News: Informations- och kommunikationsteknik related to Chalmers University of TechnologyWed, 01 Apr 2020 11:52:45 +0200 enables communicating gadgets and sustainability<p><b>​The fifth generation of mobile networks, 5G, is on its way, providing all the possibilities that the new technology can offer when our gadgets are able to exchange information with each other. 5G is often described in terms of high speed and increased capacity. But the technology will also enable less waste of resources and induce a development towards a more sustainable society.​</b></p>​<span style="background-color:initial">What differs 5G from the previous generations of mobile standards is that the communication largely is controlled by software, and that the ‘cloud’ is moved closer to the users and applications.</span><div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/5G%20möjliggör%20kommunicerande%20prylar%20och%20hållbarhet/Tommy_Svensson_2016_150x200px.jpg" class="chalmersPosition-FloatRight" alt="Tommy Svensson" style="margin:5px;width:170px;height:228px" />“5G is an enabler for digitalisation and more efficient processes”, says Tommy Svensson, Professor of communication systems, focusing his research on wireless communications. “This means that machines can exchange information with each other, and that many devices are connected at the same time. Sensors are collecting large amounts of data of various kinds, which are processed rapidly for tailor-made and intelligent applications.”</div> <div><br /></div> <div>“Sometimes, I call myself a digital navvy; I'm building wireless digital roads. My research deals with the infrastructure and how data traffic can travel wirelessly, quickly and without obstacles. At the Department of Electrical Engineering at Chalmers University of Technology we are successful in our research on mobile systems, in my area with the focus on radio traffic to and from base stations in the mobile network, as well as in research on mobile base stations and vehicle communications.”</div> <div><br /></div> <div><strong>Fast, robust and powerful</strong></div> <div>5G consists of more advanced technical solutions than 4G and therefore enables the technology to be used for many more purposes. The researchers regard 5G as a tool for solving major societal challenges: climate impact, scarce natural resources, food production, care for an aging population, safe working environments, etc.</div> <div><br /></div> <div>“This new technology not only enables ‘Internet of information’ but also ‘Internet of skills’. That means that the exchange of information, as well as skills and abilities, can be performed from a distance,” Tommy Svensson continues. “For example, the possibility of remotely controlling machines in a mine from a safe and comfortable office above ground. Or surgery that can be performed from a distance and thus enabling more patients to benefit from the expertise of specialist doctors.”</div> <div><br /></div> <div>In order to perform this kind of advanced tasks correctly and safely from a distance, the communication system must be robust and allow very quick data transports. 5G may reduce delays in the data transmission to as short as 1 millisecond. The network can then also be virtually divided into software-controlled slices, where different slices can be designed and dynamically created for individual tasks. In that way the performance is ensured.</div> <div><br /></div> <div>Augmented reality is a concept that is often mentioned in the context of 5G. It means combining reality with digital content, via a mobile phone or through special glasses, that allows for the surroundings to be experienced with computer generated images placed on top. The faster the data transfer is, the more applications are available.</div> <div><br /></div> <div><strong>Paves the way for greater sustainability</strong></div> <div>“In my opinion, 5G clearly enables a transfer from a ‘wear and tear’ mentality to a society that is based on a higher degree of sustainability”, says Tommy Svensson. “Partly it is about the technology itself, and partly about what can be achieved by using the technology.”</div> <div><br /></div> <div>The 5G technology saves energy by streamlining the control of radio signals and by transferring only what is really needed – no superfluous system information needs to be handled. This makes the connection ten times more energy efficient than 4G of today.</div> <div><br /></div> <div>Through various applications of 5G, processes can be made more efficient and consume less resources. This means that it will be possible to benefit from individual and condition-based solutions, provided by multi-connected machines that are able to exchange information with each other.</div> <div><br /></div> <div><strong>Many applications</strong></div> <div>“In smart cities, public transports and other means of transportation can be adapted to external circumstances and to people's intentions”, Tommy Svensson exemplifies. “This makes the traffic flow smoother and less energy-consuming in total. The same applies to water consumption, waste management and other community services. Self-driving cars may not have their breakthrough as fast as originally anticipated, but by using mobile technology it is evident that they eventually will be an important component of the smart transport system of the future.”</div> <div><br /></div> <div>In agriculture, it will be possible to individually regulate watering and fertilization according to the needs of each plant through connected farm machinery and systems for data analysis. Another example is industrial production systems that can be made more flexible and thus enabling faster adjustments of the production to new conditions. If the machine park is equipped with connected sensors, maintenance measures can be adapted to the actual need without causing unplanned downtime.</div> <div><br /></div> <div>“In the future, the driving force for manufacturing companies will be more focused on creating offers that are sustainable, since it will be the services provided rather than the products themselves that the customers want to pay for,” says Tommy Svensson. “This development is being promoted in the connected 5G community.”</div> <div><br /></div> <div>E-health; using digital tools and exchanging information digitally to achieve and maintain good health, is an area also of great interest related to the 5G technology. The possibilities range from virtual meetings with doctors from home to sensors on the body and in textiles that record and analyze health data, thus providing individual-based diagnostics and treatment.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/5G%20möjliggör%20kommunicerande%20prylar%20och%20hållbarhet/smartcity_710x467px.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /><br /><br /><br /><br /></div> <div><br /><br /><br /></div> <div><strong><br /></strong></div> <div><strong><br /></strong></div> <div><strong><br /></strong></div> <div><span style="background-color:initial"><em>In the connected 5G community, sensors in our everyday environment will collect real-time data and send radio signals via fixed and mobile base stations to masts in the mobile network, and also in the opposite direction. Illustration: Pernilla Börjesson</em></span></div> <div><strong><br /></strong></div> <div><span style="background-color:initial"><b></b></span><strong>Needs to be handled with judgment</strong></div> <div>However, the possibilities that the technology implies can also evoke fear and hesitation, for example concerning privacy and information security.</div> <div><br /></div> <div>“5G is a tool, and just like any other tool 5G can be used for both good and not so good purposes”, Tommy Svensson says. “It is important to have an open debate about what kind of society we want in the future and ensure that the legislation keeps up with the new technology that is being introduced. However, the opportunities outweigh the risks. I am confident that we will find a good balance.”</div> <div><br /></div> <div><strong>New generations will follow</strong></div> <div>On a small scale, 5G networks already exist. The development of the technology is in full swing and in autumn 2020, <a href="" target="_blank">the Swedish Post and Telecom Authority ​</a>will hold an auction of the frequency ranges for 5G. The introduction will take place in stages, where several mobile network generations will exist in parallel. The industry's assessment is that the major breakthrough of the 5G technology will be in five to ten years.</div> <div><br /></div> <div>To most people, 5G might be a new and exciting technology, but the aim of the researchers is now set for 6G.</div> <div><br /></div> <div>”Currently, we have some interesting research projects underway. For example, we want to study how to integrate artificial intelligence into the sixth generation of mobile communication networks”, says Tommy Svensson. “When AI becomes part of the communication system, you can really talk about a revolution in intelligent services. 6G is likely to be introduced around year 2030.”