News: Livsvetenskaper och teknikhttp://www.chalmers.se/sv/nyheterNews related to Chalmers University of TechnologyTue, 17 May 2022 20:02:42 +0200http://www.chalmers.se/sv/nyheterhttps://www.chalmers.se/en/news/Pages/IVA-100-list-2022.aspxhttps://www.chalmers.se/en/news/Pages/IVA-100-list-2022.aspxMost projects from Chalmers on IVA’s 100 list 2022 <p><b>The 100-list highlights up-to-date research with business potential from Swedish universities. The theme for this year is technology in the service of humanity. Thirteen projects from Chalmers have been selected. </b></p>​The researchers have contributed with research projects that offer great value and potential for utilisation for society, through avenues such as industrial commercialisation, business development, or other types of impact. ​<div>“It is gratifying that we are so well represented on the 100 list. Chalmers has a strong focus on innovation and entrepreneurship” says Mats Lundqvist, Vice President of Utilisation at Chalmers University of Technology.</div> <div><br /><div><div><strong style="background-color:initial">The selected projects from Chalmers 2022:</strong><br /></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"><br /></span></div> <div><strong style="background-color:initial"></strong><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Architecture and Civil Engineering Project: </span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"></span><strong style="font-family:inherit;background-color:initial">Real time optimization of drinking water treatment</strong></div></div> <div> <div><span style="background-color:initial">The innovation of Kathleen Murphy and fellow colleagues measure the quality and reactivity of freshwater resources in real time, and predict the success of drinking water treatment. Their solution will be used to optimize operational conditions at drinking water treatment plants, reducing the need for chemicals and infrastructure and reducing emissions and waste. The patent pending solution, including the teams unique algorithms, will make drinking water treatment cheaper and more sustainable.</span></div> <div>Researcher: <a href="/en/Staff/Pages/murphyk.aspx">Kathleen Murphy</a></div> <div><a href="/en/departments/ace/news/Pages/Real-time-optimized-drinking-water-treatment-on-IVA100-list.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Real time optimized drinking water treatment</a></div> <div><br /></div> <div><div> ​<span style="background-color:initial;color:rgb(33, 33, 33);font-family:inherit;font-size:20px">Biology and Biological Engineering</span></div> <p class="chalmersElement-P">Project: <strong>Fungi for the production of protein of the future</strong></p> <p class="chalmersElement-P"><span style="background-color:initial">Alternative protein sources such as fungi (mycoprotein) can lead to 95 percent less carbon dioxide emissions than beef. The vision is that the protein of the future is produced by fungi, which convert bio-based residual streams from industry. The fungi are grown in closed bioreactors with little impact on the external environment. </span> ​</p> <p class="chalmersElement-P"><span style="background-color:initial">Researchers: </span><a href="/en/Staff/Pages/nygardy.aspx">Yvonne Nygård </a><span style="background-color:initial">and </span><a href="/en/Staff/Pages/eric-oste.aspx">Eric Öste </a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P">Project: <strong>Stabilizing seafood side-streams allowing full use for food production </strong><br /></p> <p class="chalmersElement-P">The demand for fish is steadily increasing in response to dietary recommendations, population growth and wishes to consume more climate-friendly protein sources. We therefore need to convert more of each landed fish into food, as today mainly the fillet is used, i.e., only 40-50 per cent of the weight. <br /></p> <p class="chalmersElement-P"><span style="background-color:initial">Researchers: </span><a href="/en/staff/Pages/Ingrid-Undeland.aspx">Ingrid Undeland</a><span style="background-color:initial">, </span><a href="/en/Staff/Pages/haizhou.aspx">Haizhou Wu,​</a><span style="background-color:initial"> </span><a href="/en/staff/Pages/khozaghi.aspx"> Mehdi Abdollahi</a><span style="background-color:initial"> and </span><a href="/en/Staff/Pages/bita-forghani.aspx">Bita Forghani</a></p> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/Projects-on-sustainable-food-on-IVA’s-100-list.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Projects on sustainable food on IVA’s 100 list</a></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span style="font-family:inherit;font-size:20px;background-color:initial">Chemistry and Chemical Engineering  </span><br /></p> <p class="chalmersElement-P">Project: <strong>Recycling and remanufacturing of indium based semiconductor materials. </strong></p> <p class="chalmersElement-P"><span>You are probably reading this text looking through a transparent conductive material called indium tin oxide (ITO). It is the backbone of all electronic screen​s (LCD, LED, and touch screens), and some solar cell technologies. During the manufacturing of these devices, 30 - 70% of the material becomes production waste. Almost 75% of indium is used for ITO manufacturing and it is accepted as a critical raw material due to its importance in the electronic industry. It is a minor element of the earth’s crust and is unevenly distributed. It's recycling from industrial waste is challenging and requires several stages. In our technology, indium recovery is simplified instead of complicated processing stages and integrated into the ITO powder production to reproduce ITO material.​</span><strong><br /></strong></p> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/Burcak-Ebin.aspx">Burcak Ebin</a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><a href="/en/staff/Pages/Burcak-Ebin.aspx"></a>Project: <strong>High-Quality Graphene and Highly Thermal Conductive Graphene Films Produced in Eco-friendly ways</strong><br /></p> <p class="chalmersElement-P"><strong></strong><span style="background-color:initial">The heat generated from ubiquitous miniaturized electronic devices needs to be dissipated by materials that are highly thermally conductive, lightweight, flexible, mechanically robust and, most importantly, manufactured in a sustainable way. Our idea includes two interconnected steps: 1) Eco-friendly production of high-quality graphene in a large-scale; and 2) Production of highly thermal-conductive graphene films with low environmental impact and low cost. The graphene films are expected to replace the current metal films and other thermally conductive films produced in the high cost of environment, and therefore contribute to the transition to a green industry.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/ergang.aspx">Ergang Wang</a></p> <p class="chalmersElement-P"><br /></p> <span></span><p class="chalmersElement-P"><span style="background-color:initial">Project: <span style="font-weight:700">Adsorbi - cellulose-based foams for air pollutants capture  </span></span><br /></p> <p class="chalmersElement-P"><span style="background-color:initial">After finishing her doctoral studies at the department of Chemistry and Chemical Engineering Kinga Grenda founded the start-up company Adsorbi together with Romain Bordes, researcher at the department. She was recently named one of ten entrepreneurs to keep an eye on by Swedish Incubators and Science Parks.</span></p> <p class="chalmersElement-P">Researcher: <span style="background-color:initial">Kinga Grenda  </span><br /></p> <p class="chalmersElement-P"></p> <p class="chalmersElement-P"><span style="background-color:initial"><a href="https://adsorbi.com/" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />More about the research and start-up company Adsorbi </a></span><span style="background-color:initial"><font color="#1166aa"><span style="font-weight:700">(external link)</span></font></span></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><a href="/en/staff/Pages/ergang.aspx"></a><a href="/en/departments/chem/news/Pages/Chemistry-research-on-IVA-100-list-.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Chemistry research on IVA 100 list | Chalmers​ </a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="font-family:inherit;font-size:20px;background-color:initial">Computer Science and Engineering ​</span><br /></p> <div>Project: <strong>EmbeDL </strong><br /></div> <div>AI has achieved remarkable successes but at a price – neural network models are very large and need a lot of resources to train and deploy, thus leaving a very large energy footprint. Our research is about how to reduce the size of the neural networks, without sacrificing much in accuracy, and making the best use of diverse hardware so that AI can be deployed in an efficient and less energy consuming way to solve a specific problem. <br /></div> <div><br /></div> <div>Project:<strong>Repli5 </strong><br /></div> <div>The research is about creating digital twins and synthetic data. A digital twin is a replica of the real world in silico, which can be used to test and verify systems very efficiently and cheaply instead of tests in the real world which are costly, slow and error prone. Digital twins can be used to generate synthetic data to train AI systems efficiently without the need to collect real world data and annotating them manually which is costly, slow, noisy and error prone. <br /></div> <div><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/dubhashi.aspx">Devdatt Dubhashi </a></div> <div><br /></div> <div><span style="background-color:initial">Project: </span><strong style="background-color:initial">Dpella</strong><br /></div> <div>The world is collecting a massive amount of individuals data with the intention of building a human-centered future based on data insights. The huge challenge is how to achieve these insights that will shape the future, respecting privacy of individuals and complying with GDPR. We solve this by developing a technology for creating privacy-preserving analytics based on the mathematical framework of Differential Privacy – a new gold standard for data privacy. With our patented IP research, we provide a Privacy-as-a-service solution will enable data flows, creating the inter-organization value required to achieve a digital human-centred future.</div> <div><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><a href="/en/staff/Pages/russo.aspx">Alejandro Russo</a></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="/en/staff/Pages/russo.aspx"></a></span><span style="background-color:initial">Project: <strong>ZeroPoint Technologies </strong></span></div> <div><span style="background-color:initial"></span><span style="background-color:initial">The dramatic increase of computers' processing power places high demands on efficient memory storage. A few players today have control over processor development by owning and controlling processor architectures. Chalmers with the spin-off company ZeroPoint Technologies develops technologies for computers' internal memory that are faster and less energy-intensive and are developed to fit into an open processor architecture. This provides basic conditions for smart industry. </span></div> <div><span style="background-color:initial"></span><span></span><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><a href="/en/staff/Pages/per-stenstrom.aspx">Per Stenström​</a></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Industrial and Materials Science</span><br /></div> <div> <div>Project: <strong>Design for energy resilience in the everyday</strong><br /></div> <div>Our increasing dependence on electrical and connected products is unsustainable from a resource point of view. It also makes us vulnerable in a future energy system where more renewable sources and climate change increase the probability of power shortages and power outages. To be able to handle disruptions in electricity deliveries, and at the same time live a good and meaningful everyday life, knowledge, new design guidelines for product development and energy-independent alternatives are required.<br /></div> <div><span style="background-color:initial">Researcher: </span><a href="/en/Staff/Pages/helena-stromberg.aspx">Helena Strömberg</a><br /></div> <div><a href="/en/departments/ims/news/Pages/Design-for-energyresilience-in-the-everyday.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Design for energy resilience in the everyday</a> </div></div> <div><br /></div> <div><p class="chalmersElement-P" style="font-size:20px">Physics</p> <p class="chalmersElement-P">Project: <strong>Nanofluidic Scattering Microscopy </strong></p> <div> </div> <p class="chalmersElement-P">We have developed the next generation of nanotechnology to study and analyse individual biomolecules and at the same time generate important information about them. We do this with an optical instrument combined with nanofluidic chips and software with machine learning/AI. By offering researchers this new tool, they can answer their questions in a completely new way, thereby accelerating their research in order to make ground-breaking discoveries.