News: Energihttp://www.chalmers.se/sv/nyheterNews related to Chalmers University of TechnologyFri, 01 Jul 2022 20:02:32 +0200http://www.chalmers.se/sv/nyheterhttps://www.chalmers.se/en/departments/see/news/Pages/Pioneering-recycling-turns-mixed-waste-into-premium-plastics-with-no-climate-impact.aspxhttps://www.chalmers.se/en/departments/see/news/Pages/Pioneering-recycling-turns-mixed-waste-into-premium-plastics-with-no-climate-impact.aspxPioneering recycling turns mixed waste into premium plastics with no climate impact<p><b>​Only a fraction of the material that could be turned into new plastic is currently recycled. Researchers at Chalmers have now demonstrated how the carbon atoms in mixed waste can replace all fossil raw materials in the production of new plastic. The recycling method is inspired by the natural carbon cycle and could eliminate the climate impact of plastic materials, or even clean the air of carbon dioxide.</b></p><strong>​</strong><img src="/sv/institutioner/see/nyheter/PublishingImages/HenrikThunman_191004_091.jpg" alt="Henrik Thunman" class="chalmersPosition-FloatRight" style="margin:5px" /><span style="background-color:initial"><strong>“There are enough carbon</strong> atoms in waste to meet the needs of all global plastic production. Using these atoms, we can decouple new plastic products from the supply of virgin fossil raw materials. If the process is powered by renewable energy, we also get plastic products with more than 95% lower climate impact than those produced today, which effectively means negative emissions for the entire system,” says Henrik Thunman, Professor of Energy Technology at Chalmers University of Technology and one of the authors of the study published in the Journal of Cleaner Production. </span><div><br /><span style="background-color:initial"></span><div>To achieve circular cycles, we need to make better use of the resources already in use in society. Henrik Thunman and his research team want to focus on an important resource that often goes up in smoke today: the carbon atoms in our waste, which are currently incinerated or end up in landfills instead of being recycled. This is made possible with technologies targeting the carbon contained in plastic, paper and wood wastes, with or without food residues, to create a raw material for the production of plastics with the same variety and quality as those currently produced from fossil raw materials. </div> <div><br /></div> <div><strong>Just like nature </strong></div> <div>Current plastic recycling methods are able to replace no more than 15-20% of the fossil raw material needed to meet society’s demand for plastic. The advanced methods proposed by the researchers are based on thermochemical technologies and involve the waste being heated to 600-800 degrees Celsius. The waste then turns into a gas, which after the addition of hydrogen can replace the building blocks of plastics. Using this recycling method could decouple new plastic products from the supply of new fossil raw materials.</div> <div>The researchers behind the study are developing a thermochemical recycling method that produces a gas which then can be used as a raw material in the same factories in which plastic products are currently being made from fossil oil or gas. Different types of waste, such as old plastic products and paper cups, with or without food residues, are put into the reactors at the Chalmers Power Central.</div> <div><br /></div> <div>“The key to more extensive recycling is to look at residual waste in a whole new way: as a raw material full of useful carbon atoms. The waste then acquires value, and you can create economic structures to collect and use the material as a raw material worldwide,” says Henrik Thunman. </div> <div>The principle of the process is inspired by the natural carbon cycle. Plants are broken down into carbon dioxide when they wither, and carbon dioxide, using the sun as an energy source and photosynthesis, then creates new plants. </div> <div><span style="background-color:initial">“H</span><span style="background-color:initial">owever, our technology differs from the way it works in nature because we don’t have to take the detour via the atmosphere to circulate the carbon in the form of carbon dioxide. All the carbon atoms we need for our plastic production can be found in our waste, and can be recycled using heat and electricity,” says Henrik Thunman. </span><br /></div> <div><br /></div> <div>The researchers’ calculations show that the energy to power such processes can be taken from renewable sources such as solar, wind, hydro power or biomass​, and they will be more energy-efficient than the systems in use today. It is also possible to extract excess heat from recycling processes, which in a circular system would compensate for the heat production currently derived from waste incineration, while eliminating the carbon dioxide emissions associated with energy recovery. </div> <div><br /></div> <div><strong>Can replace fossil raw materials</strong></div> <div>The research has been carried out as part of the FUTNERC* project. The researchers have proven that the process can work in collaboration with plastics manufacturer Borealis in Stenungsund, Sweden, where they have verified the results and shown that the raw material can be used to make plastic, replacing the fossil raw materials used today. </div> <div>“Our goal is to create a circular economy for plastics. Our plastic products are key to the transformation to a sustainable society, so it’s important for us to support research like this. We already have projects that create circularity for our plastic products, but more solutions are needed. Therefore, we are pleased with these excellent results, which can help bring us a step closer to our goal,” says Anders Fröberg, CEO of Borealis AB.</div> <div><br /></div> <div>The study <a href="https://doi.org/10.1016/j.jclepro.2022.132674">Co-recycling of natural and synthetic carbon materials for a sustainable circular economy</a> was published in the Journal of Cleaner Production and was written by Isabel Cañete Vela, Teresa Berdugo Vilches, Göran Berndes, Filip Johnsson, and Henrik Thunman.    </div> <div>The researchers are active at Chalmers University of Technology.</div> <div><br /></div> <div><br /></div> <div><strong>Watch the film about the recycling project:</strong></div> <div>Short version, 3 minutes: <a href="https://youtu.be/ItzMyG3IKPc" style="outline:0px"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />100% Recycling of any waste​</a></div> <div>Long version, 30 minutes: <a href="https://youtu.be/fEPOnl8Q3PA" style="outline:0px"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Waste – from a problem to a valuable feedstock</a><span style="background-color:initial"> </span><span style="background-color:initial"> </span></div> <div><br /></div> <div><strong>FUTNERC</strong></div> <div>A five-year research project funded half by the Swedish Energy Agency and 25% each by Borealis and Preem. The Futnerc project aims to accelerate the transformation of the chemical industry to achieve net zero greenhouse gas emissions from refineries and chemical plants by 2050.</div> <div><br /></div> <div><strong>Contact: </strong></div> <div>Henrik Thunman, Professor of Energy Technology, Department of Space, Earth and Environment, Chalmers University of Technology,   +46 31 772 14 51, <a href="mailto:henrik.thunman@chalmers.se">henrik.thunman@chalmers.se</a> </div> <div>Isabel Cañete Vela, PhD-student, Department of Space, Earth and Environment, Chalmers University of Technology, +46 31 772 30 18,  <a href="mailto:canete@chalmers.se">canete@chalmers.se</a> </div> <span style="background-color:initial"><br /></span></div>Thu, 30 Jun 2022 07:00:00 +0200https://www.chalmers.se/en/departments/tme/news/Pages/Lack-of-incentives-for-large-scale-solar-energy-in-Sweden.aspxhttps://www.chalmers.se/en/departments/tme/news/Pages/Lack-of-incentives-for-large-scale-solar-energy-in-Sweden.aspxLack of incentives for large-scale solar energy in Sweden<p><b>​Current regulations and subsidies have favoured small-scale ownership of photovoltaic systems in Sweden. This is shown in a new study from Chalmers University of Technology. To promote the construction of larger systems and solar-as-a-service, changes in regulations are required. Such changes in regulations can contribute to the national goal of reaching one hundred percent renewable electricity production by the year 2040.</b></p>​In recent years, the market for self-produced solar energy has exploded in Sweden. The reason is, among other things, high electricity prices and the ongoing climate change. But for those who do not have a roof of their own or the financial conditions to invest in a solar system, the alternatives are limited.<br /><br />&quot;If we are to be able to increase the amount of solar energy in Sweden, we must ensure that more people have access to solar photovoltaics, not just those with detached houses who can afford to buy a system&quot;, says Amanda Bankel, doctoral student at the division of Innovation and R&amp;D Management at the Department of Technology Management and Economics, Chalmers University of Technology.<br /><br />The new study by Amanda Bankel and Ingrid Mignon, Associate Professor at the same division, has been published in the scientific journal Energy Policy. It shows that there is a lack of agreement in how researchers, policymakers and firms view solar business models. For instance, “community solar” business models have received much attention in research and policy at, for example, EU level. Community solar means that many people come together to produce, share, and consume renewable energy locally.<br /><br />However, such business models are hardly found among solar firms on the Swedish market. This does not imply that there are no energy communities in Sweden – only that firms do not see the need to design their business models for these customers. If Swedish policymakers want to increase the amount of solar energy through energy communities, they must also understand how firms that offer photovoltaic systems reason and what motivates them to specifically target energy communities, says Amanda Bankel.<br /><br />Other solutions that make it possible for customers to buy solar energy as a service through, for example, leasing, are also scarce in Sweden, despite having had a major impact in other countries, such as the US.<br /><br />&quot;Swedish policy instruments have favoured small-scale systems where the person who consumes the solar energy is the same one who buys and owns the system. Hence, it is not surprising that we see many firms offering these solutions and only a few that are aimed at people who do not want, or have the opportunity, to invest in their own system.&quot;<br /><br />&quot;If Sweden is to achieve its goal of 100 percent renewable electricity production by 2040, policymakers should ensure that more people have access to solar photovoltaics by promoting different types of solutions&quot;, says Amanda Bankel.<br /><div><div><br /></div> <div><img src="/sv/institutioner/tme/nyheter/PublishingImages/AmandaBankel_600.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;width:300px;height:450px" /><img src="/sv/institutioner/tme/nyheter/PublishingImages/IngridJohanssonMignon_photoLaurentToudic_600.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;width:300px;height:450px" /><br /><br /><br /><br /><br /></div> <br /><div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em><br /></em></div> <div><em>Amanda Bankel and Ingrid Johansson Mignon.