News: Energihttp://www.chalmers.se/sv/nyheterNews related to Chalmers University of TechnologyFri, 07 Dec 2018 13:35:08 +0100http://www.chalmers.se/sv/nyheterhttps://www.chalmers.se/en/departments/physics/news/Pages/He-came-to-Sweden-and-got-a-book-in-Japanese--.aspxhttps://www.chalmers.se/en/departments/physics/news/Pages/He-came-to-Sweden-and-got-a-book-in-Japanese--.aspxHe came to Sweden and got a book in Japanese...<p><b>​In connection with his talk at Chalmers on 28 November, the Nobel Prize Laureate Takaaki Kajita was given a book in his own language. He got one of the first copies of the Japanese edition of the book “The Discovery of Nuclear Fission – Women Scientists in Highlight”. ​</b></p><div><span style="background-color:initial">The book is about Ida Noddack, Irène Joliot-Curie and Lise Meitner's contributions to science and is written by Professor Imre Pázsit, Chalmers, and Nhu-Tarnawska Hoa Kim-Ngan. </span></div> <div>It was originally written in English, then expanded and translated to Swedish, from which the new translation was prepared by Noriko Johansson Akinaga. </div> <div><br /> </div> <div>The Japanese edition was inspired by the fact that this year Sweden and Japan celebrate 150 years of diplomatic relations. It was financially supported by the Area of Advance Energy and has been printed at Chalmers. </div> <div>​The book release event will take place at the Swedish Embassy in Roppongi, Tokyo on 9 May 2019.</div> <div><br /> </div> <div>Text: Mia Halleröd Palmgren, <a href="mailto:mia.hallerodpalmgren@chalmers.se">mia.hallerodpalmgren@chalmers.se​</a></div> <div><br /> </div> <div><a href="/sv/styrkeomraden/energi/nyheter/Sidor/Ser-till-kvaliten-i-forskningen-trots-Fukushima.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Read more about the book (In Swedish). </a></div> <div><a href="/en/departments/physics/news/Pages/Nobel_Prize_Laureate_will_visit_Chalmers.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Read more about Takaaki Kajita and his research. </a></div>Wed, 05 Dec 2018 00:00:00 +0100https://www.chalmers.se/en/departments/chem/news/Pages/Carbon-dioxide-capture-technology-exists,-but-no-one-dares-take-the-first-step.aspxhttps://www.chalmers.se/en/departments/chem/news/Pages/Carbon-dioxide-capture-technology-exists,-but-no-one-dares-take-the-first-step.aspxCarbon dioxide capture: technology exists, but no one dares take the first step<p><b>​It is possible to stop at 1.5 degrees warming of the planet, the IPCC claims in a new report, but few believe it will happen. In order to succeed, carbon dioxide capture has to scale up. Chalmers has the technology, but who dares take the first step to commercialize?</b></p>​<span style="background-color:initial">In the UN climate panel, the IPCC report describes how we not only need to reduce the rate of emissions but, in the long run, also reduce the amount of carbon dioxide in our atmosphere. This means that we need to capture carbon dioxide. Chalmers conducts research in the field and has reached far. One of the researchers in the field is Henrik Leion, Associate Professor at Chalmers Department of Chemistry and Chemical Engineering.</span><div><br /></div> <div>&quot;We must start catching all carbon dioxide, regardless of fuel. Right now we are working with biofuels. The fossil fuels already work well to capture. The technology for this is available. What prevents us is primarily economy and legislations.<img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Koldioxidinfångning/Henrik%20Leionweb.png" class="chalmersPosition-FloatRight" alt="Photo of Henrik Leion" style="margin:5px" /><br /><br /></div> <div>The technique Henrik Leion researches and develops is based on oxygen-bearing solids that replace combustion of oxygen as a gas. His research is part of several projects around a technology called CLC, which stands for chemical looping combustion. In most cases, the heat is generated in power plants through combustion in air. This forms carbon dioxide mixed with another type of gas, depending on technology, and gases are difficult to separate from each other. In order to get as clean a stream of carbon dioxide as possible, CLC uses a solid material where oxygen is included as an oxide, for example ordinary rust. Instead, water and carbon dioxide are created, which are easier to distinguish from each other. When the oxygen on the oxygen carrier is consumed, it is exposed to air and the material is then reoxidized and reusable.</div> <div><br /></div> <div>Research at Chalmers within CLC is conducted jointly by several research groups across institutional boundaries. Henrik Leion looks at how oxygen carrier and fuel can be optimized.</div> <div>As the situation is now, it is not enough to capture only carbon dioxide from fossil sources. Also carbon dioxide from bio combustion must be collected in order to achieve negative net emissions.