<br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer </a><br /></p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">P</span><span style="background-color:initial">roject:</span><strong style="background-color:initial">2D semiconductor with perfect edges </strong><br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">We at Smena have developed a new game-changing material, which is useful for numerous applications. The starting point of our material is an abundant mineral called molybdenite, whose price is only 5 dollar per kilogram. Using a scalable, patented, and environmentally friendly process, we managed to produce a large number of edges in flakes of natural molybdenite. <br /></span></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><span></span><a href="/en/Staff/Pages/Timur-Shegai.aspx">Timur Shegai ​</a><br /></span></p> <div> </div> <p class="chalmersElement-P"><a href="/en/departments/physics/news/Pages/Two-research-projects-from-Physics-on-IVA-100-List.aspx">Two research projects from Physics on IVA 100 List 2022</a></p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"></p> <div> </div> <div><a href="/en/departments/physics/news/Pages/Two-research-projects-from-Physics-on-IVA-100-List.aspx">​</a><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Mathematical Sciences </span></div> <div> </div> <p class="chalmersElement-P">​Project: <strong>PressCise</strong></p> <div> </div> <p class="chalmersElement-P"><strong></strong>​We work with clinical partners to identify problems with today's products, and to test and verify our own inventions. We use mathematical theories to solve real problems and we realize our solutions in genuine smart textile products. </p> <p class="chalmersElement-P">Researchers: <a href="/en/Staff/Pages/torbjorn-lundh.aspx">Torbjörn Lundh</a><span style="background-color:initial">, in collaboration with Josefin Damm and Andreas Nilsson. </span></p> <div> </div> <p class="chalmersElement-P"><a href="https://www.presscise.com/" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />PressCise AB</a></p> <div> </div> <p></p> <div> </div> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="background-color:initial"><em>I</em></span><span style="background-color:initial"><em>VA's 100 List presents selected research projects believde to have </em></span><span style="background-color:initial"><em>the potientalto be developed into ninnovations, to promote buisness  </em></span><span style="background-color:initial"><em>development or to provide other benefits. The list reflects a diverse range of research </em></span><span style="background-color:initial"><em>projects and researcher experise from Sweden's universities in a given field. </em></span><span style="background-color:initial"><em>​</em></span><br /></p> <em> </em><p class="chalmersElement-P"><span style="background-color:initial"><font color="#1166aa"><em> </em></font></span><span style="background-color:initial;color:rgb(0, 0, 0)"><em>The complete list can be found on </em><a href="https://www.iva.se/en/"><em>www.iva.se</em></a></span></p> <p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"></span> </p> <div><p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"><br /></span></p></div> <div><p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"><br /></span></p></div> <a href="/en/news/presidents-perspective/Pages/IVAs-100-list-Chalmers-technology-in-the-service-of-humanity.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />The Presidents perspective on Chalmers' contribution to technology in the service of humanity</a><p></p></div> <div><br /></div> <p class="chalmersElement-P"><a href="/en/departments/chem/news/Pages/Chemistry-research-on-IVA-100-list-.aspx"></a></p> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/Projects-on-sustainable-food-on-IVA’s-100-list.aspx"></a></p> <p class="chalmersElement-P"><a href="/en/Staff/Pages/eric-oste.aspx"></a></p></div></div> ​</div>Tue, 10 May 2022 16:00:00 +0200https://www.chalmers.se/en/departments/math/news/Pages/mathematical-research-on-IVA-100-list.aspxhttps://www.chalmers.se/en/departments/math/news/Pages/mathematical-research-on-IVA-100-list.aspxResearch from Mathematical Sciences on IVA's 100-list <p><b>IVA has published this year' list of 100 &quot;current research projects with the potential to create benefits, through commercialization, business and method development or societal impact&quot;. A spinoff company from the Department of Mathematical Sciences is on the list.​​​​​</b></p><h2 class="chalmersElement-H2">​PressCise <img src="/SiteCollectionImages/Institutioner/MV/Nyheter/TorbjornLundh_210830.gif" class="chalmersPosition-FloatRight" alt="Torbjörn Lundh" style="margin:5px" /></h2> Lundatex® medical (and the company <a href="https://www.presscise.com/">PressCise</a>) is the result of collaboration between a mathematician, a surgeon and a textile developer. The surgeon, Dr. Erney Mattsson, saw an unsolved problem with the bandage he used in his practice; the mathematician, professor Torbjörn Lundh, together with PhD student Jonatan Vasilis, solved the problem with a mathematical formula. The mathematical formula was handed over to Josefin Damm, the textile developer, who interpreted it into a textile. <div><br /></div> <div> The knitted textile construction that makes Lundatex® medical bandage has very specific properties. Further, visual guides on the bandage control the overlap and the force used during application. This results in a bandage with a mathematical formula built into a textile material. With this, we can guarantee that a precise pressure is given to the leg, independent of applier, size and shape of the leg, and if the leg is in resting position or active. It is truly a smart bandage!</div> <div><br /></div> <div><a href="https://www.iva.se/projekt/research2business/ivas-100-lista-2022/">See the complete list from IVA here</a>. (In Swedish) </div> <div><br /></div> <div>Photo: Setta Aspström</div> ​​Tue, 10 May 2022 12:00:00 +0200https://www.chalmers.se/en/departments/cse/news/Pages/how_can_artificial_intelligence_make_running_safer.aspxhttps://www.chalmers.se/en/departments/cse/news/Pages/how_can_artificial_intelligence_make_running_safer.aspxHow can artificial intelligence make running safer?<p><b>​A machine learning model to optimize your performance and get you across the finish line with health intact. That’s what Moa Johansson, Associate Professor at the Computing Science division, is aiming for. Together with two master's students, she is involved in a project at the Department of Computing Science and Engineering.</b></p>​<span style="background-color:initial">This May, many people are looking forward to the return of Göteborgsvarvet, after two years of break due to the corona pandemic. Every year, approximately 40,000 runners struggle along with what the coordinators mean is the world’s biggest half marathon, and many have collapsed in exhaustion on both sides of the finish line.</span><div><br /></div> <div>Most often, they are on their feet after some rest and refill of fluid, but every year, a few people need medical assistance.</div> <div><br /></div> <div>Moa Johansson, Associate Professor at the Department of Computing Science and Engineering, is together with the master students with amanuenses’ employments, Johan Lamm and Johan Attefors, collecting insights with the purpose to give athletes prerequisites to challenge themselves in the best possible way during a physical performance and at the same time minimize the risk of overworking to a point where they jeopardize their health. </div> <div><br /></div> <div>&quot;I am very interested in sport, so for me, it’s really fun to see how the techniques my own research is addressing, can contribute within sport&quot;, says Moa.</div> <div><br /></div> <div>The study is performed in cooperation with Göteborgsvarvet, by analyzing data that has been collected for ten years and is accessible in Göteborgsvarvet’s database. In the database, values for end results and the participant's age and gender are registered. In addition, Moa, Johan and Johan have taken data about the weather conditions into account, to be able to see if there is something to learn from the connection between for example high temperatures and the number of people who &quot;hit the wall&quot;.</div> <h3 class="chalmersElement-H3">A virtual AI-coach</h3> <div>As part of the project, they are working on a machine learning model. The purpose is, with its help, to be able to estimate the finishing time of a runner, and anticipate which runners risk overworking themselves, by drawing conclusions from the collected data.</div> <div><br /></div> <div>In the future, Moa is visualizing the model being used in a more advanced product in line with the runner’s watches available on the market today, where more parameters like personal conditions, previous performance, and outdoor temperature can be combined with monitoring of the body’s functions, to help the runner to adjust the pace to what is individually suitable. </div> <div><br /></div> <div>&quot;Kind of like a virtual AI-coach that tells you when it’s time to slow down or increase speed or take a break to drink water one extra time&quot;, says Moa. </div> <h3 class="chalmersElement-H3">So, what are we doing wrong when the race ends with us &quot;running into the wall&quot;?</h3> <div>Often we seem to strain ourselves too much early on. Moa thinks that it partly comes down to a matter of prestige.</div> <div><br /></div> <div>&quot;People want to beat their own personal record, she says. And some people are keeping themselves on the border to what they can handle, even though they are not quite in the shape they were earlier in life.&quot;</div> <div><br /></div> <div>There is a tendency in the middle-aged group to miscalculate their capacity. That is something not equally prominent in the older group and among the elite runners, who tend to run according to a different pattern.</div> <h2 class="chalmersElement-H2">About the project</h2> <div>The project is organized within the Health Engineering Area of Advance and is performed at the Department of Computing Science and Engineering at Chalmers University of Technology and the University of Gothenburg.</div> <div><br /></div> <div>The project is a result of discussions between the GoCoActive cooperation, where Chalmers, University of Gothenburg, RF-SISU, GoCo Health Innovation City, and Göteborgs Friidrottsförbund have been participating actively. <span style="background-color:initial">In</span><span style="background-color:initial"> spring 2022, a scientific paper is being written about the project.</span></div> <div><br /></div> <div>By: Agnes Ekstrand</div> <div><br /></div>Mon, 09 May 2022 00:00:00 +0200https://www.chalmers.se/en/departments/m2/news/Pages/Extremely-quiet-fans-can-improve-our-health.aspxhttps://www.chalmers.se/en/departments/m2/news/Pages/Extremely-quiet-fans-can-improve-our-health.aspxExtremely quiet fans can improve our health<p><b>​We spend more of our time indoors than ever. But the noise levels we are exposed to at home, in workplaces and schools have been shown to increase the risk of high blood pressure, mental illness and hearing damage – and may even have a detrimental effect on children's cognitive development. Now, a unique new study from Chalmers University of Technology, Sweden, has identified and eliminated the harmful noise that occurs in ventilation system fans – something that could significantly improve our physical and mental health.</b></p>​<span style="background-color:initial">Today, we spend as much as 87% of our lives indoors, according to <a href="https://www.buildinggreen.com/blog/we-spend-90-our-time-indoors-says-who">an American study​</a>. The quality of indoor environments has therefore become an increasingly important factor for health and well-being. Temperature, carbon dioxide levels and humidity are just some of the factors known to influence our indoor environments, but lately, studies have also shown how indoor noise can have a significant negative impact. <br /><br /></span><div>One contributing factor to the constant noise in indoor environments is the fans used in ventilation systems in homes, workplaces, and schools. The core of the problem – and what irritates the human ear – occurs when the fan blades rotate, generating a sound with a consistent and predictable frequency, known as a ‘tonal’ noise. Identifying exactly how this sound occurs, and how to remove it, has been a long-standing quest that researchers and fan manufacturers have not been able to find an answer to. <br /><img src="/SiteCollectionImages/Institutioner/M2/Nyheter/Martin%20Ottersten_02.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px 15px;width:200px;height:300px" /><br /></div> <div>“The source of the tonal sound has never before been identified on this type of fan. When you can reduce this tone, the fans become extremely quiet and, in that respect, unique. This is the first time someone has succeeded in both identifying and eliminating the source of the noise,” says Martin Ottersten, industrial PhD student in Fluid Dynamics at Chalmers University of Technology and Research and Innovation Engineer at Swegon, and lead author of the study.<br /></div> <h2 class="chalmersElement-H2">Increased risks of physical and mental illness</h2> <div>According to a report from the WHO, tonal noise of the kind that occurs in ventilation systems can negatively affect human health. The study shows that long-term exposure to this kind of sound increases the risk of high blood pressure, cardiac arrest, tinnitus, hearing damage, sleeping problems and stress. Children's cognitive development can also be negatively affected by the noise levels stemming from ventilation systems.</div> <div>Finding the source of what causes the tonal sound has therefore been of great interest to researchers and fan manufacturers for many years. <br /><br /></div> <div>“I am sensitive to sound and sometimes have difficulty concentrating and sleeping with disturbing sounds. And I know that tonal sound can disturb our brain. When I read the WHO's reports on how tonal sound can also lead to diseases such as high blood pressure and even cardiac arrest, the work took on a whole new dimension,” says Martin Ottersten, who has worked with the project for four years.</div> <h2 class="chalmersElement-H2">Lower energy usage another benefit</h2> <div>With the help of advanced computer calculations, sometimes lasting weeks at a time, Martin Ottersten was able to study how air flows through the fan during rotation and where turbulence occurs. The calculations also provided audio data for the fan, which was used to locate the source of the tones.</div> <div><br /></div> <div>After several variations, he managed to design a fan in such a way that the tonal sound decreased drastically, an improvement which could allow for much quieter and healthier indoor environments.<br /><br /></div> <div>“By trying out different modifications to the fans and measuring the sound levels using very complex calculations on hundreds of computers, over several weeks, we could determine exactly where in the fan's construction the tonal sound originated and how to eliminate it. And what is more, we also observed that the efficiency of the fan increases as the tonal sound decreases,” says Martin Ottersten.