</div> <div><br /></div> <div>Text: Yvonne Jonsson</div> <div><br /></div> <div><div><strong>For more information, contact</strong></div> <div><a href="/en/staff/Pages/tommy-svensson.aspx">Tommy Svensson</a>, Professor in the Communication systems research group, where he is leading the wireless systems research, Department of Electrical Engineering, Chalmers University of Technology</div> <div><a href=""></a></div></div> <div><br /></div> <div><br /></div> <div><h2 class="chalmersElement-H2">Facts about 5G</h2> <div><br /></div> <div><ul><li>Machine to machine communication – a large increase in the number of connected gadgets that are able to exchange information with each other, also called ‘Internet of Things’.</li> <li>Considerable growth in data traffic – about 1000 times more than today. 5G can handle a larger amount of data from multiple devices simultaneously.</li> <li>Higher transmission speed – top speeds up to 10 times higher than 4G, about 10 Gbit / second.</li> <li>Less latency, shorter response times – about 1 millisecond compared to 25-35 milliseconds today.</li> <li>Lower energy consumption – the connection via 5G becomes ten times more energy efficient than today's 4G. 5G requires only 0.2 watts of energy to transmit 1 megabyte of data.</li> <li>Hig​<span style="background-color:initial">her frequencies – in its first stage, 5G uses the frequency band 3.4-3.8 GHz, and in the future also the millimeter wave band (over 24 GHz). To get a god range, this requires more advanced solutions using many antennas per base station.</span></li></ul> <div><br /></div></div></div> <div><div><strong>Examples of research on 5G performed at Chalmers</strong></div> <div><strong><br /></strong></div> <div><ul><li><a href="/en/projects/Pages/Mobile-and-wireless-communications-Enablers-for-Twenty-twenty.aspx">METIS – Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society</a></li> <li><a href="" target="_blank">mmMAGIC – Millimetre-Wave Based Mobile Radio Access Network for Fifth Generation Integrated Communications</a></li> <li><a href="/en/departments/e2/news/Pages/The-project-that-sets-the-standard-for-5G-in-vehicles.aspx">5G Car – The project that sets the standard for 5G in vehicles</a></li></ul></div> <div><br /></div></div> <div><br /></div> <div><div><strong>Are you looking for facts about health risks related to electromagnetic fields and 5G?</strong></div> <div><ul><li><a href="" target="_blank">”Recent Research on EMF and Health Risk”</a>, report 2019:8 from the Swedish Radiation Safety Authority</li> <li><a href="" target="_blank">”ICNIRP guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)”​</a>, 2020. ICNIRP, International Commission on Non‐Ionizing Radiation Protection, is an independent non-profit organization that provides scientific advice and guidance to the World Health Organization and the European Commission, among others.</li></ul></div></div> ​Tue, 31 Mar 2020 00:00:00 +0200 virtual kick-off for the Digital Twin Cities Centre<p><b>​​With over 80 participants representing 30 partners from academia, industry and the public sector, the new Digital Twin Cities Centre (DTCC) was launched in a virtual kick-off event.</b></p><div>Due to the Covid-19 situation, the kick-off took place in the form of a large video conference. <br /></div> <div><br /></div> <div><div> – We were looking forward to meeting physically to really engage in discussions, but under these circumstances we all have to change the way we work and luckily we are well prepared to do most DTCC activities online”, says Bernd Ketzler, Centre Coordinator.  </div> <div> </div> <div>Besides introducing all partners to the operations of the centre, the main purpose of the event was to start the discussions on concrete research activities. Through several online workshops and a survey, all partners will work together to establish a detailed plan in the next few weeks.  Lina Vicsai, Ramboll Sweden, stresses the importance of collaboration across disciplines and sectors: </div> <div> </div> <div> – Building a Digital Twin of a city has tremendous potential to create value to the society at large and its citizens. Through co creation and exchange of ideas we can solve the challenges”. </div> <div> </div> <div>One of the Swedish flagship projects is “Virtual Gothenburg”, aiming to create a digital copy of Gothenburg to plan, manage and build the city more efficiently. Eric Jeansson, project lead for Virtual Gothenburg, presented the city’s ambitious vision at the kick-off and highlighted the potentials of Digital Twins for municipalities. <br /><br /></div> <div> – In the forthcoming decades our cities will face the greatest challenges ever. In order to address these and trying to bring the city into the future, we must find new approaches. A digital twin can help us plan, manage and maintain our city in a much smarter and efficient way, which will be essential when it comes to fulfilling our common goals for a sustainable society.” </div> <div> </div> <div>The Centre Director Professor Anders Logg from Chalmers is very pleased that the centre is now operational.</div> <div> </div> <div> – We have been working towards this day for a long time, first in preparing the centre application and then working hard with administrative preparations for the launch of the centre and the kick-off. I’m very happy that DTCC is now officially launched and look forward to working closely together with all the talented participants of the centre.” </div> <div> </div> <h2 class="chalmersElement-H2">Background     </h2> <div> </div> <div>The Digital Twin Cities Centre hosted by Chalmers is 1 of 21 competence centres funded by VINNOVA, Sweden’s innovation agency. ​The centre aims to establish Digital Twin Cities as the foundation for digital planning, design, construction and management of sustainable, intelligent and inclusive Swedish cities and regions. A broad consortium of 30 Swedish and international stakeholders will cooperate in the Digital Twin Cities Centre. Cutting-edge research will be conducted in eight different research areas, covering all aspects needed to develop large-scale digital twin technology. </div> <div><br /></div> <div><a href="/en/centres/dtcc/Pages/default.aspx">More information on the DTCC web</a><br /></div></div>Thu, 26 Mar 2020 14:00:00 +0100 has scaled up AI, autonomous systems and software at Chalmers<p><b>​WASP Chair Sara Mazur and KAW Chair Peter Wallenberg visited Chalmers to gain insight into the activities. The large research program has scaled up the research at several of Chalmers departments.</b></p>​<span style="background-color:initial">During the visit, Sara Mazur and Peter Wallenberg met Chalmers’ WASP researchers and learned about how the programme has developed at the university. They first met three of the research leaders that Chalmers has recruited with funding from WASP.</span><div><br /></div> <div>Professor Ross D. King has been recruited from the University of Manchester. He aims to make science more efficient with the aid of artificial intelligence (AI). At the Department of Biology and Biotechnology, he will continue his work with a &quot;Robot Scientist&quot;. The focus is to understand how cells work - a research area that is so complex that human scientists struggle, and where robotic help is needed.</div> <div><br /></div> <div>Christopher Zach, joining recently from Toshiba's research lab in Cambridge, is now a Research Professor at the Department of Electrical Engineering, and Fredrik Johansson, with a postdoc from the Massachusetts Institute of Technology, is now an Assistant Professor at the Department of Computer Science and Engineering. </div> <div><br /></div> <div>Christopher's research topic is computer vision and image understanding, and Fredrik's research area is machine learning with a focus on medical applications. With mathematical theory and modelling as a scientific basis, the goal is to develop tools to be used as decision support in autonomous systems and health care. Is it possible to design a system with an ability to reason its way to a correct conclusion?</div> <div><br /></div> <div>“Artificial intelligence offers very promising support in radiology, to identify tumours and other abnormalities in tomography or X-ray images. But work remains to be done to make the systems robust to changes in personnel, equipment and patient groups,” says Fredrik Johansson.</div> <div><br /></div> <h2 class="chalmersElement-H2">WASP projects at five departments</h2> <div>The WASP program has scaled up the research in AI, autonomous systems and software at Chalmers. Since the start in 2018, approximately 50 PhD students and postdocs have been recruited and further recruitments are planned. The initiative is particularly noticeable at the Department of Mathematical Sciences, according to Daniel Persson, Assistant Professor and supervisor in the WASP program.</div> <div><br /></div> <div>“Mathematics for AI has increased at the department, not least the collaboration between research groups and with industry. A total of 14 research projects within AI are ongoing at the department today – thanks in large part to the fact that our researchers have been successful in obtaining grants from WASP,” says Daniel Persson.</div> <div><br /></div> <div>Chalmers Vice President for Research and Doctoral Education Anders Palmqvist is very pleased with how WASP has spread across the university departments.