</div> <div><br /></div> <div>&quot;We will need to capture carbon dioxide to a very large extent. Emissions must begin to sink within just a few years, and if we do not do that now, it means that around 2050, we will have to catch more carbon dioxide than we release to compensate for what we did not do 30 years earlier, he says. <img src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Koldioxidinfångning/Järnoxidweb.png" class="chalmersPosition-FloatRight" alt="Iron oxide being poured into a bowl" style="margin:5px" /><br /><br /></div> <div><span style="background-color:initial">CLC is primarily a technology that can work at stationary facilities. Capture involves heavy loads. Not only does the oxygen carrier consist of some kind of metal. The carbon dioxide collected weighs about three times more than the fuel, which in itself would mean increased emissions for a vehicle due to the weight.</span><br /></div> <div><br /></div> <div><strong>Economy and legislation impede</strong></div> <div>Thus, CLC could be of great use if it was used at commercial level. But yet nobody dares to take the financial risk to invest in the technology. So far, it has been tested in the Chalmers test facility of 12 megawatts with successful results. But a major effort is required for technology to come through, believes Henrik Leion.</div> <div><br /></div> <div>“Someone must dare to test the technology in a 50 megawatt facility. This will probably mean losing money initially, but the technology needs this to be further developed, he believes.”</div> <div><br /></div> <div>In addition, it must be cheaper to use the technology. The price must be able to compete with carbon credits. Today, a carbon credit, ie the right to release a ton of carbon dioxide, costs about 20 euros. CLC is slightly more expensive, but could, with a bigger initiative, become cheaper. If it is cheaper to collect carbon dioxide than to release it into the atmosphere, chances are that the industry will invest in the technology. In addition, CLC requires that large parts of the combustion system is rebuilt. Another problem is the storage.</div> <div><br /></div> <div>&quot;There is no logistics and legislation to deposit carbon dioxide. It takes about 10,000 years for the gas to be converted into limestone. Carbon dioxide is not very dangerous, it is not comparable to nuclear waste, but we talk about huge amounts here, says Henrik Leion.</div> <div><br /></div> <div>A legislative problem is the question of liability. Who will be responsible for the storage for 10,000 years? It has also proved difficult to find places where governments and populations accept storage. Another way to store the greenhouse gas is to pump it into drained oil sources at sea. It is expensive and lacks logistics, but it may be necessary.</div> <div><br /></div> <div><strong>Must be put into use</strong></div> <div>Any type of capture technique must be taken into use. Without capture techniques, climate targets will not be reached. What is needed, Henrik says, is that a major energy company dares to test the technology at the commercial level. That company must be ready to lose money. Somewhere, money will probably be lost, but it may be something we have to accept to avoid a significantly higher temperature rise. Without capture, we do not have a chance to stop the temperature rise at 2 degrees, Henrik says who soon will be off for parental leave.</div> <div><br /></div> <div>&quot;To be honest, it is frankly not morally easy for me to take a break from the research in this situation. My way of handling my climate depression is to work”, he says. </div> <div><br /></div> <div>Text and photo: Mats Tiborn</div> <div><br /></div>Fri, 19 Oct 2018 00:00:00 +0200https://www.chalmers.se/en/departments/chem/news/Pages/Emissions-free-energy-system-saves-heat-from-the-summer-sun-for-winter-.aspxhttps://www.chalmers.se/en/departments/chem/news/Pages/Emissions-free-energy-system-saves-heat-from-the-summer-sun-for-winter-.aspxEmissions-free energy system saves heat from the summer sun for winter<p><b>​A research group from Chalmers University of Technology, Sweden, has made great, rapid strides towards the development of a specially designed molecule which can store solar energy for later use. These advances have been presented in four scientific articles this year, with the most recent being published in the highly ranked journal Energy &amp; Environmental Science.</b></p>​<span>A research group from Chalmers University of Technology, Sweden, has made great, rapid strides towards the development of a specially designed molecule which can store solar energy for later use. These advances have been presented in four scientific articles this year, with the most recent being published in the highly ranked journal Energy &amp; Environmental Science. <br /></span><br />Around a year ago, the research team presented a molecule that was capable of storing solar energy. The molecule, made from carbon, hydrogen and nitrogen, has the unique property that when it is hit by sunlight, it is transformed into an energy-rich isomer – a molecule which consists of the same atoms, but bound together in a different way.