<br /><br /></div> <div>He believes that this research now has great potential to be put into practice, and that extremely quiet fans which do not produce tonal noise could soon be commercially available. <br /><br /></div> <div>“We are currently seeking a patent for this technology and implementing it into our fans. After that we want to get them out to market, so that we can contribute to creating healthier indoor environments – as well as helping reduce energy consumption and carbon dioxide emissions.<br /><br /></div> <div>The results of the study <a href="https://aip.scitation.org/doi/10.1063/5.0055242">&quot;A numerical method to predict and minimize fan tonal noise&quot; </a>have been published in the scientific journal Physics of Fluids.</div> <div>The study was carried out at the Division of Fluid Dynamics at the Department of Mechanics and Maritime Sciences, Chalmers University of Technology and was financed by Swegon AB.<br /><br /></div> <div><strong>More about the different types of sound generated by fans</strong></div> <div>Sound from fans consists of two types of sound: broadband and tonal sound. The broadband sound is heavier, but it’s the tonal sound – which is regular and reoccurring – that irritates and affects us humans the most. To reduce noise levels in workplaces, homes and schools, silencers are therefore installed so that people can stay in the premises for a longer period of time. These mufflers remove much of the broadband sound but are not as good at absorbing the more harmful tonal sound. In addition, the mufflers contribute to increased energy consumption and higher carbon dioxide emissions.</div> <div><br /></div> <div><strong>For more information, contact:</strong></div> <div>Martin Ottersten</div> <div>Industrial PhD Student</div> <div>martin.ottersten@chalmers.se</div> <div>+46-73-1502818</div> <div><br />Text: Lovisa Håkansson and Joshua Worth </div>Thu, 21 Apr 2022 00:00:00 +0200https://www.chalmers.se/en/departments/e2/news/Pages/Robots-in-homes-industry-and-healthcare.aspxhttps://www.chalmers.se/en/departments/e2/news/Pages/Robots-in-homes-industry-and-healthcare.aspxRobots in the home, industry and healthcare<p><b>​​Can robots adapt their own working methods to solve complex tasks? Researchers at Chalmers University of Technology, Sweden, have developed a new form of AI, which, by observing human behavior, can adapt to perform its tasks in a changeable environment. The hope is that robots which can be flexible in this way will be able to work alongside humans to a much greater degree.​</b></p><div>“Robots that work in human environments need to be adaptable to the fact that humans are unique, and that we might all solve the same task in a different way. An important area in robot development, therefore, is to teach robots how to work alongside humans in dynamic environments,” says Maximilian Diehl, Doctoral Student at the Department of Electrical Engineering at Chalmers University of Technology and main researcher behind the project.</div> <div><br /></div> <div>When humans carry out a simple task, such as setting a table, we might approach the challenge in several different ways, depending on the conditions. If a chair unexpectedly stands in the way, we could choose to move it or walk around it. We alternate between using our right and left hands, we take pauses, and perform any number of unplanned actions.</div> <div><br /></div> <div>But robots do not work in the same way. They need precise programming and instructions all the way to the goal. This approach makes them very efficient in environments where they constantly follow the same pattern, such as factory processing lines. But to successfully interact with people in areas such as healthcare or customer facing roles, robots need to develop much more flexible ways of working.</div> <div><br /></div> <div>“In the future we foresee robots accomplish some basic household activities, such as setting and cleaning a table, placing kitchen utensils in the sink, or help organizing groceries,” says Karinne Ramirez-Amaro, Assistant Professor at the Department of Electrical Engineering.</div> <div><br /></div> <div>The Chalmers University researchers wanted to investigate whether it was possible to teach a robot more humanlike ways to approach solving tasks – to develop an ‘explainable AI’ that extracts general instead of specific information during a demonstration, so that it can then plan a flexible and adaptable path towards a long-term goal. Explainable AI (XAI) is a term that refers to a type of artificial intelligence where humans can understand how it arrived at a specific decision or result.</div> <div><br /></div> <div style="font-size:16px"><strong>Teaching a robot to stack objects under changing conditions</strong></div> <div><br /></div> <div>The researchers asked several people to perform the same task – stacking piles of small cubes – twelve times, in a VR environment. Each time the task was performed in a different way, and the movements the humans made were tracked through a set of laser sensors.</div> <div><br /></div> <div>“When we humans have a task, we divide it into a chain of smaller sub-goals along the way, and every action we perform is aimed at fulfilling an intermediate goal. Instead of teaching the robot an exact imitation of human behavior, we focused on identifying what the goals were, looking at all the actions that the people in the study performed,” says Karinne Ramirez-Amaro.</div> <div><br /></div> <div>The researchers' unique method meant the AI focused on extracting the intent of the sub-goals and built libraries consisting of different actions for each one. Then, the AI created a planning tool which could be used by a TIAGo robot – a mobile service robot designed to work in indoor environments. With the help of the tool, the robot was able to automatically generate a plan for a given task of stacking cubes on top of one another, even when the surrounding conditions were changed. </div> <div><br /></div> <div>In short: The robot was given the task of stacking the cubes and then, depending on the circumstances, which changed slightly for each attempt, chose for itself a combination of several possible actions to form a sequence that would lead to completion of the task. The results were extremely successful.</div> <div><br /></div> <div>&quot;With our AI, the robot made plans with a 92% success rate after just a single human demonstration. When the information from all twelve demonstrations was used, the success rate reached up to 100%,&quot; says Maximilian Diehl.</div> <div><br /></div> <div>The work was presented at the robot conference IROS 2021, one of the world’s most prestigious conferences in robotics. In the next phase of the project, the researchers will investigate how robots can communicate to humans and explain what went wrong, and why, if they fail a task.</div> <div><br /></div> <div style="font-size:16px"><strong>Industry and healthcare</strong></div> <div><br /></div> <div>The long-term goal is to use robots in the industry to help technicians with task that could cause long-term health problems, for example tightening bolts/nuts on truck wheels. In healthcare, it could be tasks like bringing and collecting medicine or food. </div> <div><br /></div> <div>“We want to make the job of healthcare professionals easier so that they can focus on tasks which need more attention,” says Karinne-Ramirez Amaro.  </div> <div><br /></div> <div>&quot;It might still take several years until we see genuinely autonomous and multi-purpose robots, mainly because many individual challenges still need to be addressed, like computer vision, control, and safe interaction with humans. However, we believe that our approach will contribute to speeding up the learning process of robots, allowing the robot to connect all of these aspects and apply them in new situations”, says Maximilian Diehl.</div> <div><br /></div> <div>By: Sandra Tavakoli and Karin Wik</div> <div><br /></div> <div><div>The research was carried out in collaboration with with Chris Paxton, a research scientist at NVIDIA. This project was supported by Chalmers AI Research Centre (CHAIR).</div> <div><br /></div> <div>Read more about the research <a href="https://research.chalmers.se/project/9253">https://research.chalmers.se/project/9253</a></div> <div>Watch the film explaining the research <a href="https://www.youtube.com/watch?v=hEUEpQcrDtw">Automated Generation of Robotic Planning Domains from Observations - YouTube</a></div> <div><br /></div> <div><strong>For more information, contact: </strong></div> <div>Maximilian Diehl. <span style="background-color:initial">PhD Student at the Department of Electrical Engineering</span></div> <div>diehlm@chalmers.se</div> <div>+46 31 772 171</div> <div><br /></div> <div>Karinne Ramirez-Amaro, <span style="background-color:initial">Assistant professor at the Department of Electrical Engineering</span></div> <div>karinne@chalmers.se</div> <div>+46 31 772 10 74 </div></div>Thu, 14 Apr 2022 10:00:00 +0200https://www.chalmers.se/en/areas-of-advance/energy/news/Pages/We-are-in-the-middle-of-the-transition.aspxhttps://www.chalmers.se/en/areas-of-advance/energy/news/Pages/We-are-in-the-middle-of-the-transition.aspxIPCC – "We are in the middle of the transition"<p><b>​“The IPCC collects and reports about the state of knowledge in science, technical and socio-economic assessments on climate change. Everything we write in the report is not new scientific discoveries. The main aim is to bring this knowledge to policymakers and the general public in a comprehensive, clear and accessible way”, says Sonia Yeh, who contributed to UN’s Intergovernmental Panel on Climate Change´s (IPCC) report, which was presented on the 4th of April.​</b></p>​<span style="background-color:initial">WG III, is the final part of the IPCC’s Sixth Assessment Report, and it focuses on climate change mitigation, assessing methods for reducing greenhouse gas emissions, and removing greenhouse gases from the atmosphere. </span><div><br /></div> <div><strong>“So the main challenge for us as scientific contributors</strong> is the writing. How do you communicate in a clear and unbiased way, what information to include or to exclude, how do we coordinate across chapters so there is consistent and no overlapping messages, etc.”, says Sonia Yeh, Professor of energy and transport systems at Chalmers University of Technology. </div> <div>Her expertise is in energy economics and energy system modelling, alternative transportation fuels, sustainability standards, technological change, and consumer behavior and mobility. She has contributed to IPPC report, Working Group III Mitigation of Climate Change, Chapter 10 Transport in the subchapter “Scenarios from Integrated, Sectoral and Regional Models”.</div> <div><br /></div> <div><strong>What is it that makes you take on such a big assignment like this?</strong></div> <div>“On one hand, it is indeed a huge time commitment. So, one must decide beforehand how much time one can spare to be involved in such a big effort. On the other hand, it is a huge honor as a scientist to be selected to represent your country to co-produce such an important document. The document is the most comprehensive assessment effort roughly every 6 years providing an update on climate mitigations options. It has tremendous societal values to both policymakers and all concerned citizens around the world”, says Sonia Yeh.</div> <div><br /></div> <div><strong>Her path to be selected</strong> as an IPCC contributing author was a bit unconventional. The typical path for being an IPCC author was for one to first self-nominate, then being selected for nomination by your country. <br /><br /></div> <div>“I joined the IPCC process in the middle as I received a phone call one day by the lead author of the chapter on transport scenario asking if they can rely on my competence in the long-term projections of transport scenarios. That’s how I joined in the middle of the process. So there is a separate path to be asked to join as an contributing author if the lead authors consider your technical expertise is critical for part of the report”, says Sonia Yeh.</div> <div><br /></div> <div><strong>What sets this report apart from previous reports?</strong></div> <div>&quot;I cannot talk about any specific details before the release. But certainly, one of the most interesting things writing up this report is to observe how things have changed from this report from the last (5th Assessment Report), which directions and how fast the changes were. Lots of things have changed: technology costs and their commercial availability, demand growth, new technology, system level interactions, etc. As someone said, around the time of the last report, we were talking about the transitions. At the time of the writing of this report, we are right in the middle of the transitions. So we are certainly seeing lots of changes (both expected and unexpected) so that would be something interesting to watch out for when the report is released&quot;. </div> <div><br /></div> <div><strong>What is the biggest challenge for you as a researcher working on the report?</strong></div> <div>&quot;The IPCC collects and reports about the state of knowledge in science, technical and socio-economic assessments on climate change. Everything we write in the report is not new scientific discoveries. The main aim is to bring this knowledge to policymakers and the general public in a comprehensive, clear and accessible way. So the main challenge for us as scientific contributors is the writing. How do you communicate in a clear and unbiased way, what information to include or to exclude, how do we coordinate across chapters so there is consistent and no overlapping messages, etc.&quot; </div> <div><br /></div> <div><strong>What are the most important conclusions you can draw from your work, on a purely personal level?</strong></div> <div>&quot;The main thing I learned is the self-reflective part that I mentioned above regarding what sets this report apart from the previous reports. In a way we are asking on behalf of the public, How has science changed in this report compared to the last, how things have changed, are the challenges we face today different from the challenges we faced 4 years ago? Unfortunately IPCC mainly addresses the question of “what do we know today” rather than the question of “what has changed compared to the last assessment.” This is understandable. To answer the latter question comprehensively, it requires greater efforts conducting rigorous studies and IPCC is not set up to do that. Nevertheless it is a question I ask myself frequently while writing for the report, and I am sure that you will see a lot of discussions in the blog posts, tweets, and news columns on this later question a lot. One should be careful and take these discussions with a grain of salt though since most of them are produced quickly to provide discussion points in the news media and for the public discussion. Therefore they are good food for thoughts but one must understand that IPCC does not formally analyze such a question&quot;, says Sonia Yeh.