<span style="display:inline-block"></span></em></div> <br /></div> <br /><strong>About community solar</strong><br />Community solar involves many people coming together to produce, share, and consume renewable energy locally. They are described by the Swedish Energy Agency as an effective way to meet the challenges of energy transition.<br /><br /><strong>About leasing</strong><br />Leasing of solar photovoltaic means that you as a homeowner rent a photovoltaic system that is located on your own roof and owned by a leasing provider. Instead of making a large investment upfront, you pay a monthly fee to the firm that owns, operates, and maintains the system.  <br /><div><br /><br /></div> <div><span><span><em>Text: Daniel Karlsson</em><br /><em>Photo: Johan Bodell, Daniel Karlsson<span style="display:inline-block"></span></em></span></span><br /></div> <br /><br /><strong>About the study</strong><br />The study &quot;Solar business models from a firm perspective – an empirical study of the Swedish market&quot; is published in the scientific journal Energy Policy, volume 166, July 2022: <br /><span><a href="https://doi.org/10.1016/j.enpol.2022.113013" target="_blank">https://doi.org/10.1016/j.enpol.2022.113013</a><a href="https://doi.org/10.1016/j.enpol.2022.113013" target="_blank"><span style="display:inline-block"></span></a></span><br /><br /><strong>Contacts</strong><br /><a href="/en/staff/Pages/amanda-bankel.aspx">Amanda Bankel</a>, doctoral student, Technology Management and Economics<br /><a href="mailto:amanda.bankel@chalmers.se">amanda.bankel@chalmers.se</a>, phone +46 31 772 1228<br /><br /><a href="/en/Staff/Pages/Ingrid-Mignon.aspx">Ingrid Johansson Mignon</a>, Associate Professor, Technology Management and Economics<br /><a href="mailto:ingrid.mignon@chalmers.se">ingrid.mignon@chalmers.se</a>, phone +46  31 772 6329<br />Mon, 20 Jun 2022 08:00:00 +0200https://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Are-Swedens-climate-goals-in-line-with-the-Paris-Agreement.aspxhttps://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Are-Swedens-climate-goals-in-line-with-the-Paris-Agreement.aspxAre Sweden's climate goals in line with the Paris Agreement?<p><b>This issue has been debated lately in Sweden. The results depend on how the global emission budget is scaled down and distributed among countries. The choice of method comes down to ethical questions and is ultimately a political decision. Three researchers from Chalmers - Johannes Morfeldt, Christian Azar and Daniel Johansson - come to the following conclusions in a recent report: </b></p><ul><li>​​<span style="background-color:initial">Sweden's (territorial) emission target is compatible with the 1.5 degree target given that the global carbon dioxide emission space is distributed evenly per person and year.</span></li> <li>Sweden's (territorial) emissions target is compatible with the 1.5-degree target, even if we also take historical responsibility for our carbon dioxide emissions from sometime in the 1990s.</li> <li>If Sweden takes responsibility for emissions further back in time, we would need more ambitious goals (than the current ones).</li></ul> <div><span style="background-color:initial"><strong><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/JohannesM-ChristianA-DanielJ-170x510.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />IP</strong></span><span style="background-color:initial"><strong>CC has estimated</strong> the amount of carbon the world can emit in order to meet the 1,5 degree target (a carbon budget). In order to determine how much each country can emit within this global budget, i.e., to scale down the emission budget to a national level, various principles of equity may be applied. The choice of principle may have a significant impact on the results. </span><br /></div> <div><strong style="background-color:initial"><br /></strong></div> <div><strong style="background-color:initial">Finally,</strong><span style="background-color:initial"> </span><strong style="background-color:initial">the researchers address</strong><span style="background-color:initial"> the role of science in this debate. Science is central to calculating what global emission space is left to reach a certain temperature target. But science cannot determine which distribution principle is right. How the remaining emission space is to be distributed between countries is basically an ethical and political issue and not an issue that science can decide.</span><br /></div> <div><br /><strong>Dowload the report</strong> (Swedish): <a href="https://research.chalmers.se/publication/?id=530543">Nationella utsläppsmål utifrån Parisavtalet och internationella rättviseprinciper – analys av Sveriges territoriella klimatmål</a></div> <div><br /></div> <div><a href="https://research.chalmers.se/publication/?id=530543"></a><div><a href="/en/staff/Pages/morfeldt.aspx">Johannes Morfeldt</a>, Researcher, Department of Space, Earth and Environment, <span style="background-color:initial">, Chalmers University of Technology</span><span style="background-color:initial">.</span><span style="background-color:initial">​</span></div> <div><a href="/en/Staff/Pages/christian-azar.aspx">Christian Azar</a>, Professor of Energy and environment, Department of Space, Earth and Environment, Chalmers University of Technology.<br /><a href="/en/staff/Pages/daniel-johansson.aspx">Daniel Johansson​</a>, Associate Professor, Department of Space, Earth and Environment, Chalmers University of Technology.​</div> <br /><strong>Read More:<br /></strong><a href="/en/areas-of-advance/energy/news/Pages/Must-some-countries-do-more-than-others.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Must some countries do more than others?</a><br /><a href="/en/areas-of-advance/energy/news/Pages/We-must-take-action-instead-of-arguing-how-costly-it-might-be.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />We must take action instead of arguing how costly it might be</a><br /><a href="/en/departments/see/news/Pages/History-fossil-dependence.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Can history teach us how to reduce fossil reliance?</a></div> <div><a href="/en/areas-of-advance/energy/news/Pages/production-gap.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />&quot;Do something constructive of the report's message&quot;​</a><br /></div> <div><br /></div>Thu, 16 Jun 2022 07:00:00 +0200https://www.chalmers.se/en/areas-of-advance/materials/news/Pages/2022-tandem-seminar.aspxhttps://www.chalmers.se/en/areas-of-advance/materials/news/Pages/2022-tandem-seminar.aspx2022 year's Tandem Webinars<p><b>​Here you will find 2022 all Tandem Webinars. All the webinars can be watched afterwards via Chalmers Play. </b></p><div></div> <div><span style="background-color:initial"><b>Upcoming webinars:</b><br /><div>8 September, <a href="/en/areas-of-advance/materials/Calendar/Pages/Tandem-WebinarNew-Insulation-Materials-for-High-Voltage-Power-Cables.aspx">New Insulation Materials for High Voltage Power Cables</a></div> <div>5 October, <a href="/en/areas-of-advance/materials/Calendar/Pages/Tandem-Webinar-Metallic-nanoalloys-for-next-generation-optical-hydrogen-sensors.aspx">Metallic nanoalloys for next generation optical hydrogen sensors</a><br />November, TBA</div> <br /><b>Wat</b></span><span style="background-color:initial;font-weight:700">ch 2022 year´s seminars on Chalmers Play</span><span style="background-color:initial;font-weight:700">:<br /><br /></span><div><span style="background-color:initial;font-weight:700">11 April</span><span style="background-color:initial;font-weight:700">: </span><span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="font-weight:700;background-color:initial">– </span><span style="background-color:initial"><b>Perspectives on cellulose nanocrystals<br /></b></span><span style="font-size:16px">In this tandem webinar</span><span style="font-size:16px;background-color:initial"> </span><span style="font-size:16px">we have two hot topics dedicated to Cellulose nanocrystals: Cellulose nanocrystals in simple and not so simple flows &amp; Using liquid crystal phase separation to fractionate cellulose nanocrystals.</span><br /></div> <div><a href="https://play.chalmers.se/media/Tandem%20Webinar%20%E2%80%93%20Perspectives%20on%20cellulose%20nanocrystals/0_lqpv4rvq" style="outline:0px"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a><div><br /></div> <div><div><span style="font-weight:700">Program:</span></div> <div><ul><li>Moderator: Leif Asp, Co-Director Chalmers Area of Advance Materials Science</li> <li>C<span style="background-color:initial">ellulose nanocrystals in simple and not so simple flows, <a href="/en/staff/Pages/roland-kadar.aspx">Roland Kádár</a>, Associate Professor, Chalmers University of Technology.</span></li> <li>U<span style="background-color:initial">sing liquid crystal phase separation to fractionate cellulose nanocrystals.<a href="https://wwwen.uni.lu/recherche/fstm/dphyms/people/jan_lagerwall"> Jan Lagerwall</a>, Professor at the Physics &amp; Materials Science Research Unit in the University of Luxembourg.</span> </li></ul></div></div></div> <div><br /></div> <div><span style="font-weight:700;background-color:initial">30 May: </span><span style="background-color:initial;font-weight:700">TANDEM SEMINAR</span><span style="background-color:initial"> </span><span style="background-color:initial;font-weight:700">– </span><b><span></span>Lipid nanoparticles for mRNA delivery</b><br /><span style="background-color:initial"><a href="https://play.chalmers.se/media/Watch%20the%20webinar%20%E2%80%93%20Lipid%20nanoparticles%20for%20mRNA%20delivery/0_4y0mw1ss"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a><br />Organizer: Chalmers Area of Advance Mater</span><span style="background-color:initial">ials Science.<br /></span>The role of supramolecular lipid self assembly and protein corona formation for functional mRNA delivery to cells. Two hot topics will be covered by Elin Esbjörner and Fredrik Höök​.<br /><div><br /></div> <div><ul><li>Moderator: Maria Abrahamsson, Director of Materials Science Area of Advance </li> <li><a href="/en/staff/Pages/Fredrik-Höök.aspx">Fredrik Höök</a>, <em>Professor, Nano and Biophysics, Department of Physics, Chalmers University of Technology</em>.</li> <li><span style="background-color:initial"><a href="/en/staff/Pages/Elin-Esbjörner-Winters.aspx">Elin Esbjörner</a>, </span><i>Associate Professor, Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology.</i></li></ul></div></div> <div> <div><strong>Read more:</strong></div></div></div> <a href="/en/areas-of-advance/materials/news/Pages/2021-tandem-seminars.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />2021 year's Tandem Webinars</a>​.​Wed, 15 Jun 2022 00:00:00 +0200https://www.chalmers.se/en/departments/see/news/Pages/Negative-emissions-conference-2022.aspxhttps://www.chalmers.se/en/departments/see/news/Pages/Negative-emissions-conference-2022.aspxNegative emissions necessary to reach climate goals<p><b>In order to reverse the trend of increasing emissions and achieving the Paris Agreement's goal of a 1.5 degree increase in temperature, so-called negative emissions are a must. This according to researchers at Chalmers, who have invited the world's leading international experts on the subject to a conference on 14-17 June.- It is not possible underestimate the importance of negative emissions to meet the climate goals, says Anders Lyngfelt, one of the conference organizers.​​</b></p><div><div>Negative emissions is achieved by collecting and storing more carbon dioxide than is emitted into the atmosphere. One way is called BECCS - Bioenergy with carbon capture and storage - the process of extracting bioenergy by burning biomass and then capturing and storing the carbon, thereby removing it from the atmosphere. Since it is the same carbon dioxide that the forest has previously captured through photosynthesis, the result is a net reduction of the carbon dioxide in the atmosphere, or minus emissions.