</div> <div><br /></div> <div>“We have ongoing WASP projects at five different departments. Chalmers has a strategic ambition to work across departments through its Areas of Advance, and Chalmers' initial work to mobilise for the launch of WASP was handled in collaboration with the Information and Communication Technology Area of Advance,” says Anders Palmqvist.</div> <div><br /></div> <h2 class="chalmersElement-H2">Successful graduate school</h2> <div>In addition to research projects and strategic recruitments, WASP also runs a graduate school for PhD students with a range of joint courses and network meetings. Christian Berger, from the Department of Computer Science and Engineering, was involved in building up the graduate school.</div> <div><br /></div> <div>“The courses and network meetings, both nationally and internationally, offer great value to the PhD students. It was a challenge to develop an educational programme adapted to students from many disciplines, but what we have achieved broadens the students’ expertise and gives them an ability to communicate their research between the disciplines – which is not always easy,” says Christian Berger.</div> <div><br /></div> <div>During their visit to Chalmers, Sara Mazur and Peter Wallenberg also visited Chalmers Biomechatronics and Neurorehabilitation Lab. Director Max Ortiz Catalan demonstrated two types of research projects with assistance from two patients.</div> <div><br /></div> <div><br /></div> <div><br /></div> <div><strong>About WASP</strong></div> <div>The Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP) is a major national initiative for strategically motivated basic research, education and faculty recruitment in artificial intelligence, autonomous systems and software development, funded by the Knut and Alice Wallenberg Foundation together with the partner universities and participating industry. The starting point for WASP is the combined existing world-leading competence in Electrical Engineering, Computer Engineering, and Computer Science at Sweden’s five major ICT universities: Chalmers University of Technology, KTH Royal Institute of Technology, Linköping University, Lund University and Umeå University. Research projects are also conducted at Uppsala University and Örebro University.</div> <div>The aim is to strengthen, expand, and renew the national competence through new strategic recruitments, a challenging research program, a national graduate school, and collaboration with industry.</div> <div><a href=""></a></div> <div><br /></div> <div>At Chalmers, there is an established collaboration between WASP and Chalmers AI Research Centre, CHAIR, to ensure good synergy.</div> <div><a href="/en/centres/chair/Pages/default.aspx"></a></div> Tue, 25 Feb 2020 17:00:00 +0100 the internet more energy efficient<p><b>​Researchers at Chalmers ​recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded multiple scientific articles, in publications including Nature Communications.</b></p>​<span style="background-color:initial">Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now. But to accommodate this digital lifestyle, a huge amount of data needs to be transmitted through fibre optic cables – and that amount is increasing at an almost unimaginable rate, consuming an enormous amount of electricity. This is completely unsustainable – at the current rate of increase, if no energy efficiency gains were made, within ten years the internet alone would consume more electricity than is currently generated worldwide. The electricity production cannot be increased at the same rate without massively increasing the usage of fossil fuels for electricity generation, which of course would lead to a significant increase in carbon dioxide emissions.</span><div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Smarta%20datachips%20del%20av%20lösningen%20för%20att%20göra%20internet%20energisnålare/Peter-Andrekson_250x333px.jpg" class="chalmersPosition-FloatRight" alt="Peter Andrekson" style="margin:5px;width:200px;height:263px" /><br /><span style="background-color:initial">“The challenge lies in meeting that inevitable demand for capacity and performance, while keeping costs at a reasonable level and minimising the environmental impacts,” says Peter Andrekson, Professor of Photonics at the Department of Microtechnology and Nanoscience at Chalmers.</span><br /></div> <div><br /></div> <div>Peter Andrekson was the leader of the 5-year research project <a href="" target="_blank">‘Energy-efficient optical fibre communication’</a>, which has contributed significant advances to the field.</div> <div><br /></div> <div>In the early phase of the project, the Chalmers researchers identified the biggest energy drains in today's fibre optic systems. With this knowledge, they then designed and built a concept for a system for data transmission which consumes as little energy as possible. Optimising the components of the system against each other results in significant energy savings.</div> <div><br /></div> <div>Currently, some of the most energy-intensive components are error-correction data chips, which are used in optical systems to compensate for noise and interference. The Chalmers researchers have now succeeded in designing these chips with optimised circuits.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Smarta%20datachips%20del%20av%20lösningen%20för%20att%20göra%20internet%20energisnålare/Per-Larsson-Edefors_250x333px.jpg" class="chalmersPosition-FloatLeft" alt="Per Larsson-Edefors" style="margin:5px;width:200px;height:263px" />“Our measurements show that the energy consumption of our refined chips is around 10 times less than conventional error-correcting chips,” says Per Larsson-Edefors, Professor in Computer Engineering at the Department of Computer Science and Engineering at Chalmers.</div> <div><br /></div> <div>At a systemic level, the researchers also demonstrated the advantages of using ‘optical frequency combs’ instead of having separate laser transmitters for each frequency channel. An optical frequency comb emits light at all wavelengths simultaneously, making the transmitter very frequency-stable. This makes reception of the signals much easier – and thus more energy efficient.</div> <div><br /></div> <div>Energy savings can also be made through controlling fibre optic communications at the network level. By mathematically modelling the energy consumption in different network resources, data traffic can be controlled and directed so that the resources are utilised optimally. This is especially valuable if traffic varies over time, as is the case in most networks. For this, the researchers developed an optimisation algorithm which can reduce network energy consumption by up to 70%.</div> <div><br /></div> <div>The recipe for these successes has been the broad approach of the project, with scientists from three different research areas collaborating to find the most energy-saving overall solution possible, without sacrificing system performance.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Smarta%20datachips%20del%20av%20lösningen%20för%20att%20göra%20internet%20energisnålare/Erik-Agrell_250x333px.jpg" class="chalmersPosition-FloatRight" alt="Erik Agrell" style="margin:5px;width:200px;height:263px" />These research breakthroughs offer great potential for making the internet of the future considerably more energy-efficient. Several scientific articles have been published in the three research disciplines of optical hardware, electronics systems and communication networks.</div> <div><br /></div> <div>“Improving the energy efficiency of data transmission requires multidisciplinary competence. The challenges lie at the meeting points between optical hardware, communications science, electronic engineering and more. That’s why this project has been so successful”, says Erik Agrell, Professor in Communications Systems at the Department of Electrical Engineering at Chalmers.</div> <div><br /></div> <div><div><strong>More on the research</strong></div> <div>The research could have huge potential to make future internet usage significantly more energy efficient. It has resulted in several research publications within the three scientific disciplines of optical hardware, electronics systems and communications networks.The research results have been published in multiple articles, including the following three:</div> <div><ul><li><a href="">Phase-coherent lightwave communications with frequency combs</a>, in the journal Nature Communications</li> <li><a href="" target="_blank">Energy-Efficient High-Throughput VLSI Architectures for Product-Like Codes</a>, in the Journal of Lightwave Technology</li> <li><a href="" target="_blank"><span style="background-color:initial">Join</span><span style="background-color:initial">t power-efficient traffic shaping and service provisioning for metro elastic optical networks</span>​</a><span style="background-color:initial">, in the journal IEEE/OSA Journal of Optical Com</span><span style="background-color:initial">munications and Networking, </span><br /></li></ul></div> <div><br /></div> <div>The 5-year research project <a href="">’Energy-efficient optical fibre communication’</a> ran from 2014–2019, and was financed by the Knut and Alice Wallenberg Foundation.