</div> <div><br /></div> <div><strong>When it comes to the most important </strong>measures to reduce the climate impact of the transport sector, Sonia Yeh recommends the seminar, <a href="/en/areas-of-advance/energy/calendar/Pages/IPCC-WG3-Where-are-we-in-the-transitions.aspx">IPCC Sixth Assessment Working Group III report on Climate Mitigation: Where are we in the transitions?</a> It´s a public online seminar and several of the authors of the report will participate.</div> <div><br /></div> <div>“The important thing to know is that there is no silver bullet. Reducing CO2 emissions from the transport sector cannot rely on a single technology, one behavioral change or a single policy measure. Exactly how much a role different measures can contribute will depend on the region, time frame, the commitments of the governments and individual actions. The chairman of the IPCC says that IPCC is policy relevant, but not policy descriptive. IPCC does not tell policymakers or the citizens what they should do, but what they could do to reduce greenhouse gas emissions, and the impacts of different actions in terms of potential for emissions reductions”, says Sonia Yeh.</div> <div><br /></div> <div><strong>When do you think the energy will be fossil free for all transports?</strong></div> <div>“My personal reflection is that the transport energy will not be fossil free without strong policy measures. Meaning, policymakers will need to take actions to introduce policies such as carbon tax or carbon caps, incentives, standards and regulations, investments in low-carbon technology and transport infrastructure that supports zero-carbon fuels and vehicles, charging infrastructure for electric buses, cars, trucks, ferries, etc. So there is a lot to be done. But it is like “The Little Engine That Could”, we can do it! And I believe that we have the momentum. It is just a matter of how fast we want to do this”, says Sonia and highlights an <span style="background-color:initial">exampl</span><span style="background-color:initial">e</span><span style="background-color:initial"> of how fast things have changed in the last few years:<br />&quot;A few years back, most people think the only viable ways to decarbonize long-haul trucks are biofuels and hydrogen. But as the price of batteries falling faster than expected, electrifying long-haul trucks are becoming real and attractive possibilities. The only hinder is the build-up of the charging infrastructure, which of course is an intensive research area that we at our group are also working actively with many European partners. Many excellent research groups at Chalmers are also studying this from many angles including materials, batteries to system level integration like the grid impacts in Sweden and in Europe”.</span></div> <div><br /><strong>Related:<br /></strong><a href="https://www.ipcc.ch/"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />IPCC, <span style="background-color:initial">The Intergovernmental Panel on Climate Change </span></a></div> <div><a href="/en/Staff/edit/Pages/sonia-yeh.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Sonia Yeh, Chalmers University of Technology</a><br /><a href="/en/departments/see/news/Pages/IPCC-reports-spread-knowledge-effectively.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />IPCC reports spread knowledge effectively​</a><br /></div> <div><span></span><a href="/en/areas-of-advance/energy/calendar/Pages/IPCC-WG3-Where-are-we-in-the-transitions.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />IPCC Webinar – Where are we in the transitions?</a><br /><br />Text: Ann-Christine Nordin</div> ​​Sun, 03 Apr 2022 00:00:00 +0200https://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Invitation-apply-for-funding-for-interdisciplinary-research-ideas-within-all-energy-fields.aspxhttps://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Invitation-apply-for-funding-for-interdisciplinary-research-ideas-within-all-energy-fields.aspxInvitation – Apply for funding for interdisciplinary research ideas within all energy fields<p><b>​Call: Invitation to apply for funding from Energy Area of Advance, for interdisciplinary research ideas within all energy fields. Chalmers Energy Area of Advance allocates 12 MSEK per year over 2023 and 2024 for interdisciplinary projects in the size of 1.25 - 2.5 MSEK/year for two years). The call is open for base funded faculty, externally funded faculty, and assistant professors.</b></p><strong>​</strong><span style="background-color:initial"><strong>The projects must focus on </strong><strong>aspects </strong>connected to a future sustainable energy system. It should be interdisciplinary and include expertise from at least two different research groups or two different research approaches or analyse the same question from two different angles. <br /><br /><strong>Example of two different approaches </strong>could be: theory + experiment, technology + behaviour, component + system, interviews + model, any method 1 + method 2. <br /><br /><strong>Collaboration with external partners</strong> is positive but remember that AoA-funding only can be used by employees at Chalmers, for details see below. It is also possible to form projects as a complement to already ongoing projects to add additional aspects.<br /><br /></span><div><strong>For instructions, see the template.</strong></div> <div>Special considerations will be given to projects that are connected to the following themes:</div> <div><strong>1.)</strong><span style="white-space:pre"> </span>Collaboration projects where scientists with projects further away from implementation collaborate with those that are close to implementation.</div> <div>If advice is needed, please contact Chalmers innovation office where Anne Alsholm, <a href="mailto:anne.alsholm@chalmers.se">anne.alsholm@chalmers.se​</a>, is the contact person for energy related questions.</div> <div><strong>2.)</strong><span style="white-space:pre"><strong> </strong></span>Research supporting resilient energy systems and European energy and energy technology autonomy.</div> <div>Evaluation criteria:</div> <div><ul><li>Relevance for the energy research field.</li> <li>Interdisciplinary (include expertise from at least two different research groups or two different research approaches, or analyse the same question from two different angles, see examples above).</li> <li>Scientific quality.</li> <li>Potential for successful implementation (competence, project- and time- plan etc).</li> <li>Potential for continuation in future externally funded projects is welcome but not mandatory.</li> <li>Also consider criteria as gender and the UN sustainability goals.</li></ul></div> <div>Costs that can be covered by AoA funding:</div> <div><ul><li>Salary for senior researchers including assistant professors (max 25% of full time, exceptions need to be motivated, names should be listed).</li> <li>Postdocs – full cost coverage (list name if already known. Write “to be announced” if so).</li> <li>S<span style="background-color:initial">alary for already employed postdocs must be motivated and the employees name should be listed.</span></li> <li>AoA funding cannot be used to recruit PhD students. However, PhD students already employed at Chalmers can work in the project (name should be listed).</li> <li>Relevant experiment or lab costs (max. 20% of total budget and costs should be specified).</li> <li>T<span style="background-color:initial">r</span><span style="background-color:initial">avel costs.</span></li></ul></div> <div><strong>Funds should be used</strong> during each budget-year as presented in your budget. Delays caused by legal rights of staff maybe accepted, but not delays caused by project management issues.<br /><br /></div> <div><strong>The project proposal,</strong> of max. 4 A4 pages, should be sent to the Energy Area of Advance <a href="mailto:energy@chalmers.se">energy@chalmers.se</a> <strong>no later than 13th May 2022.</strong> <br /><br /><strong>A decision will be made</strong> by the management team Tomas Kåberger, Sonia Yeh, Cecilia Geijer, Anders Hellman and Annemarie Wöhri before summer.<br /><br /></div> <div><strong>Please note that costs</strong> connected mobility, visiting researchers, support for applications, conferences, community building, seed funding or the equivalent that contribute to the strategic development of the Energy Area of Advance, can be applied for separately on an ongoing basis. Templates for this separate application can be found at <a href="https://intranet.chalmers.se/en/tools-support/research-utilisation/funding-of-research-innovation/funding-from-chalmers-aoa-and-ei/">Chalmers intranet.</a> <br /><br /></div> <div><strong>Template interdisciplinary project proposal Energy Area of Advance</strong></div> <div>(max 4 A4 – after erasing the instructions)</div> <div>The application can be written in Swedish or English and should contain clear motivations for why the suggested project should be prioritised.<br /><br /></div> <div><strong>Aim</strong>. Overreaching goal of the project (approx. 0.5 A4).<br /><br /></div> <div><strong>Project description.</strong> Background (problem description, state of the art, knowledge gap), Research question(s), Methods, Project plan including time plan and other relevant information, e.g. goals and milestones (approx. 2-3 A4).<br /><br /></div> <div><strong>Organisation and Budget.</strong> State affiliation (department and division) for the main project leader(s) and list names of people involved, both the researcher(s) that will take part of this funding as well as other researchers involved (if the project is larger than this funding). Main applicant should have a tenure position (permanent employment, faculty or specialist) at Chalmers or being assistant professor, but funds can be used by other Chalmers’ research staff categories. Please list a preliminary distribution of annual fund between different staff categories (approx. 0.5 A4).</div> <div>Co-funding option. Please specify in your application if you are willing to share your project proposal with our industry partners ABB, Göteborg Energi and Preem for eventual co-funding. If agreed upon, a project list including titles and participants are send out to our partners, followed by sending the full proposal upon further request.<br /><br /></div> <div><span style="white-space:pre"> </span>I do not want to share my proposal with Chalmers industry partners</div> <div><span style="white-space:pre"> </span>It is ok to share my proposal with ABB</div> <div><span style="white-space:pre"> </span>It is ok to share my proposal with Göteborg Energi</div> <div><span style="white-space:pre"> </span>It is ok to share my proposal with Preem<br /><br /></div> <div>CV. A maximum 2 pages CV for the main applicant(s) and if applicable also the researcher(s) that will use most of the funding.</div> Thu, 31 Mar 2022 00:00:00 +0200https://www.chalmers.se/en/areas-of-advance/ict/news/Pages/Call-for-ICT-seed-projects-2022.aspxhttps://www.chalmers.se/en/areas-of-advance/ict/news/Pages/Call-for-ICT-seed-projects-2022.aspxCall for ICT seed projects 2023<p><b> Call for proposals within ICT strategic areas and involving interdisciplinary approaches.​</b></p><h3 class="chalmersElement-H3" style="color:rgb(153, 51, 0)"><br /></h3> <h3 class="chalmersElement-H3">Important dates:</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li><b>NEW! Submission date: </b><span>9 May, at 09.00</span>, 2022</li> <li><b>Notification:</b> mid-June, 2022</li> <li><b>Expected start of the project:</b> January 2023</li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Background</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The Information and Communication Technology (ICT) Area of Advance</b> (AoA) provides financial support for SEED projects, i.e., projects involving innovative ideas that can be a starting point for further collaborative research and joint funding applications. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>We will prioritize research projects that <strong>involve researchers from different research communities</strong> (for example across ICT departments or between ICT and other Areas of Advances) and who have not worked together before (i.e., have no joint projects/publications). </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>Research projects involving a <strong>gender-balanced team and younger researchers</strong>, e.g., assistant professors, will be prioritized. Additionally, proposals related to <strong>sustainability</strong> and the UN Sustainable Development Goals are encouraged.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b><em>Note: </em></b><em>Only researchers employed at Chalmers can apply and can be funded. PhD students cannot be supported by this call.  Applicants and co-applicants of research proposals funded in the 2021 and 2022 ICT SEED calls cannot apply. </em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><em><br /></em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The total budget of the call is 1 MSEK.</b> We expect to fund 3-5 projects</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Details of the call</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li>The project should include at least two researchers from different divisions at Chalmers (preferably two different departments) who should have complementary expertise, and no joint projects/publications.</li> <li>Proposals involving teams with good gender balance and involving assistant professors will be prioritized.</li> <li>The project should contribute to sustainable development. </li> <li>The budget must be between 100 kSEK and 300 kSEK, including indirect costs (OH). The budget is mainly to cover personnel costs for Chalmers employees (but not PhD students). The budget cannot cover costs for equipment or travel costs to conferences/research visits. </li> <li>The project must start in early 2023 and should last 3-6 months. </li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">What must the application contain?</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The application should be at most 3 pages long, font Times–Roman, size 11. In addition, max 1 page can be used for references. Finally, an additional one-page CV of each one of the applicants must be included (max 4 CVs). Proposals that do not comply with this format will be desk rejected (no review process).</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The proposal should include:</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>a)<span style="white-space:pre"> </span>project title </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>b)<span style="white-space:pre"> </span>name, e-mail, and affiliation (department, division) of the applicants</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>c)<span style="white-space:pre"> </span>the research challenges addressed and the objective of the project; interdisciplinary aspects should be highlighted; also the applicant should discuss how the project contributes to sustainable development, preferably in relation to the <a href="https://www.un.org/sustainabledevelopment/sustainable-development-goals/" title="link to UN webpage">UN Sustainable Development Goals (SDG)</a>. Try to be specific and list the targets within each Goal that are addressed by your project.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>d)<span style="white-space:pre"> </span>the project description </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>e)<span style="white-space:pre"> </span>the expected outcome (including dissemination plan) and the plan for further research and funding acquisition</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>f)<span style="white-space:pre"> </span>the project participants and the planned efforts</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>g)<span style="white-space:pre"> </span>the project budget and activity timeline