</div> <div><br /></div> <div>The first International Conference on Negative CO2 Emissions was held at Chalmers in 2018 and a sequel was planned for 2020, if it had not been for the covid-19 pandemic. But now it's finally time for a conference that will deal with new technologies for negative emissions, what the latest data models say about how the climate is developing, and what policy instruments are relevant to speed up the work with negative emissions.</div> <div>How much more carbon dioxide can we emit?</div> <div><br /></div> <div>It is the so-called carbon dioxide budget that indicates how much carbon dioxide we can emit without exceeding the climate goals. According to the best available calculations, the budget for the 1.5-degree goal is over in 2029, in just 7 years. </div> <div></div></div> <div><br /></div> <div><span style="background-color:initial"></span></div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/AndersLyngfelt_200.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><div>“If we are to meet this 1.5-degree target, all carbon dioxide released into the atmosphere after 2029 must be captured again, to acheive so-called negative emissions. We can't underestimate the importance of negative emissions in order to meet the climate goals, that is why Chalmers has gathered the world's leading researchers in the field for this conference, says Anders Lyngfelt, professor at Energy Technology at Chalmers.</div> <div><br /></div> <div>The conference brings together more than 300 delegates and includes 140 scientific publications and more than 150 lectures, including 12 lectures on important aspects of negative emissions.</div></div> <div></div> <h3 class="chalmersElement-H3">More information: </h3> <div><span></span><a href="http://negativeco2emissions2020.com/">Official website for The second International Conference on Negative CO2 Emissions</a>. </div> <div><br /></div> <div><a href="http://negativeco2emissions2020.com/wp-content/uploads/2022/06/Program_FINAL.pdf">Download the program as a pdf</a>.</div>Mon, 13 Jun 2022 00:00:00 +0200https://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Multifunctional-farming-systems.aspxhttps://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Multifunctional-farming-systems.aspxMore biomass and less negative environmental impact<p><b>With a new way of modeling land use, research shows how changes in land use combined with multifunctional production systems ​can help agriculture deliver more biomass while at the same time reducing environmental problems. – Agriculture creates many values in addition to food supply today, but can also have a negative impact on the environment, for example by nitrogen from manure leaking into nearby drinking water, says Göran Berndes, expert on land use.</b></p><div>Increased demand for biofuels and bio-based materials increases the pressure on agriculture to produce biomass. Intensified land use can lead to more common negative effects such as erosion, nitrogen leakage, loss of soil carbon and floods.</div> <div><br /></div> <div><span style="background-color:initial">The problem can be alleviated with the help of multifunctional production systems, which means that perennial crops are grown in a way and place that counteracts the negative environmental effects of intensive agriculture in the landscape. These systems provide society with double benefits: more biomass and reduced environmental problems. </span><span style="background-color:initial">They can also secure regulatory ecosystem services, such as pollination and protection against natural disasters such as droughts and floods.</span></div> <div><br /></div> <div><b><img src="/SiteCollectionImages/Institutioner/SEE/Profilbilder/Goran_Berndes_170.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /></b></div> <div><div><span style="background-color:initial">- There are many different ways to reduce the environmental impact and the solutions we have investigated in this project have been the subject of several previous studies, also within our own research group. Such studies are often done on a fairly small scale, but here we have taken a larger approach and investigated how multifunctional cultivation systems could be introduced in Sweden and Europe to reduce the negative effects of current agriculture – and at the same time produce biofuels and other bio-based products, says Göran Berndes, professor at Chalmers (picture t h). He is the project leader in a research study, which includes researchers from Chalmers, Lund University and Mid Sweden University. Together, they have developed a new way of modeling land use systems.</span><br /></div> <br /></div> <div>The spatial models are based on high-resolution data and have been applied to 81,000 individual landscapes across the EU and the UK. This way, it is possible to identify individual landscapes where multifunctional systems can be particularly advantageous, while at the same time it is possible to study the effects of implementation at European level. </div> <div><br /></div> <div>– Our analyzes show that environmental problems related to nitrogen leakage to surface water and wind erosion can be significantly reduced through a strategic integration of multifunctional farming systems in agricultural landscapes that are currently dominated by annual crops, says Oskar Englund, associate professor at Mid Sweden University and one of the project participants.<br /></div> <div><br /></div> <div>Read more about the project <a href="https://f3centre.se/en/research/mitigating-environmental-impacts-from-biomass-production-by-producing-more-biomass/">Mitigating environmental impacts from biomass production by producing more biomass​</a>. <br /></div> <div><br /></div> <div><b style="background-color:initial">More info:</b><br /></div> <div><span style="background-color:initial">The project is part of the programme </span><span style="background-color:initial"><a href="https://f3centre.se/en/renewable-transportation-fuels-and-systems/">Renewable transportation fuels and systems</a>, </span><span style="background-color:initial">A collaborative research program between the Swedish Energy Agency and f3 The Swedish Knowledge Centre for Renewable Transportation Fuels.</span></div> <div><br /></div> <div><b>Projektgrupp: </b><a href="/en/Staff/Pages/goran-berndes.aspx">Göran Berndes</a> (projectleader) and <a href="/sv/Personal/Sidor/christel-cederberg.aspx">Christel Cederberg</a>, Chalmers; <a href="https://www.miun.se/Personal/oskarenglund/?showMenu=1">Oskar Englund</a>, Mid Sweden University/Englund GeoLab AB; <a href="https://portal.research.lu.se/sv/persons/p%c3%a5l-b%c3%b6rjesson">Pål Börjesson</a>, Lund University.</div> <div>The project also has links to <a href="https://task45.ieabioenergy.com/">IEA Bioenergy Task 45 - Climate and sustainability effects of bioenergy within the broader bioeconomy.</a><span style="background-color:initial">​​</span></div> Mon, 06 Jun 2022 10:00:00 +0200https://www.chalmers.se/en/departments/m2/news/Pages/Greener-shipping-with-flying-ferries.aspxhttps://www.chalmers.se/en/departments/m2/news/Pages/Greener-shipping-with-flying-ferries.aspxMajor climate benefits when ships “fly” over the surface<p><b>​Soon, electric passenger ferries skimming above the surface across the seas may become a reality. At Chalmers University of Technology, Sweden, a research team has created a unique method for further developing hydrofoils that can significantly increase the range of electric vessels and reduce the fuel consumption of fossil-powered ships by up to 80 per cent.</b></p>​<span style="background-color:initial">While the electrification of cars is well advanced, the world's passenger ferries are still powered almost exclusively by fossil fuels. The limiting factor is battery capacity, which is not enough to power ships and ferries across longer distances. But now researchers at <strong>Chalmers and the marine research facility SSPA</strong> have succeeded in developing a method that can make the shipping industry significantly greener in the future. The focus is on hydrofoils that, like wings, lift the boat’s hull above the surface of the water and allow the boat to travel with considerably less water resistance. A technology that in recent years has revolutionised sailing, by which hydrofoils make elite sailors' boats fly over the surface of the water at a very high speed. <br /></span><div>The researchers at Chalmers and SSPA now want to enable the sailboats' hydrofoil principle to be used on larger passenger ferries as well, resulting in enormous benefits for the climate. <br /><img src="/SiteCollectionImages/Institutioner/M2/Nyheter/Arash%20200x200.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px 15px" /><br /><span style="background-color:initial"><strong>&quot;</strong></span><span style="background-color:initial"><strong>The electrification of ferries cannot be done</strong> without drastically reducing their water resistance. This method will allow the development of new foil designs that can reduce resistance by up to 80 per cent , which in turn would significantly increase the range of a battery powered ship. In this way, we could also use electric ferries on longer distances in the future,&quot; says research leader <strong>Arash Eslamdoost</strong>, Associate Professor in Applied Hydrodynamics at Chalmers and author of the study Fluid-Structure Interaction of a Foiling Craft published in the Journal of Marine Science and Engineering.</span><br /></div> <div><br /></div> <div>Even for ships that today run on fossil fuels the climate benefit could be enormous, as similar hydrofoil technology could reduce fuel consumption by no less than 80 per cent. <br /></div> <h2 class="chalmersElement-H2">Unique measurement method arouses broad interest </h2> <div>At the centre of the research project is a unique measurement technique that the researchers have put together in order to understand in detail how hydrofoils behave in the water when, for example, the load or speed increases or the positioning of the hydrofoil changes. Using the data collected from the experiments, the team has developed and validated a method to simulate and predict with great precision how the hydrofoil would behave under a variety of conditions. The method is unique of its kind and can now be used to develop the design of hydrofoils for electric powered hydrofoil ferries.<br /></div> <div><br /><img src="/SiteCollectionImages/Institutioner/M2/Nyheter/Laura%20200x200.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px 15px" />The study was conducted in collaboration with the research facility SSPA – one of only a few of its kind in the world – where <strong>Laura Marimon Giovannetti</strong> works as a researcher and project manager. She is the lead author of the study and has herself competed at the elite level for both the British and Italian national sailing teams. Today she is a research and development adviser to Sweden's Olympic committee and the Swedish national team with her sights set on helping the team win more medals at the Olympics in 2024. Marimon Giovannetti sees many possibilities for the unique measurement method developed by the team: </div> <div><br /></div> <div><div><strong>&quot;At the Americas Cup in San Francisco Bay in 2013</strong>, it was the first time we saw a 72-foot sailing boat learning how to “fly” using hydrofoils during the competition. And since then, we've seen a huge increase in sailing boats with hydrofoils. With this new method and knowledge we are able to bring together a range of different branches of engineering – naval architecture, advanced materials and aeronautics as well as renewable energy.