</div> <div><br /></div> <div><strong>Some more information on some of the research breakthroughs:</strong></div> <div>Smart, error correcting chips:</div> <div>The data chips have been designed by Chalmers and manufactured in Grenoble in France. The Chalmers researchers subsequently verified the chips’ performance and measured the energy usage, which was just a tenth of current error-correcting chips. </div> <div>At an energy transfer speed of 1 terabyte per second (1 terabyte = 1 trillion bits) <a href="" target="_blank">the researchers demonstrated that the chip drew less energy than 2 picojoules​</a> (1 picojoule = 1 trillionth of a joule) per bit. This equates to a power consumption of 2 Watts at this data rate. Comparatively, the current energy usage at such high transfer speeds is around 50 picojoules per bit, around 50 Watts.</div> <div><br /></div> <div>Text: Yvonne Jonsson</div> <div>Portrait photos: Johan Bodell, Chalmers, Laurence L Levin</div> <div><br /></div> <div><div><strong>For more information, contact:</strong></div> <div>Optical hardware: </div> <div><a href="/en/Staff/Pages/Peter-Andrekson.aspx">Peter Andrekson</a>, leader of the research project, and Professor of Photonics at the Department of Microtechnology and Nanoscience at Chalmers University of Technology</div> <div><a href=""></a></div> <div><br /></div> <div>Electronics systems: </div> <div><a href="/en/staff/Pages/perla.aspx">Per Larsson-Edefors</a>, Professor in Computer Engineering at the Department of Computer Science and Engineering at Chalmers <span style="background-color:initial">University of Technology</span></div> <div><a href=""></a></div> <div><br /></div> <div>Communications networks: </div> <div><a href="/en/staff/Pages/erik-agrell.aspx">Erik Agrell​</a>, Professor in Communications Systems at the Department of Electrical Engineering at Chalmers <span style="background-color:initial">University of Technology</span></div> <div><a href=""></a></div> <div><span style="background-color:initial">​</span></div></div></div></div>Thu, 13 Feb 2020 00:00:00 +0100 of investment in AI and autonomous systems research<p><b>​The Wallenberg AI, Autonomous Systems and Software Program (WASP), Sweden’s largest individual research programme, has been extended by three years and will receive a further research grant of nearly SEK 1.3 billion.</b></p>​<span style="background-color:initial">The decision has been recently taken by the board of the Knut and Alice Wallenberg Foundation, and means that the programme, which started in 2014, will continue until 2029 with a total budget of SEK 5.5 billion. The Knut and Alice Wallenberg Foundation (KAW) will provide SEK 4.2 billion, and the remainder will be provided, as previously, mainly from the five partner universities and industry.</span><div><br /></div> <div><div>The five partner universities in the WASP programme are Chalmers University of Technology, KTH Royal Institute of Technology, Linköping University, Lund University and Umeå University.</div> <div><br /></div> <div>The decision has been announced at the same time as a new mandate period for the WASP board commences, and Sara Mazur takes over the chair. Anders Ynnerman, who has been appointed as programme director from 1 July 2020, will work with Sara Mazur and review the long-term investments and initiatives to which the new capital can contribute.</div> <div><br /></div> <div>“We will continue to work towards our vision of strengthening Sweden’s expertise within AI, autonomous systems and software. One way we can do this is by continuing to recruit both junior and senior researchers to Sweden. We have so far managed to attract 15 professors and 12 associate senior lecturers, with more in the pipeline. There is considerable interest in coming to Sweden to carry out research here”, says Anders Ynnerman.</div> <div><br /></div> <div>“The new financing and the extra years make it possible to continue to develop the research arenas in WASP. These are important environments for collaboration between the universities and Swedish industry in general, and will help to ensure that Sweden gains long-term benefit from the investment in research and education”, says Sara Mazur.​</div> </div> <div><br /></div> <div><a href="" target="_blank">Read the full news release on the WASP website</a></div> <div><br /></div> <div><strong>Links:</strong></div> <div><a href=""></a></div> <div><a href="">​</a></div> <div><br /></div> Tue, 17 Dec 2019 15:00:00 +0100 for Data Science and Machine learning research projects 2020<p><b>​Call for project proposals (budget not exceeding 300 kSEK) that address using data science and machine learning in research projects.</b></p><div>​<span><strong>Important dates:</strong><br />Submission: Nov 22, 2019<br />Notification: Nov-Dec 2019<br />Expected project start: Dec 2019-Jan 2020 (can be discussed)<span style="display:inline-block"></span></span></div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>Data driven research is becoming increasingly important for many research activities at Chalmers. To extract valuable patterns from large data sets and meet the related challenges, Chalmers and the ICT Area of Advance have created a group of data science research engineers with the purpose of contributing expertise for a few research projects, i.e., projects with a strong emphasis on methods of data analysis that are needed in research projects.</div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>We are prioritizing applied research involving new collaborations between researchers from different research communities, for example across different Areas of Advance, to support research groups in need of extracting and analysing large sources of data using machine learning. The group has previously participated in several successful research projects ranging across different fields of Chalmers. <a href="" target="_blank">For examples of previous projects, see this visualization.</a></div> <div> </div> <div> </div> <div> </div> <div>The Area of Advance ICT has four research profiles that summarize some of the challenges and opportunities of the modern society in which ICT can contribute. One of them is Big Data (e.g. data collection and storage, data visualization, and data analytics through machine learning and high-dimensional statistics). Moreover, AoA ICT is currently building up the Chalmers AI Research Centre (<a href="/en/centres/chair/Pages/default.aspx" target="_blank">CHAIR</a>) and would like to encourage projects that include applications of machine learning that could lead to further AI-related projects at Chalmers. </div> <div> </div> <div> </div> <div> </div> <div>The unit of data science research engineers is available to provide feedback about the proposals during the weeks leading up to the submission deadline. This will ensure writing a proposal and matching project proposals with relevant knowledge and methods. They can be contacted through the mailing list <a href=""></a> and it is recommended to seek feedback in the formulation of the proposal.</div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Requirements:</h2> <h2 class="chalmersElement-H2"> </h2> <ul><li>The data science research engineers will provide collaboration and support in new, or existing projects, by application of machine learning and data science to extract patterns out of one or a few specific data sources, possibly also including AI-related techniques.</li> <li>The level of involvement should be not less than 30% of full time equivalent, and not larger than 50% full time equivalent during a period of 6 months.</li> <li>The projects should preferrably start in the period between 1st of December 2019 and 15th of Jan 2020. The exact date and extent can be discussed.</li> <li>The budget should not exceed 300 kSEK including indirect costs (OH). It can cover personnel costs, equipment, data, or involvement of domain related researchers and engineers on your side. The budget should not cover the involvement of the data science research engineers which is provided as part of the project.</li> <li>The proposal for the support and collaboration should have a clear relation to Data Science/Machine learning and research. The proposal should be focused on utilization of data in different application areas in relation to Chalmers research activities.</li></ul> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">The proposal form:</h2> <div> </div> <div>The application should be maximum 3 pages long, font 11pt Times–roman. A one-page CV of the main applicant and main project participants should be added. Maximum four projects participants should include their CVs.</div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">The proposal should include:</h2> <div> </div> <div>a) Project title and the project abbreviation.