</div> <div><div><br /></div> <h3 class="chalmersElement-H3">Evaluation criteria</h3> <div><ul><li>Team composition</li> <li>Interdisciplinarity</li> <li>Novelty</li> <li>Relevance to AoA ICT and Chalmers research strategy as well as to SDG</li> <li>Dissemination plan</li> <li>Potential for further research and joint funding applications</li> <li>Budget and project feasibility​</li></ul></div></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">Submission</span></div> <div> </div> <div> </div> <div> </div> <div>The application should be submitted as <b>one PDF document</b>.<span style="background-color:initial"></span></div> <div><br /></div> <div><a href="https://easychair.org/conferences/?conf=aoaictseed2023" target="_blank" title="link to submission"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Submit​</a></div> <div><br /></div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span><br /></span></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="background-color:initial">The proposals will be evaluated by the AoA ICT management group and selected Chalmers researchers.

</span></div> <div><span style="background-color:initial"><b><br /></b></span></div> <div><span style="background-color:initial"><b>Questions</b> can be addressed to <a href="mailto:erik.strom@chalmers.se">Erik Ström</a></span></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">General information about the ICT Area of Advance can be found at <a href="/en/areas-of-advance/ict/Pages/default.aspx">www.chalmers.se/ict ​</a></span><br /></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div> </div> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/About%20us/IKT_logo_600px.jpg" alt="" /><span style="background-color:initial">​​<br /></span></div>Wed, 30 Mar 2022 00:00:00 +0200https://www.chalmers.se/en/departments/bio/news/Pages/Residual-water-gives-seaweed-cultivation-a-boost.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Residual-water-gives-seaweed-cultivation-a-boost.aspxResidual water gives seaweed cultivation a boost<p><b>​Process water from the food industry is an excellent fertilizer in land-based seaweed cultivation. Not only does the seaweed grow faster; its protein content also multiplies. In this way, process water can go from being a cost to becoming a resource in the food industry.​</b></p><div> <span style="color:rgb(33, 33, 33);background-color:initial">Can </span><span style="color:rgb(33, 33, 33);background-color:initial">macroalgae, such as sea lettuce, become a competitive source of protein in the foods of the future the way soy</span><span style="color:rgb(33, 33, 33);background-color:initial">beans are today? Seaweed naturally has a lower protein content than soybeans, but with fertilizer that difference decreases.</span></div> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">A <a href="https://doi.org/10.1016/j.algal.2022.102647">scientific article ​</a>from researchers at the University of Gothenburg and Chalmers University of Technology shows that process water from food production can serve as an excellent fertilizer in seaweed cultivation. The seaweed grew more than 60 per cent faster, and the protein content quadrupled with the addition of process water.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“The protein content of soybeans is about 40 per cent. By using process water, we have increased the protein content in the seaweed to more than 30 per cent,” says <strong>Kristoffer Stedt</strong>, a doctoral student at the Department of Marine Sciences at the University of Gothenburg.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">We already know that algae grow better in the vicinity of fish farms in the sea due to nutrients in fish faeces that spread in the water. Process water from food industries is often rich in nitrogen and phosphorus in a similar way.</p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">Process water from different food producers</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The researchers tested four different types of seaweed and added process water from several different food producers – from the herring industry, salmon farming, shellfish processors, and a manufacturer of oat milk. A certain amount of process water with a controlled content of nitrogen was added to the seaweed cultivation. After eight days the researchers analysed the results.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We included oat milk to achieve cultivation that was completely vegan. And it turned out that all different types of process water worked well as fertilizer for the seaweed,” says Stedt.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">Food production requires large amounts of water, and taking care of the process water is currently a cost for producers. But this water can be turned into a valuable resource.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We think that you could have land-based cultivations of algae, such as sea lettuce, near a herring factory, for example. Seaweed cultivation can cleanse large portions of the nutrients from the process water. That brings us closer to a sustainable approach, and the companies have another leg to stand on,” says Stedt.</p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">No of​f-taste for the seaweed</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The researchers were worried that the seaweed would be tainted by the process water. Not everyone may appreciate herring-flavoured sea lettuce. But test panels did not note any impact on the taste of the seaweed from the process water.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">In the future, Kristoffer Stedt and his colleagues will focus on scaling up the experiments with seaweed cultivation. They will use process water from the herring industry, which showed very promising results, and focus on the species Ulva fenestrata (sea lettuce).</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“We need to conduct tests in larger volumes as a first step in a controlled environment. But we believe that this may be an alternative source of protein in future foods. It could also be a completely circular system if we used cultivated seaweed as feed for salmon culture on land and used the process water to fertilize the seaweed cultivation,” says Stedt.</p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">Great need for new protein sources</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">An estimated 10 billion people will live on Earth by 2050, and there is a great demand for sustainably produced food protein. Between 2000 and 2018, the production of seaweed tripled, reaching 32 million tonnes. Almost 99 per cent is produced in the Far East.</p> <p class="chalmersElement-P"><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/Bio/Food/Ingrid%20Undeland_240px.jpg" class="chalmersPosition-FloatRight" alt="Professor Ingrid Undeland" style="margin:10px" />In the</span><a href="/en/projects/Pages/Seaweed-as-a-vehicle-for-nutrients-in-a-circular-food-chain--.aspx"> research project CirkAlg​</a><span style="background-color:initial">, researchers from the University of Gothenburg and Chalmers University of Technology are collaborating on processes that can generate a new Swedish marine protein source in a resource-efficient way through both cultivation and processing of seaweed.</span><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“In addition to boosting the seaweed’s protein content with process water, we are looking at several ways to extract the proteins from the algae for use in other foods in the same way as protein is extracted from soybeans today. However, this presents a challenge, because the protein in seaweed is bound more tightly than in the soybeans,” says <strong>Ingrid Undeland</strong>, Professor of food science at the Department of Biology and Biological Engineering at Chalmers. She is also the coordinator for CirkAlg.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="font-weight:700">Text:</span> Olof Lönnehed, University of Gothenburg, The text was published as a press release from <span style="background-color:initial">University of Gothenburg </span><span style="background-color:initial">29 March 2022. </span></p> <p class="chalmersElement-P"><span style="font-weight:700">Photo header</span>: Sofie Steinhagen, University of Gothenburg<br /><span style="font-weight:700">Photo portrait Ingrid Undeland: </span>Anna-Lena Lundqvist, Chalmers</p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="font-weight:700">Read more: </span></p> <p class="chalmersElement-P"></p> <p class="chalmersElement-P"></p> <p></p> <div></div> <p class="chalmersElement-P"></p> <div></div> <p></p> <ul style="box-sizing:border-box;margin-top:0px;margin-bottom:10px;overflow:hidden;orphans:2;text-align:-webkit-left;text-indent:0px;widows:2"><li><a href="/en/projects/Pages/Seaweed-as-a-vehicle-for-nutrients-in-a-circular-food-chain--.aspx"><font face="open sans, sans-serif"><b></b></font><font face="open sans, sans-serif"><b><span></span>Seaweed as a vehicle for nutrients in a circular food chain - innovative steps to accomplish a protein shift (CirkAlg)</b></font></a></li> <li style="font-family:&quot;open sans&quot;, sans-serif;font-size:14px;font-style:normal;font-weight:300;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px;box-sizing:border-box">Read the scientific article:<a href="https://doi.org/10.1016/j.algal.2022.102647" style="box-sizing:border-box;background-color:transparent;text-decoration:none;font-weight:600"> Cultivation of seaweeds in food production process waters: Evaluation of growth and crude protein content</a></li></ul> <p class="chalmersElement-P"> </p>Tue, 29 Mar 2022 13:00:00 +0200https://www.chalmers.se/en/departments/m2/news/Pages/New-Covid-research-Face-masks-play-a-crucial-role.aspxhttps://www.chalmers.se/en/departments/m2/news/Pages/New-Covid-research-Face-masks-play-a-crucial-role.aspxNew Covid research: Face masks play a crucial role<p><b>​An international research team from universities including Chalmers University of Technology, Sweden, the University of Padua and the University of Udine in Italy, and the University of Vienna, Austria, has developed a new theoretical model to better assess the risks of spreading viruses such as Covid-19 – with and without a face mask. The results show how the standard ‘safe’ distance of two meters does not always apply but varies greatly depending on a range of environmental factors, and that face masks can indeed play a crucial role. ​</b></p><span style="background-color:initial">The current recommendations and understanding around the transmission of respiratory infectious diseases are often based on a diagram developed by the American scientist William Firth Wells in 1934.. But this model is very simplified and does not account for the true complexity of transmission. <br /><br /></span><div>Now, in the new study <a href="https://doi.org/10.1098/rsif.2021.0819">“Modelling the direct virus exposure risk associated with respiratory events”</a>, the researchers developed a more advanced model to show that it is possible to more efficiently calculate the direct risk of spreading Covid infection by including a number of factors, such as interpersonal distance, temperature, humidity levels, viral load and type of exhalation. They also managed to demonstrate how these risks change with and without a face mask.<br /><br /></div> <div>The study revealed, for example, that a person talking without a face mask can spread infected droplets one meter away. Should the same person cough, the drops can be spread up to three meters and if the person sneezes, the spread distance can be up to seven meters. But using a face mask, the risk of spreading the infection decreases significantly.</div> <div><img src="/SiteCollectionImages/Institutioner/M2/Nyheter/gaetanosardina_jpg.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:200px;height:200px" /><br /></div> <div><span style="background-color:initial">“If you wear a surgical mask or an FFP2 mask*, the risk of infection is reduced to such an extent that it is </span><span style="background-color:initial">practically negligible – even if you’re only standing one meter away from an infected person,” explains Gaetano Sardina, Associate Professor of Fluid Mechanics at the Department of Mechanics and Maritime Sciences at Chalmers University of Technology, who is one of the researchers behind the study.