&quot;</div></div> <h2 class="chalmersElement-H2">Paving the way for hydrofoils on electric ferries </h2> <div>Hydrofoil technology is not in itself a novelty, but was developed as early as the 60s and 70s. Back then the focus was on getting boats to travel at as fast as possible and the hydrofoils were made of steel, a heavy material with higher maintenance costs. Today's modern hydrofoils are made of carbon fibre, a much lighter and stiffer material that can maintain its rigidity even under high loads – and can be tailored to the expected loads. Part of the research project was therefore to fully understand how a carbon fibre structure behaves underwater during different operational conditions. The research team's method developed in association with modern technology is now paving the way for the use of carbon fibre hydrofoils on larger passenger ships that can travel in a safe, controlled and climate-friendly way even at low speeds. <br /><br /></div> <div><strong>&quot;You want the foil to be as efficient as possible</strong>, which means carrying as much weight as possible at as low a speed as possible with the least resistance. Our next goal is to use this method when designing more efficient hydrofoils for ferries in the future,&quot; says Eslamdoost.</div> <div><br /></div> <div><strong>More about the scientific article </strong></div> <div>The study <a href="https://www.mdpi.com/2077-1312/10/3/372">&quot;Fluid-Structure Interaction of a Foiling Craft&quot;</a> has been published in the Journal of Marine Science and Engineering. The authors are Laura Marimon Giovannetti, Ali Farousi, Fabian Ebbesson, Alois Thollot, Alex Shiri and Arash Eslamdoost. The researchers are active at SSPA and Chalmers University of Technology in Sweden and INP-ENSEEITH in France. <br /><br /></div> <div>Hugo Hammar’s funding from SSPA and Rolf Sörman’s funding from Chalmers University of Technology provided the financial support to run the experimental tests at SSPA. This study also received funding from the Chalmers University of Technology Foundation for the strategic research project Hydro- and Aerodynamics.<br /></div> <a href="https://www.mdpi.com/2077-1312/10/3/372"><div>https://doi.org/10.3390/jmse10030372<br /><br /></div> </a><div><strong>For more information, please contact:</strong></div> <div><strong>Arash Eslamdoost,</strong> Associate Professor in Applied Hydrodynamics at the Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Sweden</div> <div> +46 31 772 36 84  arash.eslamdoost@chalmers.se<br /><br /></div> <strong> </strong><div><strong>Laura Marimon Giovannetti,</strong> Senior Researcher and Project Manager, SSPA, Sweden</div> <div>+46 730729182, laura.marimongiovannetti@sspa.se</div> ​<div>Text: Lovisa Håkansson</div>Thu, 02 Jun 2022 00:00:00 +0200https://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Call-for-abstracts---The-Swedish-Transportation-Research-Conference-2022.aspxhttps://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Call-for-abstracts---The-Swedish-Transportation-Research-Conference-2022.aspxCall for abstracts - The Swedish Transportation Research Conference 2022<p><b>​​Call for abstracts open until 30 June 2022 to the Swedish Transportation Research Conference 2022.</b></p><span class="text-normal page-content"><div>Research contributions from universities, research institutes, consultancies and authorities are equally welcome.​<span style="background-color:initial"><span style="font-weight:700"><br /><br /></span></span><div><a href="https://www.tos.lth.se/english/ntk2022/call-for-abstracts/" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />​Sub​mit an abstract​</a><span style="font-weight:700"><br /></span><span style="background-color:initial"><span style="font-weight:700"></span></span><div><br /></div> <div><span style="background-color:initial;font-weight:700">Submission deadline: 30</span><span style="background-color:initial;font-weight:700"> June 2022</span><br /></div> <div><br /></div> <div>The abstracts will be evaluated by the Scientific Committee by their scientific quality and relevance.<br /><br /></div> <div>Notifications of acceptance will be sent out no later than on 31st August.<br /><br /><span style="font-weight:700">ABOUT THE CONFERENCE</span></div></div> <span style="background-color:initial"><span style="font-weight:700"></span></span></div> <div><span style="background-color:initial"><span style="font-weight:700"><br /></span></span></div> <div><span style="background-color:initial"><span style="font-weight:700">On 18-19 October, the 11th <a href="https://www.tos.lth.se/english/ntk2022/" target="_blank">Annual Swedish Transportation Research Conference​</a> will take place at Lund University.</span></span></div> <div><br /></div> <div>The conference covers all traffic modes and all transport related questions. It welcomes contributions from all disciplines and areas covering analysis, understanding, planning and evaluation of the transportation system.</div> <div><br /></div> <div><span style="font-weight:700;background-color:initial">Conference objectives<br /></span><br /></div> <div><ul><li>Create a meeting place for Swedish transportation researchers that provides an overview of Swedish transportation research</li> <li>Increase the professional and social interaction between Swedish transportation researchers</li> <li>Improve the collaboration and information exchange between the different disciplines and areas in transportation research</li> <li>Improve the conditions for increased mobility between different institutions in Sweden​<br /><br /></li></ul> <div>Language: English​<br /></div></div></span>Wed, 01 Jun 2022 10:00:00 +0200https://www.chalmers.se/en/news/Pages/Chalmers-researchers-join-Young-Academy-of-Sweden.aspxhttps://www.chalmers.se/en/news/Pages/Chalmers-researchers-join-Young-Academy-of-Sweden.aspxChalmers researchers join Young Academy of Sweden <p><b>Two researchers at Chalmers University of Technology are amongst the six new members of the Young Academy of Sweden presented today. Jessica Jewell, whose research focuses on the transition to a fossil free energy system, and Adel Daoud, who uses AI to study measures to end poverty in African communities.  </b></p><div><div>The Young Academy of Sweden The Academy was founded in 2011 at the initiative of the Royal Swedish Academy of Sciences. Each member elected for a period of five years. Those who wish to apply should have taken their PhD degree no more than ten years ago. </div></div> <div> </div> <h3 class="chalmersElement-H3">Jessica Jewell</h3> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/Jessica-Jewell-200.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><div>Jessica Jewell is Associate professor in energy transformation at the division of Physical Resource Theory, the Department of Space, Earth and Environment at Chalmers University of Technology:</div> <div><span style="background-color:initial">&quot;Scientists have figured out how to save the climate in mathematical models but can we do it in the real world? My research group investigates this question by examining change and continuity in energy systems. I use energy system models, technological innovation and diffusion theories, and analysis from political science and history. We zoom in on cases where change has been rapid and profound such as the response to the 1970s oil crises and the growth of solar and wind power in recent years to understand what enabled such rapid change and how they can be scaled up and replicated in different countries. By identifying historical precedents of rapid transitions and comparing these to the scale and speed of changes society needs to meet climate targets, we are able to identify the areas where change is most feasible. </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">I applied to the Young Academy of Sweden because I want to develop Sweden's system for attracting research talent and developing science by identifying the areas where we are already world leaders, as well as those where we can learn from other countries. I am particularly interested in strengthening international mobility and transparency in funding to ensure that Swedish institutions constitute strong growth environments for young researchers&quot;</span><span style="background-color:initial">.  </span></div></div> <div> </div> <h3 class="chalmersElement-H3">Adel Daoud</h3> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/AdelDaoud-200.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><div><span style="background-color:initial">Adel Daoud Associate professor in analytical sociology at Linköping University, and, Affiliated associate professor in data science and AI at Chalmers University of Technology:</span><span style="background-color:initial"> </span><br /></div> <div><br /></div> <div>&quot;About 300 million people in Africa live in extreme poverty. Given that living in impoverished communities can trap people in cycles of deprivation (‘poverty traps’), major development actors such as China and the World Bank have deployed a stream of projects to break these cycles (‘poverty targeting’). However, as scholars are held back by a data challenge, research has up until now been unable to answer fundamental questions such as whether poverty traps exist, and to evaluate what extent interventions can release communities from such traps </div> <div><br /></div> <div>I am leading the <a href="https://liu.se/en/research/global-lab-ai">AI and Global Development Lab​</a> to identify to what extent African communities are trapped in poverty and examine how competing development programs can alter these communities’ prospects to free themselves from deprivation. Our Lab has the following objectives: (i) train image recognition algorithms—a form of AI—to identify local poverty from satellite images, 1984-2020; (ii) use these data to analyze how development actors affect African communities; (iii) use mixed methods to develop theories of the varieties of poverty traps; (iv), develop an R package, PovertyMachine, that will produce poverty estimates from new satellite images—ensuring that our innovations will benefit poverty research. </div> <div><br /></div> <div>I want to be a part of the Young Academy of Sweden <span style="background-color:initial">Because the academy offers a unique opportunity to change, improve, and refine Swedish universities and their position globally”</span><span style="background-color:initial">. </span></div></div> <div> </div> <h3 class="chalmersElement-H3">About the Young Academy of Sweden  </h3> <h3 class="chalmersElement-H3"> </h3> <div>The Young Academy of Sweden is a multidisciplinary academy, comprising a selection of the best young researchers in Sweden – an independent platform that gives young researchers a strong voice in the research policy debate and is working on raising the profile of research for young people. </div> <div><br /></div> <div><span style="background-color:initial">Young academies exist in over 30 countries and Sweden's Young Academy works with the other young academies at Nordic, European and global levels. </span><span style="background-color:initial">. </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><div><a href="https://www.sverigesungaakademi.se/en-GB/1.html">Read more about the Young Academy of Sweden and its new members</a>. </div> <div><span style="background-color:initial"><font color="#1166aa"><b><a href="/en/research/our-scientists/Pages/The-Young-Academy-of-Sweden.aspx">Find all Chalmers researchers who are or have been members of the Young Academy of Sweden</a></b></font></span>.