</div> <div> </div> <div>b) The main applicants: Name and e-mail and department</div> <div> </div> <div>c) The preferred starting date and ending date for the project</div> <div> </div> <div>d) A short overview of the project, with its research challenges and objectives and what novel possibilities you see in using machine learning or data science in your domain/research area</div> <div> </div> <div>e) A description of the type, size and availability of the data to be used in the projects including current availability and any restriction of use from intellectual property restrictions or so</div> <div> </div> <div>f) A concrete description of the how you would start to work together with the data science research engineers to extract patterns from data</div> <div> </div> <div>g) The different types of expertise in the project (what type of expertise, and the expected involvement). Note: interaction with the DSRE team about this during writing of the proposal is recommended</div> <div> </div> <div>h) The expected outcome (including disemination/publication plan) and its potential for further research/activities</div> <div> </div> <div>i) The project overall time-line and budget (expenses on your side)</div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Evaluation Criteria:</h2> <div> </div> <div>• How innovative is the project in your research domain?</div> <div> </div> <div>• How central is the use of large data sources in the project?</div> <div> </div> <div>• How high is the potential impact of the project for its research field?</div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Submission:</h2> <div> </div> <div>The application should be submitted as one PDF document to</div> <div> </div> <a href="" target="_blank"></a> <div> </div> <div> </div> <div> </div> <div>The proposals will be evaluated by the AoA ICT management group and decided by the AoA ICT Director and the unit manager of the data science research engineers. A review process will include a reference group across different areas of Chalmers.</div> <div> </div> <div> </div> <div> </div> <div>General Questions can be addressed to Ivica Crnkovic <a href=""></a> and Vilhelm Verendel <a href=""></a>. General information on the research within the Area of Advance ICT can be found <a href="/en/areas-of-advance/ict/Pages/default.aspx"></a>.</div> <div> </div> <div> </div> <div> </div> <div>The data science research engineers and the operational team can be reached at <a href=""><br /></a></div> <div><br /></div> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/About%20us/IKT_logo_600px.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px" /><br /><br /><br /><a href=""></a></div>Mon, 04 Nov 2019 16:00:00 +0100 contributes to Big Data research in Bulgaria<p><b>On 7th October, a new European centre of excellence in Big Data and Artificial Intelligence was launched. The GATE Institute is located in Sofia and is a partnership between Sofia University, Chalmers University of Technology and Chalmers Industrial Technologies.</b></p><p>​<br />The initiative is made through funding for seven years from the EU's Horizon 2020 Widespread programme, which aims to promote competence and innovation across Europe and thereby strengthen European competitiveness and ability to meet societal challenges. The goal is to build research capacity and promote innovation power.<br /><br />Graham Kemp at the Department of Computer Science and Engineering at Chalmers has been working with preparations and the application since 2017 and is very pleased that the Institute has now been launched.<br /><br /><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/News%20events/GATE/Gate_GrahamKemp.jpg" alt="Graham Kemp" class="chalmersPosition-FloatRight" style="margin:5px;vertical-align:middle;width:200px;height:288px" />“We see an opportunity to share knowledge and experience in a field that is developing extremely rapidly. Our participation in GATE will lead to greater international impact, perspectives and interaction. In the longer term the GATE Institute will become a strong partner for collaboration in Eastern Europe”, says Graham Kemp.<br /><br />The research is focused on four strategic application themes: future cities, intelligent government, smart industry and digital health. GATE will employ over 100 researchers and install three new research labs at Sofia University, City Living Lab, Digital Twin Lab, in multidisciplinary collaboration with industry, as well as Virtual Reality and Big Data Visualisation (Open Visualisation Lab).<br /><br />The GATE Institute, as the only Big Data centre of excellence in Eastern Europe, will form a hub in a European network of more than 50 Big Data centres. GATE thus plays a strategically important role in expanding the network and contributing to knowledge transfer and innovation that will provide exchange not only at national or regional level, but for the whole of Europe. GATE will gather and unite everyone with interest in the research field – academia, government, industry and society.<br /><br />To the webpage of Gate: <a href="" target="_blank"> <br /></a></p> <p><em>This project has received funding from the European Union’s Horizon 2020 WIDESPEAD-2018-2020 TEAMING Phase 2 programme under Grant Agreement No. 857155.</em></p> <p><br />Captions</p> <p><strong>Group photo:</strong> Participants at the GATE kick-off meeting on 7th October 2019, in Sofia, Bulgaria. Back row, from left: Oana Radu (Research Executive Agency, European Commission), Ales Fiala (Research Executive Agency, European Commission), Boyan Stefanov (Sofia University), Eleonora Getsova (Sofia University), Nils Munk Wirell (Chalmers Industrial Technologies), Camilla Johansson (Chalmers Industrial Technologies), Yannis Patias (Sofia University), Iva Krasteva (Sofia University), Petya Stancheva (DG RTD, European Commission), Vassil Vassilev (London Metropolitan University)<br />Front row, from left: Irena Pavlova (Sofia University), Dag Wedelin (Chalmers University of Technology), Graham Kemp (Chalmers University of Technology), Ivica Crnkovic (Chalmers University of Technology), Sylvia Ilieva (Project Coordinator, Sofia University), Golaleh Ebrahimpur (Chalmers Industrial Technologies), Magda De Carli (DG RTD, European Commission), Dessislava Petrova-Antonova (Sofia University).<br /><br /><strong>The press conference:</strong> Eleonora Getsova moderates a press conference with (seated, left-to-right) Magda De Carli (DG RTD, European Commission), Prof Sylvia Ilieva (GATE project coordinator, Sofia University), Prof Anastas Gerdjikov (Rector, Sofia University), Dr Golaleh Ebrahimpur (CEO, Chalmers Industrial Technologies) and Prof Ivica Crnkovic (Chalmers University of Technology).<br /><br /><strong>Audience:</strong> The GATE opening event took place in the Ceremonial Hall of Sofia University St. Kliment Ohridski.<br /><br /><strong>Photos: </strong>Oleg Konstantinov<br /></p> <p><br /><a href="" target="_blank"></a></p>Mon, 14 Oct 2019 00:00:00 +0200 orientation built up by smart imaging<p><b>​Where am I? The question is relevant not only to humans but also to self-driving cars that must be confident about their own position. Researchers at Chalmers University of Technology are developing smart algorithms for so-called visual localisation based on machine learning of large amounts of data collected from photos.</b></p>​<img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Smart%20bildteknik%20bygger%20artificiellt%20lokalsinne/FredrikKahl_250x300px.jpg" class="chalmersPosition-FloatRight" alt="Fredrik Kahl" style="margin:5px" /><span style="background-color:initial">“Visual localisation means that a robot or car should be able to determine its current position using camera images that are compared to a map of the surroundings”, says Fredrik Kahl, professor of computer vision and image analysis at the department of Electrical Engineering at Chalmers. &quot;It is about identifying distinct features and comparing them to already known characteristics in the surroundings, which are positioned on a three-dimensional map.&quot;</span><div><br /><span style="background-color:initial"></span><div>Of the methods currently available to determine your position, camera is the most promising in this context.</div> <div><br /></div> <div>”Camera technology is comparatively cheap and provides access to a lot of information”, Fredrik Kahl continues. “There are several possible applications for the technology, where self-driving cars and unmanned vehicles probably are the most prevalent. Research is also underway in areas such as smart camera technology used in mobile phone navigation apps, in industrial production processes and in flexible systems for inspection of various environments.”</div> <div><br /></div> <div>One example, where the technology is now being demonstrated in a supermarket setting for later transfer to other applications, is the research project ‘Semantic Mapping and Visual Navigation for Smart Robots’, funded by the Swedish Foundation for Strategic Research. The project is headed by Fredrik Kahl and involves researchers from Chalmers and Lund University among others.</div> <div><br /></div> <div>”Semantic mapping means training the system to be able to recognise named physical objects in pictures and link them to a geographical position”, Fredrik Kahl says. “In the supermarket setting, the system first gets to learn how selected products look like and what they are called, and then it should be able to register where these products are located on the shelves in the store. To fulfill the task, various subsystems in machine learning, computer vision and robotics need to work together.”