</span></div> <div><br /></div> <div>In the study, published in the &quot;Journal of the Royal Society Interface&quot;, the researchers tested the new model using data from recent numerical experiments on droplet emissions. This allowed them to take several factors into account and quantify the risk of infection, with and without a face mask.<br /></div> <h2 class="chalmersElement-H2">Size a factor in droplet behavior </h2> <div>Viruses, such as SARS-COV-2, are spread from an infected individual to other susceptible individuals through virus-filled droplets that are released when talking, coughing, or sneezing. Droplets emitted from the salivary glands are sprayed out through the exhaled air. Once out of the mouth, these drops can either evaporate, settle or remain floating. Larger and heavier droplets tend to fall in a ballistic motion before evaporating, while smaller droplets behave like aerosols that spray and remain airborne. <br /></div> <div><img src="/SiteCollectionImages/Institutioner/M2/Nyheter/Droplet%20behaviour.png" alt="" style="margin:5px;width:400px;height:279px" /><br /><br /><br /></div> <div>The results show that a surgical face mask and, to an even greater extent, an FFP2 mask provide excellent protection that significantly reduces the risk of infection. Provided that the face mask is worn correctly, the risk of infection is negligible even at distances as short as one meter, regardless of environmental conditions and if the person is talking, coughing or sneezing. <br /></div> <h2 class="chalmersElement-H2">Next step – a study on airborne spread </h2> <div>With this study complete, the research team is now already working on a new study aiming to explore the airborne spread of the disease. </div> <div><br /></div> <div>“The published study addresses direct droplet transmission of Covid – another important transmission path is the indirect and airborne route in poorly ventilated rooms. We are currently working on this aspect and our preliminary results show the effectiveness of face masks is also preventing the airborne spread of the disease”, says Gaetano Sardina.<br /><br /></div> <div>The international study was led by the University of Padua, Italy, and conducted in collaboration with Chalmers University of Technology, the University of Udine, Italy, and the University of Vienna, Austria.<br /><br /></div> <div>Read the study <a href="https://doi.org/10.1098/rsif.2021.0819">Modelling the direct virus exposure risk associated with respiratory events ​</a>published in the Journal of the Royal Society Interface.<br /><br /></div> <div>*​FFP stands for “filtering face piece” and is a European standard for mask efficiency, ranging from 1, the lowest grade, to 3, the highest. These disposable masks have several layers of different fabrics, including a polypropylene filter, that can trap the even the smallest airborne particles. ​<br /><br /></div> <div><strong>For more information, contact: </strong></div> <div>Gaetano Sardina<span style="white-space:pre"> </span></div> <div>Associate Professor, Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Sweden</div> <div>sardina@chalmers.se</div> <div>+46 31 772 1417</div> ​<div>Text: Lovisa Håkansson and Mia Halleröd Palmgren</div>Fri, 04 Mar 2022 07:00:00 +0100https://www.chalmers.se/en/departments/bio/news/Pages/Better-production-of-health-promoting-bacteria.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Better-production-of-health-promoting-bacteria.aspxBetter production of health-promoting bacteria<p><b>​Bifidobacteria are “good” bacteria that are present in the human gut. They can be used as probiotics to promote health. In a recently published study, researchers at the Danish company Chr. Hansen A/S, in a collaboration with Chalmers, developed two tools that will increase the knowledge of bifidobacterial metabolism. This will lead to improved industrial production of the bacteria and thereby probotic products with improved quality.​</b></p><div><span style="color:rgb(33, 33, 33);background-color:initial">B</span><span style="color:rgb(33, 33, 33);background-color:initial">ifidobacteria</span><span style="color:rgb(33, 33, 33);background-color:initial"></span><span style="color:rgb(33, 33, 33);background-color:initial"></span><span style="color:rgb(33, 33, 33);background-color:initial"> are bacteria that contribute to a healthy gut microbiome in both humans and animals. These bacteria can be used as probiotics, which are dietary supplements with added live bacteria, to achieve several positive health effects. </span></div> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span></span><span>In </span><a href="https://www.nature.com/articles/s41540-021-00207-4">the study​</a><span>, the researchers at Chr. Hansen A/S and Chalmers developed two valuable tools for studying the metabolism and physiology of probiotic bifidobacteria.  </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“The strains we studied are used in existing health-promoting probiotic products. The tools we have developed will help us understand how these probiotic microorganisms behave during the cultivation process of the production. It can also help us understand how the bacteria behave in their natural environment, for example, the human gut” says <a href="/en/Staff/Pages/Carl-Johan-Franzen.aspx">Carl Johan Franzén</a>, Professor in Bioreaction Engineering. </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">Model simulates how the cell uses part of the metabolism</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The first tool is a mathematical model which describes all the biochemical reactions involved in the metabolism of an organism. </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">Dr. Ahmad Zeidan is leading the project at <a href="https://www.chr-hansen.com/en">Chr. Hansen A/S.</a> He explains: </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“This is called a genome-scale metabolic model, or ‘GEM’. The GEM can be used to simulate how a cell uses its metabolism for growth and production of chemical compounds under different environmental conditions. Moreover, it serves as a framework for interpreting results from many different experiments. To make accurate predictions, the GEM must be very detailed and must be created for the specific strain of the bacterium that is being studied.”</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <h2 class="chalmersElement-H2">Defined growth medium for better analysis</h2> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The researchers developed GEMs for two industrially relevant probiotic bifidobacterial strains, and used them to develop the second tool, which is a chemically defined cultivation medium in which the cells are cultured. </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“This medium contains all nutrients that are required for the two bifidobacterial strains to grow. Since all of the nutrients and their concentrations are known, it allows us to measure and interpret the behaviour of the bacteria more accurately than with the standard growth medium,” says <a href="/en/staff/Pages/scmarie.aspx">Marie Schöpping</a>, industrial PhD student at Chr. Hansen A/S and the Division of Industrial Biotechnology, Chalmers.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The research combining the two tools will lead to more reliable, resource-efficient and sustainable production processes of the bacteria. Improved knowledge of the bacteria’s metabolism may also contribute to improvement of their high health-promoting activities, through a better design of the cultivation process. </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>About the study</strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><p class="chalmersElement-P"><strong> </strong></p> <strong> </strong><ul><li><p class="chalmersElement-P">The study is part of Marie Schöpping’s industrial PhD project, which is a collaboration between Chalmers and Chr. Hansen A/S, a global supplier of microorganisms for the food industry, among other things. </p></li> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <li><p class="chalmersElement-P">The project is jointly funded by Innovation Fund Denmark and Chr. Hansen A/S. In the project, Marie Schöpping will use the GEMs and the defined medium to investigate how probiotic bacteria are affected by different factors during their production. </p></li></ul> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong style="background-color:initial">Read the study:</strong><span style="background-color:initial"> </span><a href="https://www.nature.com/articles/s41540-021-00207-4">Identifying the essential nutritional requirements of the probiotic bacteria Bifidobacterium animalis and Bifidobacterium longum through genome-scale modeling​​</a><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p>Thu, 03 Mar 2022 22:00:00 +0100https://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/New-Director-of-Transport-Area-of-Advance-appointed.aspxhttps://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/New-Director-of-Transport-Area-of-Advance-appointed.aspxNew Director of Transport Area of Advance appointed<p><b>​Balázs Kulcsár, professor at Chalmers Department of Electrical Engineering, has been appointed new Director of Transport Area of Advance as of 1 April 2022. He is succeeding Sinisa Krajnovic whose directorship runs out after a total of six years.</b></p><div><span style="background-color:initial">Balázs Kulcsár was recruited to Chalmers as an assistant professor within Transport Area of Advance in 2011.</span></div> <div><span style="background-color:initial"><br /> “He has since been active in the Area of Advance and committed to its development. He has a clear view of academia’s role and challenges in supporting future transport solutions. The decision means that the Transport Area of Advance will have a new director with strong roots in the faculty, international experience and a holistic view of transport systems&quot;, says Anders Palmqvist, Vice President for Research and Chalmers' Area of Advance.</span><br /></div> <div><br /></div> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Transport/_bilder-utan-fast-format/Balazs_Kulcsar.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px" /><strong>Intelligent transport systems of the future<br /><br /></strong></div> <div>Balázs Kulcsár is in the research group Automatic Control at the Department of Electrical Engineering. His research mainly focuses on design of intelligent transport systems, modeling of traffic flows and traffic network modeling and control (management). His projects are contributing to developing future transportation systems from a holistic point of view. He has international experience from being a postdoc in the USA and the Netherlands.</div> <div><br /></div> <div><strong>What made you apply?<br /></strong></div> <div><strong><br /></strong></div> <div>“Applying for the directorship is a natural way for me to reciprocate what I have gained from the Transport Area of Advance and I take it on with a strong sense of responsibility. I was the very first assistant professor recruited from abroad to Chalmers’ Transport Area of Advance. Over these more than ten years, I have really enjoyed growing up in, and contributing, to the Transport Area of Advance. The mentorship, the internal and external networks and the leadership have all been very valuable“, says Balázs Kulcsár.</div> <div><br /></div> <div><strong>What experiences will you bring?<br /><br /></strong></div> <div>“Firstly, I know well from my own experience how it is to be a researcher within the Transport Area of Advance and what research support means. Secondly, since I first arrived at Chalmers, I have experienced how vital it is to belong to this kind of strong network that embraces researchers with connected interests. This is a message I have emphasized in different national and international forums and through research, teaching and evaluations. With my experiences, I believe I can continue to contribute to the Transport Area of Advance but now at different level.”</div> <div><br /></div> <div><strong>What opportunities and priorities do you see going forward?<br /><br /></strong></div> <div>“I have many ideas on how to continue to develop the Area of Advance. One important thing to note is that transportation research currently is witnessing a paradigm shift. Transportation is becoming a sustainable mobility service requiring the synergy of complex research profiles. This, more than ever, requires a strong network of collaborative researchers,” says Balázs.</div> <div><br /></div> <div>“Taking a wider perspective, transport research projects contribute to Chalmers’ excellence in Sweden and internationally. Inspiring our researchers to reach higher and higher with funding from Transport Area of Advance while introducing them to the mobility service concept is my aim. Hopefully my journey can serve as an inspiration to other researchers.”</div> <div><br /></div> <div><strong>What is your view on collaboration with other Areas of Advance?<br /><br /></strong></div> <div>“Research trends call for more and more interdisciplinarity approaches. This is true for transportation sciences as well, where the vehicle is considered a central part of a mobility service. However, it is not the only part of the service. Therefore, I hope to collaborate with other Areas of Advance to create quality-oriented research in the transportation themes covered by the Area of Advance and to add value to each other.”</div> <div><br /></div> <div>“Additionally, to continue building strong strategic partnerships outside Chalmers is vital to reach our objectives”, says Balázs Kulcsár.</div> <div><br /></div>Thu, 03 Mar 2022 18:00:00 +0100https://www.chalmers.se/en/areas-of-advance/materials/news/Pages/Get-more-out-of-the-forest-with-better-processes.aspxhttps://www.chalmers.se/en/areas-of-advance/materials/news/Pages/Get-more-out-of-the-forest-with-better-processes.aspxGet more out of the forest with better processes<p><b>​Man has always lived on and off the forest. Today Sweden is one of the world's most important producers of products from forest raw materials. The Wallenberg Wood Science Center now receives an additional SEK 380 million for wood research with the goal of creating new material and making the processes more sustainable and energy efficient.