$

- **Maintenance Costs**
- **Setup Costs**
- **Production Loss**

$$+ \varepsilon \sum_{u=1}^{k} \sum_{i \in I} \sum_{t=1}^{H} (H - t) x_{uit}$$

- **Earliness**
Multi-Unit Model (2)

\[
\begin{align*}
\sum_{j=t}^{i+T_i} (x_{uij} + \sum_{i' \in N_i} x_{ui'j}) & \geq 1 & \forall u, i, t \in 1..H - T_i \\
\sum_{j=1}^{T_i - O_{ui}} (x_{uij} + \sum_{i' \in N_i} x_{ui'j}) & \geq 1 & \forall u, i \text{ where } T_i - O_{ui} \leq H
\end{align*}
\] (8) (9)

\[
x_{uit} \leq y_t & & \forall u, i, t
\] (10)

\[
\sum_u z_{ut} = n - k & & \forall t
\] (11)

\[
\Delta_{pi}(x_{uit} - z_{ut}) \leq w_{upt} & & \forall u, i, p, t
\] (12)

\[
\sum_{p=1}^{P} w_{upt} \leq v_t & & \forall u, t
\] (13)

\[
w_{upt}, v_t \geq 0 & & \forall u, p, t
\] (14)

\[
x_{uit}, y_t, z_{ut} \text{ binary} & & \forall u, i, t
\] (15)
Experimental Setup

• 2-out-of-3 system
• Maintenance of 1 turbine doesn’t cause downtime
• Plan for 3.25 years
• Max 12 week movement of items
Maintenance Cost, Std. life

- var
- var-opp
- fix
- fix-opp

Sync-Block
Sync-Opt
Rnd-Block
Rnd-Opt

Maintenance Cost, Std. life

M. Bohlin
Maintenance Cost, Ext. life
Effects of Single Failure

![Graph showing maintenance cost against failure of component number with two lines representing Block Repair and Optimization.]
Summary

• Maintenance scheduling with downtime-dependent costs
 – NP-complete, MIP model based on the Chalmers model

• Single gas turbine
 – Actual availability increase 0.5-1.0%
 – Cost savings in the order of million dollars per year
 – Capacity limits had little impact, inclusion dependencies larger impact

• Multiple gas turbines
 – Significant effects on maintenance costs
 – Small effects on downtime due to redundancy
 – Significant effects at disturbances (breakdowns)

• Future work:
 – Corrective maintenance and risk levels
 – Multi-unit Train Maintenance
Thank you for your attention!