</div></span></div>Tue, 24 May 2022 00:00:00 +0200https://www.chalmers.se/en/news/Pages/IVA-100-list-2022.aspxhttps://www.chalmers.se/en/news/Pages/IVA-100-list-2022.aspxMost projects from Chalmers on IVA’s 100 list 2022 <p><b>The 100-list highlights up-to-date research with business potential from Swedish universities. The theme for this year is technology in the service of humanity. Thirteen projects from Chalmers have been selected. </b></p>​The researchers have contributed with research projects that offer great value and potential for utilisation for society, through avenues such as industrial commercialisation, business development, or other types of impact. ​<div>“It is gratifying that we are so well represented on the 100 list. Chalmers has a strong focus on innovation and entrepreneurship” says Mats Lundqvist, Vice President of Utilisation at Chalmers University of Technology.</div> <div><br /><div><div><strong style="background-color:initial">The selected projects from Chalmers 2022:</strong><br /></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"><br /></span></div> <div><strong style="background-color:initial"></strong><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Architecture and Civil Engineering Project: </span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"></span><strong style="font-family:inherit;background-color:initial">Real time optimization of drinking water treatment</strong></div></div> <div> <div><span style="background-color:initial">The innovation of Kathleen Murphy and fellow colleagues measure the quality and reactivity of freshwater resources in real time, and predict the success of drinking water treatment. Their solution will be used to optimize operational conditions at drinking water treatment plants, reducing the need for chemicals and infrastructure and reducing emissions and waste. The patent pending solution, including the teams unique algorithms, will make drinking water treatment cheaper and more sustainable.</span></div> <div>Researcher: <a href="/en/Staff/Pages/murphyk.aspx">Kathleen Murphy</a></div> <div><a href="/en/departments/ace/news/Pages/Real-time-optimized-drinking-water-treatment-on-IVA100-list.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Real time optimized drinking water treatment</a></div> <div><br /></div> <div><div> ​<span style="background-color:initial;color:rgb(33, 33, 33);font-family:inherit;font-size:20px">Biology and Biological Engineering</span></div> <p class="chalmersElement-P">Project: <strong>Fungi for the production of protein of the future</strong></p> <p class="chalmersElement-P"><span style="background-color:initial">Alternative protein sources such as fungi (mycoprotein) can lead to 95 percent less carbon dioxide emissions than beef. The vision is that the protein of the future is produced by fungi, which convert bio-based residual streams from industry. The fungi are grown in closed bioreactors with little impact on the external environment. </span> ​</p> <p class="chalmersElement-P"><span style="background-color:initial">Researchers: </span><a href="/en/Staff/Pages/nygardy.aspx">Yvonne Nygård </a><span style="background-color:initial">and </span><a href="/en/Staff/Pages/eric-oste.aspx">Eric Öste </a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P">Project: <strong>Stabilizing seafood side-streams allowing full use for food production </strong><br /></p> <p class="chalmersElement-P">The demand for fish is steadily increasing in response to dietary recommendations, population growth and wishes to consume more climate-friendly protein sources. We therefore need to convert more of each landed fish into food, as today mainly the fillet is used, i.e., only 40-50 per cent of the weight. <br /></p> <p class="chalmersElement-P"><span style="background-color:initial">Researchers: </span><a href="/en/staff/Pages/Ingrid-Undeland.aspx">Ingrid Undeland</a><span style="background-color:initial">, </span><a href="/en/Staff/Pages/haizhou.aspx">Haizhou Wu,​</a><span style="background-color:initial"> </span><a href="/en/staff/Pages/khozaghi.aspx"> Mehdi Abdollahi</a><span style="background-color:initial"> and </span><a href="/en/Staff/Pages/bita-forghani.aspx">Bita Forghani</a></p> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/Projects-on-sustainable-food-on-IVA’s-100-list.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Projects on sustainable food on IVA’s 100 list</a></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span style="font-family:inherit;font-size:20px;background-color:initial">Chemistry and Chemical Engineering  </span><br /></p> <p class="chalmersElement-P">Project: <strong>Recycling and remanufacturing of indium based semiconductor materials. </strong></p> <p class="chalmersElement-P"><span>You are probably reading this text looking through a transparent conductive material called indium tin oxide (ITO). It is the backbone of all electronic screen​s (LCD, LED, and touch screens), and some solar cell technologies. During the manufacturing of these devices, 30 - 70% of the material becomes production waste. Almost 75% of indium is used for ITO manufacturing and it is accepted as a critical raw material due to its importance in the electronic industry. It is a minor element of the earth’s crust and is unevenly distributed. It's recycling from industrial waste is challenging and requires several stages. In our technology, indium recovery is simplified instead of complicated processing stages and integrated into the ITO powder production to reproduce ITO material.​</span><strong><br /></strong></p> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/Burcak-Ebin.aspx">Burcak Ebin</a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><a href="/en/staff/Pages/Burcak-Ebin.aspx"></a>Project: <strong>High-Quality Graphene and Highly Thermal Conductive Graphene Films Produced in Eco-friendly ways</strong><br /></p> <p class="chalmersElement-P"><strong></strong><span style="background-color:initial">The heat generated from ubiquitous miniaturized electronic devices needs to be dissipated by materials that are highly thermally conductive, lightweight, flexible, mechanically robust and, most importantly, manufactured in a sustainable way. Our idea includes two interconnected steps: 1) Eco-friendly production of high-quality graphene in a large-scale; and 2) Production of highly thermal-conductive graphene films with low environmental impact and low cost. The graphene films are expected to replace the current metal films and other thermally conductive films produced in the high cost of environment, and therefore contribute to the transition to a green industry.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/ergang.aspx">Ergang Wang</a></p> <p class="chalmersElement-P"><br /></p> <span></span><p class="chalmersElement-P"><span style="background-color:initial">Project: <span style="font-weight:700">Adsorbi - cellulose-based foams for air pollutants capture  </span></span><br /></p> <p class="chalmersElement-P"><span style="background-color:initial">After finishing her doctoral studies at the department of Chemistry and Chemical Engineering Kinga Grenda founded the start-up company Adsorbi together with Romain Bordes, researcher at the department. She was recently named one of ten entrepreneurs to keep an eye on by Swedish Incubators and Science Parks.</span></p> <p class="chalmersElement-P">Researcher: <span style="background-color:initial">Kinga Grenda  </span><br /></p> <p class="chalmersElement-P"></p> <p class="chalmersElement-P"><span style="background-color:initial"><a href="https://adsorbi.com/" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />More about the research and start-up company Adsorbi </a></span><span style="background-color:initial"><font color="#1166aa"><span style="font-weight:700">(external link)</span></font></span></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><a href="/en/staff/Pages/ergang.aspx"></a><a href="/en/departments/chem/news/Pages/Chemistry-research-on-IVA-100-list-.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Chemistry research on IVA 100 list | Chalmers​ </a></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="font-family:inherit;font-size:20px;background-color:initial">Computer Science and Engineering ​</span><br /></p> <div>Project: <strong>EmbeDL </strong><br /></div> <div>AI has achieved remarkable successes but at a price – neural network models are very large and need a lot of resources to train and deploy, thus leaving a very large energy footprint. Our research is about how to reduce the size of the neural networks, without sacrificing much in accuracy, and making the best use of diverse hardware so that AI can be deployed in an efficient and less energy consuming way to solve a specific problem. <br /></div> <div><br /></div> <div>Project:<strong>Repli5 </strong><br /></div> <div>The research is about creating digital twins and synthetic data. A digital twin is a replica of the real world in silico, which can be used to test and verify systems very efficiently and cheaply instead of tests in the real world which are costly, slow and error prone. Digital twins can be used to generate synthetic data to train AI systems efficiently without the need to collect real world data and annotating them manually which is costly, slow, noisy and error prone. <br /></div> <div><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/dubhashi.aspx">Devdatt Dubhashi </a></div> <div><br /></div> <div><span style="background-color:initial">Project: </span><strong style="background-color:initial">Dpella</strong><br /></div> <div>The world is collecting a massive amount of individuals data with the intention of building a human-centered future based on data insights. The huge challenge is how to achieve these insights that will shape the future, respecting privacy of individuals and complying with GDPR. We solve this by developing a technology for creating privacy-preserving analytics based on the mathematical framework of Differential Privacy – a new gold standard for data privacy. With our patented IP research, we provide a Privacy-as-a-service solution will enable data flows, creating the inter-organization value required to achieve a digital human-centred future.</div> <div><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><a href="/en/staff/Pages/russo.aspx">Alejandro Russo</a></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="/en/staff/Pages/russo.aspx"></a></span><span style="background-color:initial">Project: <strong>ZeroPoint Technologies </strong></span></div> <div><span style="background-color:initial"></span><span style="background-color:initial">The dramatic increase of computers' processing power places high demands on efficient memory storage. A few players today have control over processor development by owning and controlling processor architectures. Chalmers with the spin-off company ZeroPoint Technologies develops technologies for computers' internal memory that are faster and less energy-intensive and are developed to fit into an open processor architecture. This provides basic conditions for smart industry. </span></div> <div><span style="background-color:initial"></span><span></span><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><a href="/en/staff/Pages/per-stenstrom.aspx">Per Stenström​</a></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Industrial and Materials Science</span><br /></div> <div> <div>Project: <strong>Design for energy resilience in the everyday</strong><br /></div> <div>Our increasing dependence on electrical and connected products is unsustainable from a resource point of view. It also makes us vulnerable in a future energy system where more renewable sources and climate change increase the probability of power shortages and power outages. To be able to handle disruptions in electricity deliveries, and at the same time live a good and meaningful everyday life, knowledge, new design guidelines for product development and energy-independent alternatives are required.