​</b></p>​<img src="/SiteCollectionImages/Institutioner/KB/Kemiteknik/Hans%20Theliander.jpg" alt="Hans Theliander" class="chalmersPosition-FloatRight" style="margin:5px" /><span style="background-color:initial">“The grant is a fantastic thing. We have been working with the center for almost 15 years. This means that you get an additional number of years to work with these things and expand the portfolio”, says Hans Theliander, professor of Forest Products and Chemical Engineering at Chalmers, and one of the researchers at Chalmers who has been with the Wallenberg Wood Science Center since the start in 2009.<br /><br /></span><div><strong>In his head</strong> he has a sequence for how the wood material of the forest can be used better. Think about reusing each carbon molecule 40 to 50 times before turning it into carbon dioxide. In the future, the forest industry will be far more than planks and paper.</div> <div>“In a first step, different sawn products can be manufactured and used for different purposes for several years. It can be, for example, in buildings or furniture. Then you can use the wood material in these products to produce pulp fibers, for example you can use it to make paper packaging or writing materials - when you have circulated the fiber material a number of times and the quality of the fibers is no longer as good, you could pick out nanocomponents and make different materials of nanocellulose which in many cases can replace today's plastic materials, circulate these a number of times to then extract cellulose polymers and make various textile materials, for example viscose”.<br /><br /></div> <div><strong>“I'm not done with that,</strong> says Hans Theliander, after this you can pick out the sugar molecules that are in the textile cellulose-based materials, and ferment to ethanol, a raw material for several different chemicals, not least fuel. I can take several other examples. We must start thinking in that way to make the most of the forest in the future. But then it is important to adapt the processes and material types. Future researchers have something to do here”, says Hans Theliander.</div> <div>Already today, the sawmills and pulp mills, has a good start to a sequential order In the sawmills, which are the important thing, it is sawn up to become planks. The residual streams from sawmills in form of sawmill chips together with thinning wood from manage of the forest, can go to the pulp mills. Add to this the extensive paper recycling, and we already have the first steps. But it is of course important to expand this. The Wallenberg Wood Science Center was started in 2009. The focus is on basic research that aims to develop knowledge as a basis for a new generation of innovative materials from trees.<br /><br /></div> <div><img src="/SiteCollectionImages/Institutioner/Bio/Profilbilder/Lisbeth_Olsson_2017.jpg" alt="Lisbeth Olsson" class="chalmersPosition-FloatLeft" style="margin:5px" /><strong>“Sometime in 2008</strong>, the Wallenberg Foundation held a large workshop with researchers from several subject areas on forest renewal. After that, an announcement was made in the area addressed to the universities. The result was a center between KTH and Chalmers University of Technology. Later, Linköping University would join. It was a ten-year venture. This is how the Wallenberg Wood Science Center was started”, says Lisbeth Olsson, professor of Industrial Biotechnology, who together with Hans Theliander and Paul Gatenholm, professor of Biopolymer Technology, is the initiator of the center at Chalmers.</div> <div><br /></div> <div><strong>“The philosophy </strong>at Wallenberg Wood Science Center is to develop milder process methods so that you can retain more of the structure of lignin and hemicellulose, based on building new materials where the inherent properties of the wood are utilized. The goal is to make the entire manufacturing process more energy efficient. An example of this is drainage. When to get the fiber out - it is a solid material you should have in the end. That process is enormously energy-intensive, this is what Hans Theliander works with”, says Lisbeth Ohlsson.</div> <div><br /></div> <div>Hans Theliander's track record as a researcher and innovator in the sulphate factory's recycling processes is long. In recent years, he has worked with filtration and extraction of lignin. The process - LignoBoost - is today commercialized and is in operation at two pulp mills in the world. It has the potential to be a central technology in the pulp mills of the future. Hans has also been active in pulp technology research with significant contributions concerning, among other things, heat, and mass transport during cooking and in biorefinery-related studies where mathematical modeling has been central.</div> <div>Knowledge from different areas is needed to ultimately be able to produce exciting new materials from the forest raw material, here several different specializations in materials and process technology are important. When it comes to the more &quot;chemical&quot; aspects, the whole spectrum is needed from basic chemistry, via applied chemistry to chemical engineering.<br /><br /></div> <div><strong>“My research area</strong> is about the processes needed to produce different types of materials from wood raw material. It may not be quite as “sexy” as the material itself but is of course one of the prerequisites for being able to produce different products from wood material. 20 years ago, the balance was good between chemistry, applied chemistry and chemistry / process technology. At present, there is a great imbalance”, says Hans Theliander.</div> <div>“Today, it is primarily material technology that has increased. While Chemical engineering has decreased, which is a problem”, says Hans Theliander, not only at Chalmers, but also internationally and this is a problem since engineers with that competence are needed.</div> <div>“It has been a big loss in the field of chemical engineering or process engineering as it can also be called. 20 years ago, Chalmers really had competence and good momentum in that business. But since then, several professors have retired without new recruitment”, says Hans Theliander.<br /><br /></div> <div><strong>The challenge </strong>has also been observed in the industry, which has been involved in initiating a new bio innovation program called &quot;Resource-smart industrial processes&quot;. The goal is to strengthen process / chemical engineering in Sweden. The program is the reason why Hans Theliander still works 40 percent.</div> <div>“The idea is now that Merima Hasani, researcher and associate professor in the field of Forest Industrial Chemical Engineering will take over after me. It is a national program at Chalmers with eleven doctoral students and postdocs and funded by Vinnova, the industry and academy”.<br /><br /></div> <div><strong>What does the development of process technology mean for the forest industry?</strong></div> <div>“This is about a lot. Historically, the energy has been quite cheap, which has meant that when these processes was developed the smartest and most energy efficient process solutions was not used. Some improvements have been done during the years but with improved knowledge in chemical engineering and process engineering, it is possible to optimize the processes much further and make them more energy efficient and utilize the forest material better: in the end get a better material yield. If you look at a sulphate pulp factory today - you burn half - and half become pulp fibers. It is a poor material yield. You must increase it. Which has been one of my mantras for the last 15-20 years”, says Hans.</div> <div>“People are starting to open their eyes to this, after all, wood is the most expensive part when producing pulp. You want as much out of it as possible”, he says.</div> <div>Hans Theliander's research group has worked with several proposals on how, for example, you can also use branches and tops in a smarter way. Today, fine pulpwood is used as a starting material to make viscose.</div> <div>“You can do it in another way. When you make viscose you need polymers, not a lot of fine fibers, it is enough that the polymer is okay - you can take it from branches and tops. These are the thoughts you must have in the future to make the biomaterial last”.</div> <div><br /></div> <div><strong><img src="/en/areas-of-advance/energy/PublishingImages/Making%20science%20useful/HansT_220x180px.jpg" alt="Hans Theliander" class="chalmersPosition-FloatRight" style="margin:5px" />How do you make the processes more sustainable and energy efficient?</strong></div> <div>“ I usually put it like this. We have a unique medium and that is water, which is also a good and environmentally friendly chemical. We should continue to use that. There are two problems with water, I usually jokingly say that one is 4.18 (kJ / kg K) - ie the heat capacity - that is, how much energy you need to use per degree and kilo of water.</div> <div>The second is 2300 (kJ / kg) - it is so much energy you need to evaporate a kilo of water. It is a high heat of vaporization value. An example is: When we digest the wood, the pulp fibers are suspended in the cooking liquid. We wash the pulp fiber with water and the more water we use, the greater the energy demand are later in the process. Here it is important to make the washing of the pulp fiber more efficient, use as little water as possible, to minimize the heat demand in subsequent evaporation steps”.</div> <div><br /></div> <div><strong>Is water in short supply here?</strong></div> <div>“Well, it is probably not the lack of water, but it is costly energy wise to remove the water from wet products. This takes huge amounts of energy. Just to give proportion - a partial step in the pulping process is one evaporates and concentrates the black liquor. Every second in Sweden, more than one cubic meter of water is boiled away. Enormous amounts. It is done in a smart way today, but here there is so much more to do”.</div> <div><br /></div> <div><strong>Will the society demand less forest if one succeeds in making all these efficiencies?</strong></div> <div>“You can put it in that way, but you can also say that you need to get more out of the same amount of forest. We are about to replace petroleum-based products and given that we use enormous amounts of petroleum-based products – then our needs of other raw materials, and wood will be one of the most important, is enormous. To make the forest last than we really have to be efficient.</div> <div>“What´s interesting is that not many people today know that 100 years ago it was realized that we needed to plant trees. Various laws were enacted on how forests where to be managed. That is why we have so much forest raw material today (about twice as much compared to hundred years ago). Had they not done so – Halland, south of Sweden, would probably have looked like certain parts of England. Green. With a lot of heathlands”, says Hans Theliander.</div> <div><br /></div> <div><strong>How the forest should be used best is discussed extensively by the various actors in society, what opportunities do you see in the future?</strong></div> <div>“Everything is interconnected and complex. There is a lot of politics in the whole thing. I really hope you get the right side of the discussion about the forest. In general, one can probably say that there are very well-managed forests in Sweden – and somehow, we should be able to use it in a sustainable way, but not over-utilize anything. With smarter process technology, we can help you get a higher efficiency of what you pick out of the forest. You then get more per ton of set-aside forest”.</div> <div>“It is an important message about why you should refine process technology. Personally, I do not think it is effective when you burn the wood directly, but instead we will manufacture different materials and chemicals. That we then, after several re-cycles, use it as an energy source must be OK”.</div> <div>“Another important thing – is that we should be able to reuse and circulate materials in a good way. Here, the forest industry has been at the forefront when it comes to collect different paper/board products and how to use the fibers several times. It is a good start, but we have to become even better and also expand it to other fields”, Hans Theliander concludes.</div> <div><br /></div> <div>Text: Ann-Christine Nordin</div> <div><br /></div> <div><strong>Read more:</strong><br /><br /><div><span style="background-color:initial"><a href="https://wwsc.se/"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Wallenberg Wood Science Center</a><br /></span></div> <div><span style="background-color:initial"><font color="#1166aa"><span style="font-weight:700"><a href="https://treesearch.se/"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Treesearch</a></span></font></span></div> <div><span style="background-color:initial"><font color="#1166aa"><span style="font-weight:700"><a href="https://treesearch.se/"></a></span></font><a href="/sv/Personal/Sidor/lisbeth-olsson.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Lisbeth Olsson</a><br /><a href="/en/Staff/Pages/paul-gatenholm.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Paul Gatenholm</a></span></div></div> <div><br /></div> ​Fri, 18 Feb 2022 00:00:00 +0100https://www.chalmers.se/en/areas-of-advance/ict/news/Pages/the-allwise-alvis.aspxhttps://www.chalmers.se/en/areas-of-advance/ict/news/Pages/the-allwise-alvis.aspx​Time to inaugurate all-wise computer resource<p><b>​Alvis is an old Nordic name meaning &quot;all-wise&quot;. An appropriate name, one might think, for a computer resource dedicated to research in artificial intelligence and machine learning. The first phase of Alvis has been used at Chalmers and by Swedish researchers for a year and a half, but now the computer system is fully developed and ready to solve more and larger research tasks.