</div> <div><br /></div> <div>This technology will be tested in a supermarket in Stockholm, where a drone will fly along the shelves to identify which and how many products of each kind that are in stock. One challenge is that the products on the shelves can block each other.</div> <div><br /></div> <div>There are significantly more difficulties to overcome when transferring this technology outdoors and incorporating it into a self-driving car. Then, factors such as weather, daylight and time of the year also need to be considered.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Smart%20bildteknik%20bygger%20artificiellt%20lokalsinne/kamerabilder_750px.jpg" class="chalmersPosition-FloatLeft" alt="camera images" style="margin:5px" /><br /><br /><br /></div> <div><br /></div> <div>“A picture taken on a beautiful summer day differs quite a lot from a picture taken at the same place on a wintry evening in January”, says Fredrik Kahl. “Without leaves on bushes and trees, the view can be completely changed, and other objects appear in the picture instead. Fog, snow and rain, in turn, are blurring the recognition marks.”</div> <div><br /></div> <div>Therefore, in order to build the visual localisation system, you need to have access to many photos taken under different exterior circumstances from the same geographical location.</div> <div><br /></div> <div>The researchers are putting labels, annotations, for various types of phenomena on the images that they want the system to recognise, such as ‘road’, ‘pavement’, ‘building’ etc. Often, subdivisions are needed for the annotations to be useful, for example ‘vegetation’ becomes a too comprehensive label. Annotations are needed, but the work is time-consuming, and it is therefore important to find a balanced level for the number of classifications. </div> <div><br /></div> <div>Machine learning in artificial neural networks is used to train the system, bit by bit improving the ability of the self-driving car or robot to recognise the surroundings and to orient itself.</div> <div><br /></div> <div>”As our algorithms become more accurate and the three-dimensional map is being built up, fewer images will be needed for the system to be able to locate itself”, Fredrik Kahl says. “A lot of tricky problems still remain to be solved, but that is what makes this field so exciting and fun to work with.”</div> <div><br /></div> <div><strong>Website to test the accuracy of the localisation</strong></div> <div>The Chalmers researchers have launched a website, that up till now contains more than 100 000 collected images. On the website, like-minded research teams can compare and test the accuracy of their algorithms by downloading images, performing calculations and then uploading their results to get them corrected and ranked on a top list.</div> <div><a href="" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />To the website Long-term Visual Localisation ​</a><br /></div> <div><br /></div> <div><div>Text: Yvonne Jonsson</div> <div>Photo of Fredrik Kahl: Malin Ulfvarson​</div></div> <div><br /></div> <div><strong>More about the research and researchers</strong></div> <div>The research team behind the research and the film &quot;Localization using semantics&quot;: Måns Larsson, Lars Hammarstrand, Erik Stenborg, Carl Toft, Torsten Sattler and Fredrik Kahl</div> <div><span style="background-color:initial">The research team behind the project <a href="">Semantic Mapping and Visual Navigation for Smart Robots</a>, and the film from the supermarket: Patrik Persson, Marcus Greiff, Sebastian Hanér, Olof Enqvist and Fredrik Kahl</span></div> <div><br /></div> <div><strong>For more information contact</strong></div> <div><a href="/sv/personal/Sidor/fredrik-kahl.aspx">Fredrik Kahl</a>, professor of computer vision and image analysis at the department of Electrical Engineering at Chalmers University of Technology</div> <div><a href=""> </a></div> <div><br /></div> </div>Tue, 24 Sep 2019 00:00:00 +0200 future with &quot;social drones<p><b>Drones are expected to become an increasingly common tool in our everyday lives. In a new research project led by Morten Fjeld, researchers from Chalmers University of Technology will be investigating how social drones are best used and regulated in order to benefit individuals and society as a whole.</b></p>​Social drones are expected to be part of society in the same way as cars and technological aids are today. They may also come to be used as personal companions and assistants. What could such interaction look like? The researchers involved in the project will investigate how this development affects both individuals and society as a whole, for example in terms of laws, policies and education. <br /><br />Some of the questions asked by the researchers are: How can you design drones so that their use improves the lives of individuals and society? Is the technology even useful, or do the risks outweigh the benefits? <br /><br /><strong>Project: The Rise of Social Drones: A Constructive Design Research Agenda</strong><br /><a href="/en/staff/Pages/morten-fjeld.aspx">Morten Fjeld</a>, Professor at the department of Computer Science and Engineering*<br /><a href="/sv/personal/Sidor/sara-ljungblad.aspx">Sara Ljungblad</a>, Assistant Professor at the department of Computer Science and Engineering*<br /><br />Part of a national research programme<br />The project is part of the national research programme WASP-HS, where the abbreviation HS stands for humanities and society. The research programme was initiated by Marianne and Marcus Wallenberg Foundation and Marcus and Amalia Wallenberg Foundation and encompasses a total of SEK 660 million over ten years. The programme will primarily analyse the ethical, economic, social, legal and labour market aspects that may be entailed by the ongoing technological shift in society.<br /><br /><div><em>Read the press release from WAPS HS:</em></div> <br /><strong>Funding granted to 16 projects in AI and autonomous systems</strong><br /><div>Marianne and Marcus Wallenberg Foundation has granted SEK 96 million to be shared by 16 research projects studying the impact of artificial intelligence and autonomous systems on our society and our behaviour. <a href=""><br /></a></div> <div><br /></div> <div><br /></div> <div><em>*The Department of Computer Science and Engineering is shared between Chalmers University of Technology and University of Gothenburg.</em><br /><a href=""></a></div>Thu, 12 Sep 2019 16:00:00 +0200 granted ICT SEED proposals 2020<p><b>​​Six projects have been granted seed funding by the ICT Area of Advance.</b></p>​Approximately 1,5 MSEK have been granted to the 6 approved proposals. The criteria for the selection were those specified in the call.<br /><br /><br /><strong>Jiajia Chen, Xiaobo Qu and Lei Chen</strong><br />i-ONet: Intelligent Optical Networks for Connected Road Users towards Vision Zero<br /><br /><strong>Beata Stahre Wästberg, Vasilis Naserentin, Marco Adelfio and Monica Billger </strong><br />SCENDA: Scenario visualization of environmental data in compact cities<br /><br /><strong>Rui Lin, Lena Wosinska and Magnus Karlsson</strong><br />E2MEN: Error control and Encoding Multiplexing Enabled Non­collision Optical Interconnects<br /><br /><strong>Rebecka Jörnsten and Claes Strannegård </strong><br />Explainable Neural Networks<br /><br /><strong>Xuezhi Zeng and Christian Fager </strong><br />Experimental investigation of a 5G measurement platform for medical diagnostics.<br /><br /><br /><br /><br />-----<br />Here was the call (the deadline has passed)<br /><div><a href="/en/areas-of-advance/ict/news/Pages/Call-for-ICT-Seed-projects-2020.aspx">Call for ICT Seed projects 2020 &gt;<br /></a></div> <div><br /></div> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/About%20us/IKT_logo_600px.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px" /><br /><br /><br /><a href="/en/areas-of-advance/ict/news/Pages/Call-for-ICT-Seed-projects-2020.aspx"></a></div>Mon, 09 Sep 2019 09:00:00 +0200 cooperation on AI in healthcare<p><b>Sahlgrenska University Hospital aims to be a driving force in the development of artificial intelligence in healthcare. Chalmers has complementary expertise. A joint research agenda will give the hospital and Chalmers the ability to develop the high-tech healthcare of tomorrow.</b></p>​If we wish to take on the challenges that a growing and ageing population pose to healthcare, we must take help from new technology to make changes to working methods. Artificial intelligence (AI) has great potential to be put into practical use in the healthcare sector.<p></p> <p>Chalmers AI Research Centre (CHAIR) was formed at the start of the year, and conducts research in areas such as autonomous vehicles, industry 4.0, and e-health. Chair and Sahlgrenska University Hospital have entered into a strategic research cooperation on AI in healthcare. The hospital benefits from the AI expertise found at Chalmers, while Chalmers benefits from the university hospital’s medical expertise.