<br /></div> <div><span style="background-color:initial">Researcher: </span><a href="/en/Staff/Pages/helena-stromberg.aspx">Helena Strömberg</a><br /></div> <div><a href="/en/departments/ims/news/Pages/Design-for-energyresilience-in-the-everyday.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Design for energy resilience in the everyday</a> </div></div> <div><br /></div> <div><p class="chalmersElement-P" style="font-size:20px">Physics</p> <p class="chalmersElement-P">Project: <strong>Nanofluidic Scattering Microscopy </strong></p> <div> </div> <p class="chalmersElement-P">We have developed the next generation of nanotechnology to study and analyse individual biomolecules and at the same time generate important information about them. We do this with an optical instrument combined with nanofluidic chips and software with machine learning/AI. By offering researchers this new tool, they can answer their questions in a completely new way, thereby accelerating their research in order to make ground-breaking discoveries.<br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><a href="/en/staff/Pages/Christoph-Langhammer.aspx">Christoph Langhammer </a><br /></p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">P</span><span style="background-color:initial">roject:</span><strong style="background-color:initial">2D semiconductor with perfect edges </strong><br /></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">We at Smena have developed a new game-changing material, which is useful for numerous applications. The starting point of our material is an abundant mineral called molybdenite, whose price is only 5 dollar per kilogram. Using a scalable, patented, and environmentally friendly process, we managed to produce a large number of edges in flakes of natural molybdenite. <br /></span></p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">Researcher: </span><span style="background-color:initial"><span></span><a href="/en/Staff/Pages/Timur-Shegai.aspx">Timur Shegai ​</a><br /></span></p> <div> </div> <p class="chalmersElement-P"><a href="/en/departments/physics/news/Pages/Two-research-projects-from-Physics-on-IVA-100-List.aspx">Two research projects from Physics on IVA 100 List 2022</a></p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"></p> <div> </div> <div><a href="/en/departments/physics/news/Pages/Two-research-projects-from-Physics-on-IVA-100-List.aspx">​</a><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:20px;background-color:initial">Mathematical Sciences </span></div> <div> </div> <p class="chalmersElement-P">​Project: <strong>PressCise</strong></p> <div> </div> <p class="chalmersElement-P"><strong></strong>​We work with clinical partners to identify problems with today's products, and to test and verify our own inventions. We use mathematical theories to solve real problems and we realize our solutions in genuine smart textile products. </p> <p class="chalmersElement-P">Researchers: <a href="/en/Staff/Pages/torbjorn-lundh.aspx">Torbjörn Lundh</a><span style="background-color:initial">, in collaboration with Josefin Damm and Andreas Nilsson. </span></p> <div> </div> <p class="chalmersElement-P"><a href="https://www.presscise.com/" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />PressCise AB</a></p> <div> </div> <p></p> <div> </div> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"><span style="background-color:initial"><em>I</em></span><span style="background-color:initial"><em>VA's 100 List presents selected research projects believde to have </em></span><span style="background-color:initial"><em>the potientalto be developed into ninnovations, to promote buisness  </em></span><span style="background-color:initial"><em>development or to provide other benefits. The list reflects a diverse range of research </em></span><span style="background-color:initial"><em>projects and researcher experise from Sweden's universities in a given field. </em></span><span style="background-color:initial"><em>​</em></span><br /></p> <em> </em><p class="chalmersElement-P"><span style="background-color:initial"><font color="#1166aa"><em> </em></font></span><span style="background-color:initial;color:rgb(0, 0, 0)"><em>The complete list can be found on </em><a href="https://www.iva.se/en/"><em>www.iva.se</em></a></span></p> <p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"></span> </p> <div><p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"><br /></span></p></div> <div><p class="chalmersElement-P" style="display:inline !important"><span style="background-color:initial;color:rgb(0, 0, 0)"><br /></span></p></div> <a href="/en/news/presidents-perspective/Pages/IVAs-100-list-Chalmers-technology-in-the-service-of-humanity.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />The Presidents perspective on Chalmers' contribution to technology in the service of humanity</a><p></p></div> <div><br /></div> <p class="chalmersElement-P"><a href="/en/departments/chem/news/Pages/Chemistry-research-on-IVA-100-list-.aspx"></a></p> <p class="chalmersElement-P"><a href="/en/departments/bio/news/Pages/Projects-on-sustainable-food-on-IVA’s-100-list.aspx"></a></p> <p class="chalmersElement-P"><a href="/en/Staff/Pages/eric-oste.aspx"></a></p></div></div> ​</div>Tue, 10 May 2022 16:00:00 +0200https://www.chalmers.se/en/departments/bio/news/Pages/7971-paths-towards-better-cell-factories.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/7971-paths-towards-better-cell-factories.aspx7971 paths towards better cell factories<p><b>​Microorganisms that efficiently convert plant biomass into renewable biofuels and biochemicals play a major role in the sustainable society of the future. However, the efficiency of these microbial cell factories is inhibited by several compounds that are released as biomass is degraded into sugars, which the cell factories then convert.How can these bioprocesses be improved? Researchers in industrial biotechnology at Chalmers are now one step closer to a solution. </b></p><p class="chalmersElement-P">​<span>Baker’s yeast, <em>Saccharomyces cerevisiae</em>, is used to ferment lignocellulose from plant biomass to produce sustainable biofuels and biochemicals. But the cells' performance is inhibited by various compounds, such as furans, acids, and phenols, which are released during the pre-treatment of the biomass. This challenges the use of bioprocesses a cost-effective alternative to conventional production.</span></p> <div> </div> <h2 class="chalmersElement-H2"><span>Studies aim to increase cell productivity</span></h2> <div> </div> <p class="chalmersElement-P">Efficient fermentation of lignocellulose could have great societal impact and a great amount of research has already been conducted within the field. There are many studies in which researchers genetically modified different yeast strains to increase the cell factories' tolerance to different inhibitors – with the aim to increase cell productivity. </p> <div> </div> <p class="chalmersElement-P"><strong><img src="/SiteCollectionImages/Institutioner/Bio/IndBio/Yvonne_340.jpg" alt="Yvonne Nygård" class="chalmersPosition-FloatRight" style="margin:5px;width:240px;height:240px" />Yvonne Nygård</strong>, Associate Professor of industrial biotechnology, and her colleagues at Chalmers, have made a compiled analysis of the information from previous research for further development of efficient yeast.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“When developing new cell factories, we want to make use of all the accumulated knowledge. More specifically, our goal was to use the new CRISPR/Cas9-technology to combine and fine-tune genetic engineering previously shown to be favourable for the fermentation of lignocellulose,” says Yvonne Nygård.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">There is an enormous amount of previous research data and the researchers' database grew as they dug deeper.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“At the same time, it was harder for us to choose from all the data. In addition, we noticed that the various experiments were very different, which made it difficult to compare the data and draw conclusions. We did the systematic analysis to help our own research. It didn’t take long before we came up with the idea of sharing the database and analysis with others, and we decided to summarise our results in a review,” she says.</p> <div> </div> <h2 class="chalmersElement-H2">Data from 7971 was collected and analysed</h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">The researchers collected data from 7971 previous experiments, from 103 studies in which researchers had modified the tolerance of different strains of baker's yeast to the most common inhibitors in the pre-treated lignocellulose (so-called lignocellulose hydrolysate): acetic acid, formic acid, furans, and phenolic compounds. The mutants included in the assay had shown increased or decreased tolerance to individual inhibitors or combinations of inhibitors.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The effects of the inhibitors on the cells varies from, for example, reduced growth rate, cell survival, vitality, to product yield. The inhibitory effect is due to the presence of individual inhibitors and is affected by environmental factors, including pH, temperature, and the availability of nutrients.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">“Our analysis showed that the results very often were characterised by the strain and cultivation conditions. Although so much work has been done already, relatively few genetic modifications have been used in different strain backgrounds or for the conversion of different types of biomasses,” says Yvonne Nygård.</p> <h2 class="chalmersElement-H2">Development of new cell factories can be accelerated</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The work towards a new cell factory can, for example, be accelerated by applying the genetic modifications that show advantage in several different strains or modifications for tolerance to different inhibitors. In addition, the study describes the biology behind the various genetic modifications – which in several studies have been shown to lead to better strains. Thus, it contributes to increasing knowledge about the requirements for the development of more robust cell factories.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial"><strong>Text: </strong>Susanne Nilsson Lindh</span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong style="background-color:initial">Read the study</strong><span style="background-color:initial"> by Elana Cámara, Lisbeth Olsson, Jan Zrimec, Aleksej Zelezniak, Cecilia Geijer and Yvonne Nygård, The Department of Biology and Biological Engineering, Chalmers: </span><a href="https://doi.org/10.1016/j.biotechadv.2022.107947">Data mining of<em> Saccharomyces cerevisiae</em> mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates </a><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Read more about cell factory research: </strong></p> <p class="chalmersElement-P"></p> <ul><li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/New-discovery-can-improve-industrial-yeast-strains.aspx">New discovery can improve industrial strains​</a></span></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/Robust-microorganisms-for-sustainable-bioproduction.aspx">Robust microorganisms for sustainable bioproduction</a></span></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/New-network-improves-European-yeast-research.aspx">New network improves European yeast research </a></span><br /></li> <li><span style="background-color:initial"><a href="/en/departments/bio/news/Pages/Cutting-edge-Nobel-technique-in-practice-at-Chalmers.aspx">Cutting edge Nobel tool in practice at Chalmers</a></span></li></ul> ​<br /><p></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> Tue, 26 Apr 2022 09:00:00 +0200https://www.chalmers.se/en/areas-of-advance/materials/news/Pages/Watch-the-webinar-11-April-2022.aspxhttps://www.chalmers.se/en/areas-of-advance/materials/news/Pages/Watch-the-webinar-11-April-2022.aspxWatch the webinar – Perspectives on cellulose nanocrystals<p><b>In this tandem webinar, 11 April, 2022,  we have two hot topics dedicated to Cellulose nanocrystals: Cellulose nanocrystals in simple and not so simple flows &amp; Using liquid crystal phase separation to fractionate cellulose nanocrystals.