<br /><br />This isomer can then be stored for use when that energy is later needed – for example, at night or in winter. It is in a liquid form and is adapted for use in a solar energy system, which the researchers have named MOST (Molecular Solar Thermal Energy Storage). In just the last year, the research team have made great advances in the development of MOST. <br /><br />“The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for,” says the leader of the research team, Kasper Moth-Poulsen, in Nano Materials Chemistry at Chalmers.<img class="chalmersPosition-FloatRight" src="/SiteCollectionImages/Institutioner/KB/Generell/Nyheter/Utsläppsfritt%20energisystem/KasperMoth-Poulsen_180913_07_3000px.jpg" alt="Professor Kasper Moth-Poulsen holding a tube containing the catalyst, in front of the ultra-high vacuum setup that was used to m" width="4114" height="2742" style="height:181px;width:272px;margin:5px" /><br /><br />The research group have developed a catalyst for controlling the release of the stored energy. The catalyst acts as a filter, through which the liquid flows, creating a reaction which warms the liquid by 63 centigrades.  If the liquid has a temperature of 20°Celsius when it pumps through the filter, it comes out the other side at 83°Celsius. At the same time, it returns the molecule to its original form, so that it can be then reused in the warming system.<br /><br />During the same period, the researchers also learned to improve the design of the molecule to increase its storage abilities so that the isomer can store energy for up to 18 years. This was a crucial improvement, as the focus of the project is primarily chemical energy storage. <div><div><br />Furthermore, the system was previously reliant on the liquid being partly composed of the flammable chemical toluene. But now the researchers have found a way to remove the potentially dangerous toluene and instead use just the energy storing molecule. <br /><br />Taken together, the advances mean that the energy system MOST now works in a circular manner. First, the liquid captures energy from sunlight, in a solar thermal collector on the roof of a building. Then it is stored at room temperature, leading to minimal energy losses. When the energy is needed, it can be drawn through the catalyst so that the liquid heats up. It is envisioned that this warmth can then be utilised in, for example, domestic heating systems, after which the liquid can be sent back up to the roof to collect more energy – all completely free of emissions, and without damaging the molecule. <br /><br />“We have made many crucial advances recently, and today we have an emissions-free energy system which works all year around,” says Kasper Moth-Poulsen. <br /><br />The solar thermal collector is a concave reflector with a pipe in the centre. It tracks the sun’s path across the sky and works in the same way as a satellite dish, focusing the sun’s rays to a point where the liquid leads through the pipe. It is even possible to add on an additional pipe with normal water to combine the system with conventional water heating. <br /><br />The next steps for the researchers are to combine everything together into a coherent system. </div> <div>“There is a lot left to do. We have just got the system to work. Now we need to ensure everything is optimally designed,” says Kasper Moth-Poulsen.<br /><br />The group is satisfied with the storage capabilities, but more energy could be extracted, Kasper believes. He hopes that the research group will shortly achieve a temperature increase of at least 110<span style="background-color:initial">°</span><span style="background-color:initial">Celsius and thinks the technology could be in commercial use within 10 years. </span></div> <span></span><div></div> <div><span><strong><br />More on: the advances behind the four scientific publications </strong></span></div> <div style="font-size:10px"><span><strong>The research group has published four scientific articles on their breakthroughs around the energy system during 2018.</strong></span></div> <div style="font-size:10px"><span><strong>1.</strong></span><span style="white-space:pre"><span><strong> </strong></span></span><span><strong>Removing the need for toluene to be mixed with the molecule. Liquid Norbornadiene Photoswitches for Solar Energy Storage in the journal Advanced Energy Materials. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201703401</strong></span></div> <div style="font-size:10px"><span><strong>2.</strong></span><span style="white-space:pre"><span><strong> </strong></span></span><span><strong>Increasing energy density and storage times. Molecular Solar Thermal Energy Storage in photoswitch oligomers increases energy densities and storage times in the journal Nature Communications. https://www.nature.com/articles/s41467-018-04230-8</strong></span></div> <div style="font-size:10px"><span><strong>3.