​</b></p><br /><div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/300x454_Alvis_infrastructure_1.png" alt="A computer rack" class="chalmersPosition-FloatRight" style="margin:10px;width:270px;height:406px" />Alvis is a national computer resource within the <strong><a href="https://www.snic.se/">Swedish National Infrastructure for Computing, SN​IC,</a></strong> and started on a small scale in the autumn of 2020, when the first version began being used by Swedish researchers. Since then, a lot has happened behind the scenes, both in terms of use and expansion, and now it's time for Chalmers to give Swedish research in AI and machine learning access to the full-scale expanded resource. The digital inauguration will take place on <span style="font-weight:normal"><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">February 25, 202</a>2.</span></div> <div><br /></div> <div><b>What can Alvis contribute to, then? </b>The purpose is twofold. On the one hand, one addresses the target group who research and develop methods in machine learning, and on the other hand, the target group who use machine learning to solve research problems in basically any field. Anyone who needs to improve their mathematical calculations and models can take advantage of Alvis' services through SNIC's application system – regardless of the research field.</div> <div><span style="background-color:initial">&quot;Simply put, Alvis works with pattern recognition, according to the same principle that your mobile uses to recognize your face. What you do, is present very large amounts of data to Alvis and let the system work. The task for the machines is to react to patterns - long before a human eye can do so,&quot; says <b>Mikael Öhman</b>, system manager at Chalmers e-commons.</span><br /></div> <div><br /></div> <h3 class="chalmersElement-H3">How can Alvis help Swedish research?</h3> <div><b>Thomas Svedberg</b> is project manager for the construction of Alvis:</div> <div>&quot;I would say that there are two parts to that answer. We have researchers who are already doing machine learning, and they get a powerful resource that helps them analyse large complex problems.</div> <div>But we also have those who are curious about machine learning and who want to know more about how they can work with it within their field. It is perhaps for them that we can make the biggest difference when we now can offer quick access to a system that allows them to learn more and build up their knowledge.&quot;</div> <div><br /></div> <div>The official inauguration of Alvis takes place on February 25. It will be done digitally, and you will find all <a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">information about the event here.</a></div> <div><br /></div> <h3 class="chalmersElement-H3">Facts</h3> <div>Alvis, which is part of the national e-infrastructure SNIC, is located at Chalmers. <a href="/en/researchinfrastructure/e-commons/Pages/default.aspx">Chalmers e-commons</a> manages the resource, and applications to use Alvis are handled by the <a href="https://www.snic.se/allocations/snac/">Swedish National Allocations Committee, SNAC</a>. Alvis is financed by the <b><a href="https://kaw.wallenberg.org/">Knut and Alice Wallenberg Foundation</a></b> with SEK 70 million, and the operation is financed by SNIC. The computer system is supplied by <a href="https://www.lenovo.com/se/sv/" target="_blank">Lenovo​</a>. Within Chalmers e-commons, there is also a group of research engineers with a focus on AI, machine learning and data management. Among other things, they have the task of providing support to Chalmers’ researchers in the use of Alvis.</div> <div> </div> <h3 class="chalmersElement-H3">Voices about Alvis:</h3> <div><b>Lars Nordström</b>, director of SNIC: &quot;Alvis will be a key resource for Swedish AI-based research and is a valuable complement to SNIC's other resources.&quot;</div> <div><br /></div> <div><span style="background-color:initial"><strong>Sa</strong></span><span style="background-color:initial"><strong>ra Mazur</strong>, Director of Strategic Research, Knut and Alice Wallenberg Foundation: &quot;</span>A high-performing national computation and storage resource for AI and machine learning is a prerequisite for researchers at Swedish universities to be able to be successful in international competition in the field. It is an area that is developing extremely quickly and which will have a major impact on societal development, therefore it is important that Sweden both has the required infrastructure and researchers who can develop this field of research. It also enables a transfer of knowledge to Swedish industry.&quot;<br /></div> <div><br /></div> <div><b>Philipp Schlatter</b>, Professor, Chairman of SNIC's allocation committee Swedish National Allocations Committee, SNAC: &quot;Calculation time for Alvis phase 2 is now available for all Swedish researchers, also for the large projects that we distribute via SNAC. We were all hesitant when GPU-accelerated systems were introduced a couple of years ago, but we as researchers have learned to relate to this development, not least through special libraries for machine learning, such as Tensorflow, which runs super fast on such systems. Therefore, we are especially happy to now have Alvis in SNIC's computer landscape so that we can also cover this increasing need for GPU-based computer time.&quot;</div> <div><br /></div> <div><strong>Scott Tease</strong>, Vice President and General Manager of Lenovo’s High Performance Computing (HPC) and Artificial Intelligence (AI) business: <span style="background-color:initial">“Lenovo </span><span style="background-color:initial">is grateful to be selected by Chalmers University of Technology for the Alvis project.  Alvis will power cutting-edge research across diverse areas from Material Science to Energy, from Health care to Nano and beyond. </span><span style="background-color:initial">Alvis is truly unique, built on the premise of different architectures for different workloads.</span></div> <div>Alvis leverages Lenovo’s NeptuneTM liquid cooling technologies to deliver unparalleled compute efficiency.  Chalmers has chosen to implement multiple, different Lenovo ThinkSystem servers to deliver the right NVIDIA GPU to their users, but in a way that prioritizes energy savings and workload balance, instead of just throwing more underutilized GPUs into the mix. Using our ThinkSystem SD650-N V2 to deliver the power of NVIDIA A100 Tensor Core GPUs with highly efficient direct water cooling, and our ThinkSystem SR670 V2 for NVIDIA A40 and T4 GPUs, combined with a high-speed storage infrastructure,  Chalmers users have over 260,000 processing cores and over 800 TFLOPS of compute power to drive a faster time to answer in their research.”</div> <div><br /></div> <div><br /></div> <div><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" /></a><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">SEE INAUGURATION PROGRAMME​</a></div> <div><br /></div> <div><em>Text: Jenny Palm</em></div> <em> </em><div><em>Photo: Henrik Sandsjö</em></div> <div><em>​<br /></em></div> <div><em><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/750x422_Alvis_infrastructure_3_220210.png" alt="Overview computor" style="margin:5px;width:690px;height:386px" /><br /><br /><br /></em></div> <div><br /></div> <div><br /></div> ​Sun, 13 Feb 2022 00:00:00 +0100https://www.chalmers.se/en/departments/bio/news/Pages/Graphene-sensors-can-detect-bacterial-pathogens.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Graphene-sensors-can-detect-bacterial-pathogens.aspxGraphene sensors can detect bacterial pathogens<p><b>​When vulnerable people develop life-threatening infections in hospitals, time is the crucial factor for survival. Researchers are therefore working intensively to find more rapid and safer methods for detecting bacterial pathogens. Graphene is considered to be an especially suitable material for use in biosensors and diagnostic devices. A research group has now shown that the two-dimensional sheet structure of graphene can very rapidly distinguish between types of bacteria. The aim is to make the sensors sensitive enough.​</b></p><p class="chalmersElement-P">​<span>Sepsis, which accounts for one in five deaths globally, is a strong immune response and circulatory collapse that infection can cause. Sepsis is especially serious for people who develop it in a hospital, and 30 per cent die because too much time elapses between determining which microorganism caused it and quickly applying effective treatment. Currently this takes hours, but developments within sensor technology might shorten this time markedly.</span></p> <div> </div> <p class="chalmersElement-P">&quot;We developed a simple prototype sensor comprising pristine graphene. We measured tiny changes in the electrical resistance of the material and could thereby differentiate types of bacteria. The prototype demonstrates how graphene can quickly and easily distinguish two types of bacteria. We are now striving to find the properties that characterise the bacteria that most frequently cause sepsis in the healthcare system. Based on that, we will modify the graphene sensors so that they can become sensitive enough to help in a hospital setting,&quot; explains <a href="/en/staff/Pages/Ivan-Mijakovic.aspx">Ivan Mijakovic</a>, Professor at Chalmers and the Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark.</p> <div> </div> <h2 class="chalmersElement-H2">Prototype with great potential​</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Interest in developing biosensors to detect pathogenic bacteria and viruses is growing rapidly. Among nanomaterials, graphene is gaining attention because of its special surface properties and electrical conductivity, which enable extremely small and sensitive sensors. Graphene is a two-dimensional sheet of carbon atoms arranged into a honeycomb lattice, which provides a large and very sensitive surface area.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;The carbon atoms have a sphere of electrons above and below the ultra-thin carbon layer. By attaching electrodes at opposite ends, we can measure electrical resistance, making the surface sensitive to anything in the vicinity. In our new study, we show – to our own great surprise – that graphene is so sensitive that we can not only detect whether bacteria are present through small shifts in the electrical charge but also differentiate between different types of bacteria to some extent,&quot; says Ivan Mijakovic.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Bacteria typically range in size from 0.5 to 5 µm, and have distinct shapes – spherical, rod-shaped and spiral. In addition, most bacteria are encapsulated by a cell wall comprising a peptidoglycan made of negatively charged N-acetylglucosamine and N-acetylmuramic acid. This layer is thicker in gram-positive bacteria and thinner in gram-negative bacteria.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;This is mainly a prototype to demonstrate the potential of this type of sensor. Without altering anything at the graphene surface, we can therefore detect whether bacteria are present and distinguish their small differences in surface. Naturally, this type of sensor may be useful on surfaces that must be kept completely bacteria-free, such as implants, but our prototype is more a proof of concept that the technology is possible. Now we can take the concept a step further,&quot; explains Santosh Pandit, researcher at Chalmers and the lead author of the study.</p> <div> </div> <h2 class="chalmersElement-H2">The study is p​art of a major European project</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The prototype study is therefore only the first step in a major European project aiming to develop sensors that can quickly and accurately identify the pathogenic bacteria that currently pose the greatest problem in healthcare.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;The human body has thousands of species of bacteria, most of which are actually harmless or often beneficial. We therefore must be able to differentiate between them and thus we need to determine how to functionalise the graphene surface with antibodies or other receptors that are selective to specific bacteria,&quot; says Santosh Pandit.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The researchers in this international project are therefore collaborating with hospitals to collect the most relevant and problematic pathogens.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;We then 'shave' the surface of these bacteria to reveal which proteins and biomarkers characterise the pathogens. We can then either create antibodies against the peptides or build small, organic chemical receptors for these surface molecules, as we are doing in collaboration with Nina Kann, Professor in Organic Chemistry at Chalmers,&quot; explains Santosh Pandit.</p> <div> </div> <h2 class="chalmersElement-H2">Hospitals need specific and rapid devices</h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">The researchers hope that they can use these diverse types of strategies to further develop the prototype version of the graphene sensor into far more advanced chips.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;Hospitals are looking for a device that is both very specific and very rapid. If this technology succeeds, we would be able to reduce the response time from hours to perhaps minutes so that doctors can respond faster and thus save more lives. The initial target is therefore the bacteria that cause sepsis in hospitals and thus threaten the lives of the most compromised people, but once we have the technology fully developed, we also aim to use it for less urgent applications such as chronic infections or in implants,&quot; concludes Ivan Mijakovic.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Text:</strong> Morten Busch, <a href="https://sciencenews.dk/en">Sciencenews </a></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial"><strong>R</strong></span><span style="background-color:initial"><strong>ead the scientific article </strong><a href="https://doi.org/10.3390/s21238085">Graphene-Based Sensor for Detection of Bacterial Pathogens</a></span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">by the a</span><span style="background-color:initial">uthors Santosh Pandit, Yanyan Chen, Shadi Rahimi, Vrss Mokkapati, Alessandra Merlo and Prof. Ivan Mijakovic at the Department of Biology and Biological Engineering, Chalmers, and Mengyue Li and Prof. August Yurgens at the Department of Microtechnology and Nanoscience (MC2), Chalmers.</span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p>Thu, 03 Feb 2022 09:00:00 +0100