</b></p>​​<div><a href="https://play.chalmers.se/media/Tandem%20Webinar%20%E2%80%93%20Perspectives%20on%20cellulose%20nanocrystals/0_lqpv4rvq"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Watch the webinar on Chalmers Play</a><div><br /></div> <div><span></span><div><strong>Program:</strong></div> <div><ul><li>Moderator: Leif Asp, Co-Director Chalmers Area of Advance Materials Science</li> <li>C<span style="background-color:initial">ellulose nanocrystals in simple and not so simple flows, Roland Kádár, Associate Professor, Chalmers University of Technology.</span></li> <li>U<span style="background-color:initial">sing liquid crystal phase separation to fractionate cellulose nanocrystals. Jan Lagerwall, Professor at the Physics &amp; Materials Science Research Unit in the University of Luxembourg.<br /><br /><a target="_blank" rel="nofollow noopener noreferrer" href="/en/areas-of-advance/materials/Calendar/Pages/Tandem-Webinar-–-April-2022.aspx" title="Link: https://www.chalmers.se/en/areas-of-advance/materials/Calendar/Pages/Tandem-Webinar-%E2%80%93-April-2022.aspx" style="font-family:lato, &quot;helvetica neue&quot;, helvetica, arial, sans-serif;font-weight:400">Read more about the seminar​</a><br /></span></li></ul></div></div></div>Wed, 20 Apr 2022 00:00:00 +0200https://www.chalmers.se/en/departments/chem/news/Pages/Converting-solar-energy-to-electricity-on-demand.aspxhttps://www.chalmers.se/en/departments/chem/news/Pages/Converting-solar-energy-to-electricity-on-demand.aspxConverting solar energy to electricity on demand<p><b>​The researchers behind an energy system that makes it possible to capture solar energy, store it for up to eighteen years and release it when and where it is needed have now taken the system a step further. After previously demonstrating how the energy can be extracted as heat, they have now succeeded in getting the system to produce electricity, by connecting it to a thermoelectric generator. Eventually, the research – developed at Chalmers University of Technology, Sweden – could lead to self-charging electronics using stored solar energy on demand.​</b></p><div><img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Most%20steg%202%20Kasper%20Moth%20Poulsen/porträtt_Kasper_Moth_Poulsen_200x200.jpg" class="chalmersPosition-FloatRight" alt="portait Kasper Moth-Poulsen " style="margin:5px 10px" />“This is a radically new way of generating electricity from solar energy. It means that we can use solar energy to produce electricity regardless of weather, time of day, season, or geographical location. It is a closed system that can operate without causing carbon dioxide emissions,” says research leader Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering at Chalmers.<br /><br /></div> <div>The new technology is based on the solar energy system MOST – Molecular Solar Thermal Energy Storage Systems, developed at Chalmers University of Technology. Very simply, the technology is based on a specially designed molecule that changes shape when it comes into contact with sunlight. The research has already attracted great interest worldwide when it has been presented at earlier stages.</div> <div><br /></div> <div>The new study, published in Cell Reports Physical Science and carried out in collaboration with researchers in Shanghai, takes the solar energy system a step further, detailing how it can be combined with a compact thermoelectric generator to convert solar energy into electricity.</div> <div><h2 class="chalmersElement-H2">Ultra-thin chip converts heat into electricity</h2> <div>The Swedish researchers sent their specially designed molecule, loaded with solar energy, to colleagues Tao Li<br />and Zhiyu Hu at Shanghai Jiao Tong University, where the energy was released and converted into electricity <img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Most%20steg%202%20Kasper%20Moth%20Poulsen/porträtt_Zihang_Wang_200x200.jpg" class="chalmersPosition-FloatLeft" alt="portrait Zhihang Wang " style="margin:5px 10px" /><br />using the generator they developed there. Essentially, Swedish sunshine was sent to the other side of the world and converted into electricity in China. <br /><br /></div> <div><div>“The generator is an ultra-thin chip that could be integrated into electronics such as headphones, smart watches and telephones. So far, we have only generated small amounts of electricity, but the new results show that the concept really works. It looks very promising,” says researcher Zhihang Wang from Chalmers University of Technology.</div> <h2 class="chalmersElement-H2"><span><br />Fossil</span><span> free</span><span>, emissions free </span></h2></div> <div>The research has great potential for renewable and emissions-free energy production. But a lot of research and development remains before we will be able to charge our technical gadgets or heat our homes with the system's stored solar energy.</div> <div><br /></div> <div>“Together with the various research groups included in the project, we are now working to streamline the system. The amount of electricity or heat it can extract needs to be increased. Even if the energy system is based on simple basic materials, it needs to be adapted to be sufficiently cost-effective to produce, and thus possible to launch more broadly,” says Kasper Moth-Poulsen.<br /></div></div> <h3 class="chalmersElement-H3">More about the Most technology</h3> <div><img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Most%20steg%202%20Kasper%20Moth%20Poulsen/mostlabbet%20350x305.jpg" class="chalmersPosition-FloatRight" alt="Image from the Mostlabb" style="margin:5px 10px" />Molecular Solar Thermal Energy Storage Systems, Most, is a closed energy system based on a specially designed molecule of carbon, hydrogen and nitrogen, which when hit by sunlight changes shape into an energy-rich isomer – a molecule made up of the same atoms but arranged together in a different way. The isomer can then be stored in liquid form for later use when needed, such as at night or in winter. The researchers have refined the system to the point that it is now possible to store the energy for up to 18 years. A specially designed catalyst releases the saved energy as heat while returning the molecule to its original shape, so it can then be reused in the heating system. Now, in combination with an micrometer-thin thermoelectric generator, the energy system can also generate electricity to order.</div> <div><br /></div> <div>Photo above to the right: Maria Quant and Zhihang Wang, postdocs in the Most reserach group, in the front a modell of the specially designed molecule <span style="background-color:initial;color:rgb(17, 102, 170);font-family:&quot;open sans&quot;, arial, sans-serif;font-size:12px">​</span><br /></div> <div><h3 class="chalmersElement-H3" style="font-family:&quot;open sans&quot;, sans-serif">Read previous press releases about the energy system Most</h3> <div><ul><li>​<a href="https://news.cision.com/chalmers/r/window-film-could-even-out-the-indoor-temperature-using-solar-energy%2cc3205508" title="Link to press release ">Window film can even out the temperature using solar energy</a></li> <li><a href="https://news.cision.com/chalmers/r/emissions-free-energy-system-saves-heat-from-the-summer-sun-for-winter%2cc3179315" title="Link to press release ">Emission-free energy system saves heat from the summer sun to the winter​</a></li></ul></div></div> <h3 class="chalmersElement-H3">More about the research and the scientific article </h3> <div><ul><li>​The study <a href="https://doi.org/10.1016/j.xcrp.2022.100789" title="Link to scientific article ">Chip-scale solar thermal electrical power generation</a> is published in Cell Reports Physical Science. The article is written by Zhihang Wang, Zhenhua Wu, Zhiyu Hu, Jessica Orrego-Hernández, Erzhen Mu, Zhao-Yang Zhang, Martyn Jevric, Yang Liu, Xuecheng Fu, Fengdan Wang, Tao Li and Kasper Moth-Poulsen. The researchers are active at Chalmers University of Technology in Sweden, Shanghai Jiao Tong University and Henan Polytechnic University in China, as well as at the Institute of Materials Science in Barcelona and the Catalan Department of Research and Advanced Studies, ICREA, in Spain.<br /><br /></li> <li>The research has been funded by the Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research, the Swedish Research Council Formas, the Swedish Energy Agency, the European Research Council (ERC) under grant agreement CoG, PHOTHERM - 101002131, the Catalan Institute of Advanced Studies (ICREA), and the European Union's Horizon 2020 Framework Programme under grant agreement no. 951801.</li></ul></div> <h3 class="chalmersElement-H3">For more information contact:</h3> <div><a href="/en/staff/Pages/zhihang.aspx" title="Link to personal profile page ">Zhihang Wang</a>, Post Doc, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden</div> <div><br /></div> <div><a href="/en/Staff/Pages/kasper-moth-poulsen.aspx" title="Link to personal profile page ">Kasper Moth-Poulsen</a>, Professor, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden</div> <div><br /></div> <div>Text: Jenny Holmstrand, Mia Halleröd Palmgren, Joshua Worth <br />Credit for images above and video material: <span style="background-color:initial">Chalmers University of Technology | Per Erséus, Språng kommunikation</span></div> <div>Credit for illustration: Chalmers University of Technology | Daniel Spacek, neuroncollective.com<br />Credit portrait Kasper Moth-Poulsen: Oscar Mattsson |<span style="background-color:initial">Chalmers University of Technology</span><span style="background-color:initial"> </span><span style="background-color:initial">​</span></div> <div>Credit portrait Zhihang Wang: Sandra Nayeri <span></span><span style="background-color:initial">|</span><span style="background-color:initial">Chalmers University of Technology​</span></div> <div><br /></div> <div><br /></div> <div>​<br /></div> ​​​​Mon, 11 Apr 2022 07:00:00 +0200https://www.chalmers.se/en/departments/see/news/Pages/Combination-of-changes-essential-to-save-the-climate.aspxhttps://www.chalmers.se/en/departments/see/news/Pages/Combination-of-changes-essential-to-save-the-climate.aspxCombination of changes essential to save the climate<p><b>​​Extensive technological developments, a ban on fossil fuels, less construction, fewer flights, fewer car journeys and lower levels of beef and dairy consumption. Only by taking all these measures in combination can Sweden get closer to emission levels in line with the Paris Agreement, according to a new research report commissioned by the Swedish Parliament.