</strong></span><span style="white-space:pre"><span><strong> </strong></span></span><span><strong>Achieving energy storage of up to 18 years. Norbornadiene-based photoswitches with exceptional combination of solar spectrum match and long-term energy storage in Chemistry: A European Journal. https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201802932</strong></span></div> <div style="font-size:10px"><span><strong>4.</strong></span><span style="white-space:pre"><span><strong> </strong></span></span><span><strong>New record in how efficiently heating can be done. The liquid can increase 63C in temperature. Macroscopic Heat Release in a Molecular Solar Thermal Energy Storage System in the journal Energy and Environmental Science. https://pubs.rsc.org/en/content/articlehtml/2018/ee/c8ee01011k</strong></span></div> <div><span style="font-size:10px"></span><br /></div></div>Wed, 03 Oct 2018 07:00:00 +0200https://www.chalmers.se/en/departments/see/news/Pages/Crude-oil-carbon-footprint.aspxhttps://www.chalmers.se/en/departments/see/news/Pages/Crude-oil-carbon-footprint.aspxNew study reveals real size of crude oil’s carbon footprint<p><b>​Emissions from crude oil extraction are a significant part of the total emissions of fossil fuels. A new comprehensive study recently published in Science also shows that emissions are far higher than the industry&#39;s own estimates.&quot;Knowledge of greenhouse gases emissions associated with the extraction of crude oil makes us more aware of the full lifecycle climate impacts of using oil and it will also be helpful when it comes to evaluating which measures would be most cost effective to reduce emissions,&quot; says Sonia Yeh, Professor of energy and transport systems at Chalmers.​</b></p>​<span style="background-color:initial">The extraction, transport and refining of crude oil account for between 15 and 40 percent of total greenhouse gas emissions from transport fuels such as gasoline and diesel. Different crude oils can have very different physical properties that require more energy to extract and refine than others. But the major difference in the climate impacts of different oil extract is actually how much methane, a powerful greenhouse gas, being released or burned in large quantities at extraction, activities known as flaring, venting, and fugitive emissions. </span><div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Profilbilder/Sonia_Yeh_170.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />– Although fossil free sources for energy are on the rise for the electricity sector, our demands for crude oil still continue to rise and it is unlikely to peak anytime soon. So reducing transport emissions or at least preventing oil extraction to become more and more carbon intensive is crucial, says Sonia Yeh, at the Department of Space, Earth and Environment at Chalmers.</div> <div><br /></div> <div>In the recently published study <a href="http://science.sciencemag.org/content/361/6405/851.summary">“Global carbon intensity of crude oil production&quot; (<em>Masnadi et al, Science</em>)</a> the total petroleum well-to-refinery emissions is estimated to be 1,7 Gt CO2 eq, which is 42 per cent higher than the estimations made by the industry and constitute 5 percent of global total emissions. In comparison, total global emissions from aviation is roughly 2.7 percent.  </div> <div><br /></div> <div>The study, which sums up 10 years of research from a global research network, also highlights several ways to reduce these emissions. On the one hand, it suggests leaving the densest and most energy-consuming oil in the ground and focusing on other less carbon intensive sources. On the other hand, it is about reducing the flaring, venting and fugitive emissions of methane.  </div> <div><br /></div> <div>The study shows that if the amount of methane released into the atmosphere is reduced to the same levels that have been achieved in Norway, there is a potential to reduce 40% of total emissions from oil production. But both changes require political leadership and economic and policy instruments, according to Sonia.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/flaring-200px.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />– Don’t forget that methane is a product that can be captured and used, but in many countries it is considered not worthwhile or uneconomical to capture and put methane into pipelines. But if it would cost significantly more to let it out in the atmosphere the industry might reconsider. Unfortunately, the Trump administration is instead considering making it even easier to release methane into the air, which would be a step in the wrong direction”. (Read more in the New York Times article: <a href="https://www.nytimes.com/2018/09/10/climate/methane-emissions-epa.html">Trump Administration Wants to Make It Easier to Release Methane Into Air​</a>​). </div> <div><br /></div> <div>Sonia thinks that research can be even better at measuring and characterizing sources of emissions, and if society want to address these emissions, then politicians must create new rules and guidelines, and monitor how they are managed. Oil companies can also be much better at following up on these things themselves to show their environmental commitments and leaderships.