</p> <p>&quot;Chalmers has a long tradition of successful collaboration with Sahlgrenska University Hospital, and the research cooperation in AI will strengthen this greatly. Through the AI collaboration, we will achieve exciting new results that are important not only to both partners, but also to society in general,&quot; says Ivica Crnkovic, Director of Chalmers AI Research Centre. </p> <p>Sahlgrenska University Hospital is an arena for outstanding research, and a number of development projects currently being conducted at the hospital use AI as support for areas such as diagnosis. The research cooperation now opens up new opportunities in the digital transition that the healthcare sector is facing.</p> <p>&quot;We need to advance our positions in artificial intelligence. At the hospital, we have very good collaborations with both academia and the business world, where new areas of collaboration pave the way for great progress in this field. AI is an important tool that will ultimately enable us to offer high-quality healthcare to everyone who needs it. Our collaboration with Chair is a big step in the right direction,&quot; says Ann-Marie Wennberg, Hospital Director of Sahlgrenska University Hospital.</p> <p><strong>Facts:</strong><br /></p> <ul><li><a href="/en/centres/chair">Chalmers AI Research Centre</a> is a competence centre aimed at increasing Chalmers’ expertise and excellence in artificial intelligence in partnership with industry and society. <br /><br /></li> <li><a href="">Sahlgrenska University Hospital </a>works in close collaboration with a number of innovation platforms, such as AI Innovation of Sweden and Medtech West. They also work in close collaboration with Sahlgrenska Academy and Sahlgrenska Science Park, to name a few. <br /><br /></li> <li> The partners (Chalmers and SU) have drafted a letter of intent aimed at entering into a research cooperation. An application has also been submitted to the Regional Development unit of Region Västra Götaland to seek support for the project. The formal research cooperation agreement has not yet been signed. </li></ul> Mon, 02 Sep 2019 12:00:00 +0200 Programme 2018-2020 for ICT in Horizon 2020<p><b>​Work Programme 2018-2020 for ICT in Horizon 2020 have been published. In it, you will find both completed and upcoming calls.</b></p>​<a href="">Click here to read the PDF</a> (upcoming calls can be found on page 120)<p></p> <p>709 million EUR remains for calls in LEIT-ICT during 2019-2020. There are calls within:</p> <ul><li>Artificial Intelligence and Technologies for Digitizing European Industry and Economy </li> <li>European Data Infrastructure: HPC, Big Data and Cloud Technologies </li> <li>5G </li> <li>Next Generation Internet </li> <li>Digital Innovation Hubs (DIH) and platforms </li> <li>Cybersecurity </li></ul> Wed, 07 Aug 2019 00:00:00 +0200 data transfer model saves energy on the internet<p><b>​The internet has arisen in the public debate as a climate hazard that causes carbon dioxide emissions as high as those originating from airplane travel. For five years, research at Chalmers has been underway to build models for energy-efficient data traffic. So far, the researchers have managed to reduce energy consumption to one tenth in specified areas.​</b></p>​​<span style="background-color:initial">We are streaming movies and music, saving our pictures in the cloud, and are constantly connected to all the opportunities that the internet offers. The use of a regular smartphone requires about as much electricity as a refrigerator. However, the charging of the mobile phone only accounts for a negligible part of that energy. The rest of the electricity is not being used at our homes, but in data centres which are housing the data stored in the cloud, and during the transportation of data through fiber-optic cables, sometimes being hundreds of kilometers long.</span><div><br /></div> <div><strong>An immense increase in data traffic</strong></div> <div>The amount of data transported via fiber-optic cables is increasing at an almost unimaginable rate. And so does the energy consumption from the data traffic. If nothing is done about the situation, within ten years, the internet alone will consume more electricity than is globally produced. </div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Ny%20modell%20för%20datatrafik%20sparar%20energi%20på%20internet/peter_andrekson_170112_250px.jpg" class="chalmersPosition-FloatRight" alt="Peter Andrekson" style="margin:5px" />“It is a great challenge for society, and for us as researchers, to solve the equation of how to meet the demand for data capacity and performance, while keeping costs at a reasonable level and minimizing environmental impact. Not least, it requires a completely new way of optimizing the technical systems, says Peter Andrekson, Professor of photonics at Chalmers, who over the past five years has been the leader of a large research project with the aim to build a future model for energy-efficient optical fiber communication.</div> <div><br /></div> <div>The intention of the project has been to locate the dominating energy consumers in the fiber-optic systems, and then to design and build a model that only uses one-tenth as much energy as the existing systems do. To succeed in this, a broad approach has been applied. Three different scientific perspectives have been joined together – optical hardware, electronic hardware and information theory, in order to perform coordination and transfer of data in the best possible way.</div> <div><br /></div> <div><strong>Many small energy thieves</strong></div> <div>Something that, at least to some extent, came as a surprise to the researchers was the fact that there are quite many small energy thieves with the potential of affecting the system – not a few large bottlenecks to tackle.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Ny%20modell%20för%20datatrafik%20sparar%20energi%20på%20internet/ErikAgrell_170608_250px.jpg" class="chalmersPosition-FloatLeft" alt="Erik Agrell" style="margin:5px" />“Examples of such energy thieves are the signal processors in the transmitters and receivers in the optical systems”, says Erik Agrell, Professor of communication systems, who in this project has been responsible for developing mathematical models for designing new, more efficient types of transmitter and receiver algorithms. “Higher data transfer rates are requiring transmitters and receivers with the ability to handle stronger signals. However, with the help of error correcting codes, the requirements on the optical hardware can be partially lowered. On the other hand, it also consumes more energy, because the error correcting electronic hardware also runs on electricity. This is a concrete example of the need to find a balance between performance, cost and energy consumption in order to choose the best solution in every individual case.”</div> <div><br /></div> <div>Within the framework of the project, chips containing error correcting code have been designed at Chalmers and then custom made by a manufacturer in Europe. Thereafter, the chips have been tested to verify that the theoretical models and simulations of the power consumption are correct, also in practice. The design and testing have been conducted by researchers in Professor Per Larsson-Edefors' research group at the department of Computer Science and Engineering at Chalmers.​</div> <div><br /></div> <div><strong>Aims at reducing energy consumption to one tenth</strong></div> <div>The prerequisites for how to design the optimal system differ, among other things, depending on the distance that data is being transported. On one hand, the researchers have studied data communication over short distances, from 1 up to 500 meters, which occur, for example, in data centres and in network-based computation clusters. On the other hand, research has also been focused on larger optical systems, where traffic from many users simultaneously travel over distances up to hundreds of kilometers.</div> <div><br /></div> <div>The project aim, to reduce energy consumption to one tenth compared to the models used today, seemed in advance to be quite tough.</div> <div><br /></div> <div>&quot;Within defined areas, we are able to state – not without pride – that we have managed to reach the levels that we aimed for,&quot; says Peter Andrekson. “This applies not least to the power reduction thanks to the error correcting code. We have also received good feedback on the scientific results that we have presented. However, commercial companies are not particularly willing to contribute to this type of research. For competitive reasons, they keep their knowledge to themselves but on the other hand they don´t hesitate to apply the results from academia.”</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/E2/Nyheter/Ny%20modell%20för%20datatrafik%20sparar%20energi%20på%20internet/Erik-Agrell-1_500px.jpg" class="chalmersPosition-FloatLeft" alt="Cristian Bogdan Czegledi and Erik Agrell" style="margin:5px" /><em>Professor Erik Agrell (to the right) is discussing effects of polarization in fiber optical communication with the doctoral student Cristian Bogdan Czegledi. (Photo J-O Yxell)​</em><br /><br /><br /></div> <div><strong>Interdisciplinary approach</strong></div> <div>To present results that really optimize the system as a whole, and not just the constituent parts, the researchers have worked interdisciplinary across three research fields. In total, the project will result in five doctoral theses. The doctoral students have worked in pairs circulating across departmental borders – an approach that has been the basis for reaching research results in a broad perspective.