</b></p><div>On April 7, 2022, the Swedish Cross-Party Committee on Environmental Objectives is suggesting a new consumption-based climate target, as a complement to the existing territorial climate targets. As a basis for this, a group of Swedish researchers, from organisations including Chalmers University of Technology, have produced a comprehensive report analysing how consumption patterns need to change for Sweden to reach emission levels in line with the Paris Agreement's goal of keeping the global temperature rise well below two degrees Celsius.</div> <div><br /></div> <div>The researchers' conclusion is that while extensive technological developments are essential, consumption habits must also change – only by combining these two approaches do we stand a chance of achieving the goals of the Paris Agreement. The premise in the calculations is that the remaining future emissions are distributed globally evenly per person.</div> <div><br /></div> <div>“If we are to achieve really low emission levels, we need to both invest heavily in new climate-smart technologies, as well as make significant changes to our behaviour when it comes to the goods and services with the highest carbon footprints,” says Jörgen Larsson, Associate Professor in sustainable consumption at Chalmers University of Technology, and project manager for the report.</div> <h3 class="chalmersElement-H3">Without behavioural changes, emissions will remain high</h3> <div><a href="https://research.chalmers.se/publication/529052"><span style="background-color:initial">The report &quot;</span><span style="background-color:initial">Consumption based scenarios for Sweden - a basis for discussing new climate targets&quot;</span>​</a><span style="background-color:initial"> </span><span style="background-color:initial">is based on analyses of different scenarios and shows t</span><span style="background-color:initial">hat if we rely only on technological developments – measures such as eliminating fossil-fuel vehicles, producing fossil-free steel and fossil-free commercial fertiliser – emissions will still be too high. Only when these technological developments are combined with significant changes in behaviour does the outlook improve – particularly if the changes are substantial.</span></div> <div><br /></div> <div>When combined with fewer flights, less car travel, significantly reduced consumption of beef and dairy products, and radically reduced construction of roads and housing – for example by converting office blocks to residential buildings – emissions could sink by up to 90 per cent by 2050, compared with today's level. This reduction of emissions is based on the assumption that the rest of the world also enacts climate change mitigation measures to meet the goals of the Paris Agreement, thereby reducing the carbon footprints of imported goods.</div> <div><br /></div> <div>“The scenario with extensive behavioral changes is a theoretical thought experiment, which aims to show the lowest levels we could reach with the help of both technological and radical social changes and still live a modern life.” says Johannes Morfeldt, researcher at the Division of Physical Resource Theory at Chalmers University of Technology.</div> <h3 class="chalmersElement-H3">Analyses based on five distinct scenario​s </h3> <div><span style="background-color:initial">The report, which is based on Swedish</span><span style="background-color:initial"> conditions, outlines scenarios with varying degrees of technological development and behavioural changes.</span><br /></div> <div><ul><li>The Reference scenario foresees behaviours and technology evolving according to current trends.</li> <li>The Territorial climate target scenario – Sweden’s climate targets are achieved mainly through technological changes.</li> <li>Behaviour and technology scenario – in addition to the technological changes in the previous scenario, further measures are implemented (both technical and behavioural) to lower Swedish consumption impacts outside of Sweden's borders as well. (not shown in the figure) </li> <li>Comprehensive behaviour and technology scenario – extensive reductions in flying, driving, consumption of beef and dairy products, as well as in the construction of new roads and housing.</li> <li>Reference scenario with comprehensive behaviour change – the same reductions in consumption as in the previous scenario, but without the introduction of advanced technologies, both in Sweden and abroad.</li></ul> <div> <img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/Konsumtionsvanor-klimatmalen_diagram-750px.jpg" alt="" style="margin:5px" /> </div> <p class="chalmersElement-P"><span style="background-color:initial"><i>The figure shows the emission levels and reduction potentials for different scenarios in 2050 compared to 2019 for emissions related to transportation, food, buildings and infrastructure. Current trends and policies shows the results for Swedish consumption-based emissions if other countries develop in line with current climate policy. Global climate transition shows results for Swedish consumption-based emissions if other countries develop in line with the goals of the Paris Agreement.</i></span><span style="background-color:initial;color:rgb(0, 0, 0)"> </span></p></div> <h3 class="chalmersElement-H3">More about the research</h3> <div><span style="background-color:initial">This study outlines a method for scenario analysis based on bottom-up simulations of pathways for consumption sectors with the largest climate impact – passenger car travel, air travel, construction and housing, and food. The study extends previous research by analysing the impact of lifestyle and technological changes at the national level on consumption-based emissions. The analysis merges methods developed in separate sectoral studies and places them in a prospective lifecycle assessment framework. Assumptions are harmonised for two background scenarios – a current trends and policies scenario and a global climate transition scenario in line with the Paris Agreement’s goals – to illustrate the strong influence of technological developments in the rest of the world when estimating consumption-based emissions (indicated by a range).</span></div> <div>The report has been prepared on behalf of the Swedish Cross-Party Committee on Environmental Objectives, whose final report will be presented on April 7. </div> <div><br /></div> <div>The assignment was led by <a href="/en/Staff/Pages/jorgen-larsson.aspx">Jörgen Larsson</a> and <a href="/en/Staff/Pages/morfeldt.aspx">Johannes Morfeldt</a> (Chalmers University of Technology) who worked with all parts of the analysis. Other participating researchers: </div> <div><ul><li>Jonas Åkerman (PhD, KTH Royal Institute of Technology)</li> <li>Jonas Nässén (associate professor, Chalmers)</li> <li>Daniel Johansson (associate professor, Chalmers)</li> <li>Frances Sprei (associate professor, Chalmers)</li> <li>Cecilia Hult (doctoral student, Chalmers)</li> <li>Johan Rootzén (PhD, IVL Swedish Environmental Institute)</li> <li>Ida Karlsson (doctoral student, Chalmers)</li> <li>Stefan Wirsenius (associate professor, Chalmers)</li> <li>Fredrik Hedenus (professor, Chalmers)</li> <li>Erik André (doctoral student, Chalmers)</li> <li>Markus Millinger (PhD, Chalmers).</li></ul></div> ​Thu, 07 Apr 2022 07:00:00 +0200https://www.chalmers.se/en/departments/bio/news/Pages/Enzyme-research-paves-way-for-sustainable-biofuels.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Enzyme-research-paves-way-for-sustainable-biofuels.aspxEnzyme research paves way for sustainable biofuels<p><b>​Development of efficient processes where biomass is used as raw material for sustainable production of biofuels and biochemicals is important for the transition into a fossil-free society. However, efficient degradation of residues from the f​​orest industry is challenging as plant biomass contains lignin. Removal of lignin is not only difficult, but also expensive. The key to success may be a certain type of enzyme that can facilitate and accelerate the degradation of biomass.</b></p><p class="chalmersElement-P">​<span>Lignocellulose, the main component of residual biomass from the forest industry, is an important raw material to produce, among other things, bioethanol. It is a complex material, difficult to process in a cost-effective way, due to the strong chemical bonds between lignin and carbohydrates.</span></p> <p class="chalmersElement-P">Johan Larsbrink, Associate Professor, and Scott Mazurkewich, postdoc, both at the Division of Industrial Biotechnology at Chalmers, participated in a research project in collaboration with several universities, where a recently published study has shown that − and how − the enzymes glucuronoyl esterases can break these chemical bonds.</p> <p class="chalmersElement-P"><strong><img src="/SiteCollectionImages/Institutioner/Bio/IndBio/Scott_M-240x280px.jpg" alt="Scott Mazurkewich" class="chalmersPosition-FloatRight" style="margin:10px" />How did you conduct this study and what were your results?</strong></p> <p class="chalmersElement-P"><strong> </strong></p> <p class="chalmersElement-P">“This is an in-depth study with computer modelling, biochemistry and structural biology to understand mechanistically how the enzyme cuts bonds in plant biomass. The results show which of the enzyme’s amino acids are most important to facilitate the reaction, and how the rate-limiting step is the enzyme itself being able to detach from the biomass to find a new position to cut”, says <a href="/en/staff/Pages/scott-mazurkewich.aspx">Scott Mazurkewich</a>.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>Why did you start to investigate this group of enzymes?</strong></p> <p class="chalmersElement-P"><strong> </strong></p> <p class="chalmersElement-P">“When we started the project, very few studies had been done on glucuronoyl esterases and in particular there was a lack of detailed information on the atomic scale. Thus, this has been both curiosity-driven research to understand how these enzymes work, but also to discover how they can be used in applications that can reduce the use of fossil raw materials. Using plant biomass in smarter ways to create new materials is also the main focus within the research center, <span style="background-color:initial">the </span><a href="https://wwsc.se/">Wallenberg Wood Science Center,</a> <span style="background-color:initial">where both Scott and I are active, </span><span style="background-color:initial">” says Johan Larsbrink.</span></p> <span></span><p class="chalmersElement-P"></p> <p class="chalmersElement-P"><strong><img src="/SiteCollectionImages/Institutioner/Bio/IndBio/Johan%20L_240x280px.jpg" alt="JOhan Larsbrink" class="chalmersPosition-FloatRight" style="margin:10px" />What can your results lead to?</strong></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">“The discovery provides an increased understanding of the factors that affect these enzymes’ efficiency. The knowledge could be used to determine which type of enzymes are best suited for the degradation of different types of biomass,” says <a href="/sv/personal/Sidor/johan-larsbrink.aspx">Johan Larsbrink</a>.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>About the study:</strong></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"></p> <ul><li>The study is a collaboration between the University of Copenhagen, Nankai University, Chalmers University of Technology, and the University of Campinas.</li> <li>Read the scientific article <a href="https://www.nature.com/articles/s41467-022-28938-w">Mechanism and biomass association of glucuronoyl esterase: an α / β hydrolase with potential in biomass conversion</a> </li></ul> <strong>Text:</strong> Susanne Nilsson Lindh<br /><strong>Photo (portraits):</strong> Martina Butorac<p></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p>Mon, 04 Apr 2022 14:00:00 +0200