</div> <div><br /></div> <div>– This important analysis gives both our politicians and the oil companies greater access to information to fully measure and compare the effects of oil emissions. if you don’t measure it you can’t control it.</div> <div><br /></div> <div><em>Text: Christian Löwhagen. </em></div> <h5 class="chalmersElement-H5">Read more: </h5> <div>The full article in Science Magazine: <a href="http://science.sciencemag.org/content/361/6405/851.summary">“Global carbon intensity of crude oil production&quot; (<em>Masnadi et al, Science</em>)</a> <em><br /></em></div> <div><a href="https://news.stanford.edu/2018/08/30/measuring-crude-oils-carbon-footprint/">Press release from Stanford University: Measuring Crude Oils Carbon Footprint​</a>. <br /></div>Wed, 26 Sep 2018 00:00:00 +0200https://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Electric-freight-transport-grows-despite-extreme-competition.aspxhttps://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Electric-freight-transport-grows-despite-extreme-competition.aspxElectric freight transport grows despite extreme competition<p><b>​The topics ranged from electric aircraft to city planning at Chalmers Initiative Seminar on electromobility, 13 September. We had a few words with speakers Laetitia Dablanc and Tom Nørbech about the development of electric freight transport in France and Norway.</b></p><div>​Norway is well known for its large share of electric passenger cars. Over the last few years, the country has also taken the lead in electric ferries. In 2022 the country will have between 70 and 80 hybrid or battery electric ferries, according to Tom Nørbech, senior advisor at the Norwegian Public Roads Administration.</div> <div> </div> <div>However, the development for freight vehicles does not look as positive. The market share for this type of vehicles is only two percent, while the corresponding figure for electric passenger cars is 25 percent. How can this be?</div> <div> </div> <h4 class="chalmersElement-H4">Slow but steady increase</h4> <div>“One reason is that until now only the smallest freight vehicles have come into mass production, so the comparison is not totally fair”, explains Tom Nørbech. </div> <div>The high sale of electric vehicles in Norway can to a large part be explained by tax exemptions that apply to conventional private vehicles. Such a tax exemption would have little effect on commercial vehicles where taxes are already low, according to Tom Nørbech. Still, the number of freight vehicles is growing in Norway, but at a slower pace than passenger cars.</div> <div> </div> <div>“The smallest freight vehicles have increased from 4.5 percent of sales in their vehicle segment in 2013 to 10.5 percent in 2017”, he says.</div> <div> </div> <h4 class="chalmersElement-H4">An extremely competitive market</h4> <div>“Freight operators have been reluctant to switch to electric”, comments Laetitia Dablanc. She is professor at University Paris-East, French Institute of Science and Technology for Transport, Development and Networks, and visiting professor at the University of Gothenburg.</div> <div> </div> <div>“Freight businesses are afraid of the changes involved if they switch to electric, training staff and implementing charging stations for example”, she says, and points out that the urban freight industry is extremely competitive, with low margins, and mostly short-term concerns. </div> <div> </div> <h4 class="chalmersElement-H4">Better batteries push the development forward</h4> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Transport/_bilder-utan-fast-format/LaetitiaDablanc_300x205.jpg" alt="Audio description: Laetitia Dablanc" class="chalmersPosition-FloatLeft" style="margin:5px" />At the seminar, Laetitia Dablanc presented the results of a recent study of the challenges for electromobility in urban freight, using France as a case study. The study was made by PhD candidate P. Camilleri and will be published later this year.</div> <div> </div> <div>“Our scenarios show that, when taking the main current operating constraints faced by urban freight companies in France into account, the realistic market share for electromobility for this market is about 13 percent by 2032”, she says. “It is both very little, compared to politicians’ declared objectives in many cities, and not so bad, when thinking about the complexity of the freight delivery business today.” </div> <div> </div> <div>According to Laetitia Dablanc, we can expect a slow but steady uptake of electric freight vehicles in Europe in general. A continuous progress in battery range in combination with an increased variety of e-vans and government incentives such as subsidies, tax or traffic advantages is pushing the development forward in most European countries. Large companies such as UPS or DHL also increasingly require from their urban contractors to enhance the share of environmentally-friendly operations.