</div> <div><br /></div> <div>“To be honest, the process of fully understanding each other's concepts within the project has been time-consuming. Even though we work within related fields of research, there are cultural differences between our specialist areas. Chalmers has a strength in the competence center <a href="/en/centres/force/Pages/default.aspx">FORCE​</a>, which coordinates research on fiber-optical communication”, says Peter Andrekson, who is also the director of this centre. ”We are now expanding, thanks to the move of the research group Optical Networks to Chalmers from KTH in Stockholm.”</div> <div><br /></div> <div><strong>Sustainable economizing of the internet</strong></div> <div>“To obtain an internet that is sustainable from a resource-based point of view, three different perspectives have to be applied, says Erik Agrell. Firstly, it is about developing and using communication technology that is energy efficient, and in this perspective we can contribute as researchers. Secondly, it is about raising awareness and creating incentives for every one of us as internet users not to be unnecessarily wasteful of data traffic. In this case, the individual person, as well as the society at large, and our politicians, have a shared responsibility to maintain sustainability. And lastly, it is important for the climate which energy sources are used in each country to produce the electricity – the less fossil fuels and the more renewables the better.</div> <div><br /></div> <div>“I am convinced that we are moving towards a paradigm shift”, he concludes. “In a not-too-distant future, data transfer and heavy calculations on the internet will be seen as resources to economize with, not as free and unlimited assets.”</div> <div><br /></div> <div><div><strong>More about the research</strong></div> <div>The research has been funded by the Knut and Alice Wallenberg Foundation during five years starting from 2014, with 33,9 MSEK.</div> <div><a href="" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Energy-efficient optical fibre communication</a></div> <div><br /></div> <div><strong>For more information, contact:</strong></div> <div><a href="/en/Staff/Pages/Peter-Andrekson.aspx">Peter Andrekson</a>, Professor of photonics, Department of Microtechnology and Nanoscience, Chalmers University of Technology, <a href=""></a></div> <div><a href="/en/staff/Pages/erik-agrell.aspx">Erik Agrell​</a>, Professor of communication systems, Department of Electrical Engineering, Chalmers University of Technology, <div style="display:inline !important"><a href=""></a></div></div> <div><br /></div> <div><div>Text: Yvonne Jonsson</div> <div>Photo: J-O Yxcell (photo at the top of the page), Henrik Sandsjö (portrait photo of Peter Andrekson) and Oscar Mattsson (portrait photo of Erik Agrell)</div></div> <div><br /></div> <a href=""></a><div><br /></div> <div><strong style="background-color:initial">Data traffic and storage on the internet – this is how it works</strong><br /></div> <div>The internet is largely made up of fiber-optic cables, which are built into our houses, buried in the ground and at the bottom of the sea. In these cables, light is passed through the bundles of optical fibers with cores of very clean glass or plastic. The diameter of the fibers can range from a few millimeters down to less than a strand of hair, and they can be very long. A transmitter sends coded light signals through the optical fibers using lasers or light emitting diodes. At the other end, a receiver obtains the light signals and translates them back into electrical pulses, which are then passed on to computers, TV sets or mobiles. When the fiber-optical system is extended over long distances, signal amplifiers between the transmitter and the receiver may also be needed.</div> <div>When we use internet-based cloud services, we get access to applications, data storage and server capacity via the internet instead of having to handle them locally. Our data is then stored in huge server halls. These data centers use electricity for data storage, but also for cooling the servers.</div></div> <div><br /></div>Wed, 26 Jun 2019 00:00:00 +0200 students awarded for best master&#39;s theses<p><b>Martin Anderberg, Rikard Reinhagen, ​Lowisa Hanning and Frida Strömbeck​​ have been awarded the Microwave Road Scholarship for best master’s thesis 2018, in the area of antenna and microwave engineering.</b></p><div><span style="background-color:initial">Each winner gets an award of 10 000 SEK and a diploma. The winners got their diplomas at the Microwave Road event on Electromagnetic Simulation on 8 May, handed over to them by Johan Carlert, chairman of Microwave Road.</span><br /></div> <div><br /></div> <div>Microwave Road is a national cluster focusing on international technology and market development uniting industry, universities, research institutes and regional and national public authorities.</div> <div><br /></div> <div>Text and photo: Hans Hjelmgren</div> <h3 class="chalmersElement-H3">Read the winning theses (pdf) &gt;&gt;&gt;</h3> <div>Martin Anderberg, <a href="">Design of a 183 GHz Subharmonic Mixer Using Membrane Integrated GaAs Schottky Diode Technology</a></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Lowisa Hanning, <a href="">Pulse Shaping of Radar Transmitters Compensation of Memory Effects through Digital Pre-distortion</a></span></div> <div><br /></div> <div>Rikard Reinhagen, <a href="">The technical feasibility of providing passenger Wi-Fi with 60 GHz WiGig networks on board trains</a></div> <div><br /></div> <div>Frida Strömbeck, <a href="">Energy Efficient High Data Rate RF-DAC based PAM Modulator – A MMIC solution using an InP-based DHBT-process at Millimeterwave Band</a></div>Tue, 14 May 2019 09:00:00 +0200 Nordic network for artificial intelligence<p><b>​The Nordic Five Tech alliance of leading technical universities announce the creation of the Nordic Artificial Intelligence Network. The Nordic AI Network will make the region a global hub in AI research, education and innovation.</b></p>​With global interest in the many opportunities of artificial intelligence (AI), the network will bring together, and harness, leading expertise in the field with the aim of taking the landmark step to make the region a global hub in AI research, education and innovation. <br /><br />The Nordic AI Network will begin activities already in 2019 with selected events. In coming years, it will share educational resources, stimulate research collaborations, as well as study and share best practices and business models for collaboration with industry. Its activities will, overall, set the stage to communicate Nordic excellence in the field of AI and obtain competitive funding at both the national and European levels. <br /><br />“AI is set to change the world and the Nordics must be part of this tremendous shift. Bringing expertise from across our countries under one umbrella through the Nordic AI Network is a crucial step in making the Nordics a global hub in artificial intelligence. We are very pleased to launch the network and build up activities in coming months”, says Ilkka Niemelä, President of Aalto University in Finland. <br /><br /><img src="/SiteCollectionImages/Nya%20bilder/Porträtt%20-%20Chalmersanställda/Stefan-Bengtsson_portrait.jpg" class="chalmersPosition-FloatRight" alt="Chalmers President Stefan Bengtsson" style="margin:5px" />“Chalmers has, since 2018 committed to a big investment in Artificial Intelligence, that will raise research, development and innovation in this area to a new level. Chalmers AI Research Centre spans research and education at several departments, as well as close collaboration with industry. With this new Nordic AI network, we are further strengthening our activities, while benefiting the entire Nordic region”, says Stefan Bengtsson, President of Chalmers University of Technology.<br /><br />Made up of Aalto University, Chalmers University of Technology, the Technical University of Denmark, KTH Royal Institute of Technology and the Norwegian University of Science and Technology (NTNU), the Nordic Five Tech universities are each home to research institutes and centres dedicated to AI. The decision to create the Nordic AI Network was made at the meeting of Nordic Five Tech presidents on 26 April 2019. <br /><br /><strong>Read more:</strong><br />Nordic Five Tech: <a href="" target="_blank"></a><br />Chalmers AI Research Centre: <a href="/en/centres/chair/Pages/default.aspx" target="_blank"></a> <br /><div><br /></div> <div><br /></div> <em>Photo above</em><br /><em>Back row from left: Ilkka Niemelä, President of Aalto University, Anders O. Bjarklev, President of the Technical University of Denmark, Gunnar Bovim, President of NTNU, Stefan Bengtsson, President of Chalmers University of Technology.</em><br /><br /><em>Front row from left: Lars Kai Hansen (DTU), Annika Stensson Trigell (KTH), Kolbjörn Tunström (Chalmers), Giuseppe Durisi (Chalmers), Ole Jakob Mengshoel (NTNU), Ivica Crnkovic (Chalmers), Ville Kyrki (Aalto).</em>Thu, 02 May 2019 12:00:00 +0200