</div> <div><br /></div> <div><em>Text and photo: Emilia Lundgren and Ann-Christine Nordin</em><br /></div> <div> </div> <div><strong>FURTHER READING</strong></div> <div><a href="/en/areas-of-advance/Transport/news/Pages/Electric-vehicles-a-game-changer-for-cities-and-transport.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Electric vehicles a game changer for cities and transport</a></div> <div><a href="/en/areas-of-advance/Transport/calendar/Initiative-seminar-2018/Pages/default.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Presentations from the Initiative Seminar <span>“<span style="display:inline-block"></span></span>Electromobility - Back to the future<span>“<span style="display:inline-block"></span></span></a></div> <div><br /></div> <div>The study results from P. Camilleri will be made public after 26 October 2018, and will then be available from <a href="mailto:laetitia.dablanc@ifsttar.fr">laetitia.dablanc@ifsttar.fr</a> </div> <div><em><br /></em></div> <div><em>Previous publication:</em> Camilleri, P., Dablanc, L. (2017) An assessment of present and future competitiveness of electric commercial vans, Journal of Earth Sciences and Geotechnical Engineering. Vol 7(1), p. 337-364.</div>Tue, 18 Sep 2018 00:00:00 +0200https://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Electric-vehicles-a-game-changer-for-cities-and-transport.aspxhttps://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/Electric-vehicles-a-game-changer-for-cities-and-transport.aspxElectric vehicles a game changer for cities and transport<p><b>​The rapid development of electric vehicles affects all types of traffic, but also brings new challenges. How do we design our cities with even more types of vehicles in motion? Electric aircraft, when will it become reality? At the initiative seminar “Electromobility – Back to the Future”, on 13 September, these questions will be raised.</b></p><div>​Electric vehicles are nothing new. They have been around for more than a hundred years. Back then however, the battery technology was immature, with short range and big batteries.</div> <div> </div> <div>“At first, electric vehicles were overtaken by cheaper vehicles with combustion engines. Today, we see that very efficient batteries are emerging. The climate question also accelerates the development. There is a will among politicians, industry and the public, which probably will lead to the replacement of conventional combustion engine vehicles in the long term”, says Sinisa Krajnovic, leader of Transport Area of Advance at Chalmers.</div> <div> </div> <div>By looking into the rear view mirror at electric vehicles’ century long history, the Transport and Energy Areas of Advance want to highlight the fact that understanding and knowledge now has caught up with technology – along with environmental problems such as greenhouse gas emissions and environmental impact from for e.g. battery production.</div> <div><br /></div> <div> </div> <h4 class="chalmersElement-H4">From electric aircraft to urban planning</h4> <div> “The seminar is a great opportunity for knowledge sharing, mingling and networking for all participants. For my part, I look forward to the many different presentations”, says Maria Grahn, leader of Energy Area of Advance.</div> <div> </div> <div>The day offers several interesting sessions, including visions for the future such as electric aircraft, technology development and security aspects, strategic decision making and urban planning for electromobility. We will also learn more about what to expect from the national test lab for electromobility (SEEL) and why Norway has the highest number of electric cars per capita.</div> <div> </div> <h4 class="chalmersElement-H4">Prospects good for the 2030 goals</h4> <div>In media, the debate on climate issues has been high since the heat wave this summer, linking to aircraft and other highly energy consuming types of transportation. What, then, is required for Sweden to reach the target and have a fossil-independent fleet by 2030. </div> <div> </div> <div>“The combination of the two policy instruments introduced this year, Reduction Obligation and Bonus Malus, provides very good conditions for success”, says Maria Grahn.</div> <div><br /></div> <div>Reduction obligation means that fuel sold in Sweden must contain a certain amount of fuel from renewable sources to reduce fossil carbon dioxide emissions. Bonus Malus gives incentives for car buyers to choose a more energy-efficient car.</div> <div> </div> <div>“Most researchers agree that electrification of vehicles is not enough”, says Sinisa Krajnovic. “You have to combine several different propulsion technologies. But above all, we need to change our behaviour.”</div> <div> </div> <h4 class="chalmersElement-H4">An overall picture of electromobility</h4> <div>“Electromobility – Back to the Future” is aimed primarily at research and development professionals in academia and industry, as well as authorities, municipalities, regions, business organizations and special interest groups. </div> <div> </div> <div>“We welcome everyone, but the programme is planned for those who want to grasp the overall picture of electromobility,” says Maria Grahn.</div> <div><br /></div> <div> </div> <div><em>Text: Ann-Christine Nordin, Emilia Lundgren</em></div> <em> </em><div><em>Photo: Emilia Lundgren</em></div> <div> </div> <div>The initiative seminar “Electromobility – Back to the Future” will be held 13 September in RunAn, Chalmersplatsen 1, Gothenburg. Sign up at the latest 3 September.</div> <div> </div> <div><a href="/en/areas-of-advance/Transport/calendar/Initiative-seminar-2018/Pages/default.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Programme and registration</a><br /></div> <div> </div> <div><strong>FURTHER READING</strong></div> <div><a href="/en/news/Pages/Sweden-invests-1-billion-SEK-in-testbed-for-electromobility.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Sweden invests 1 billion SEK in testbed for electromobility<br /></a></div> <div><a href="/en/areas-of-advance/Transport/news/Pages/Electric-freight-transport-grows-despite-extreme-competition.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Electric freight transport grows despite extreme competition</a><br /></div>Thu, 30 Aug 2018 00:00:00 +0200https://www.chalmers.se/en/departments/chem/news/Pages/The-world's-first-research-conference-on-battery-recycling.aspxhttps://www.chalmers.se/en/departments/chem/news/Pages/The-world's-first-research-conference-on-battery-recycling.aspxThe world&#39;s first battery recycling research conference<p><b>​Our vehicles are moving towards an increasingly electrified future, but without functioning battery recycling technology, development will stop and electric cars&#39; batteries are still very difficult to recycle industrially. Now researchers and industry gather at Chalmers to attend the world&#39;s first research conference with the main focus on battery recycling.</b></p>​<span style="background-color:initial">Research on recycling of lithium batteries from, among other things, electric cars and portable electronics has grown as we approach a fossil-free and electrified society. Metals and minerals that are necessary for the batteries will sooner or later end. Cobalt, for example, which is one of the most common substances in the batteries, is now expected to reach its production peak around 2025. Cobalt is also considered by many to be a so-called conflict mineral where human rights are often violated in connection with mining in the form of child labour and slavery.</span><div><br /><span style="background-color:initial"></span><div>&quot;This is a very critical issue where it is crucial that we find a solution soon. Sustainable cobalt supply and recovery is crucial to the electric car's existence, &quot;says Assistant Professor <a href="/sv/personal/Sidor/marpetr.aspx">Martina Petranikova</a>, organiser of the conference.</div> <div><br /></div> <div>However, there are more areas in the battery life cycle that hold them back in terms of durability. Among other things, electric cars, when consumed, still have so much energy that recycling can be dangerous. In addition, electric vehicle batteries may vary so much between manufacturers that it is difficult for the recycler to know what the battery contains. At the same time, it is a competitive advantage for the companies to develop new assemblies on the batteries and thus the producers have to talk to the recyclers in order to find a right design</div> <div><br /></div> <div>&quot;The industry is very interested in finding the right recycling technology. Among other things, they are obliged to take care of the waste from their products, such as used batteries. With different combinations of batteries, they are very difficult to recycle industrially. Today we can recover most of a battery, but it takes time and is costly. With the conference, we want to meet and solve these problems, &quot;said Martina Petranikova.</div> <div>In order to find a sustainable solution, the entire battery life cycle must be coordinated from production and development to collection and recycling, as well as legislation. Therefore, Chalmers researchers in industrial recycling gather researchers, experts, manufacturers, users and recyclers under the same roof to share their knowledge, their expectations, technical and financial realities, and also their dreams to take the initiative for a circular economy of batteries .</div> <div><br /></div> <div>The Circular Economy of Batteries Production and Recycling, CEB, will be held at Lindholmen Conference Center 24-26 September 2018.</div> <div><br /></div> <div><a href="http://www.ceb2018.org/">Read more at the conference page.</a></div> </div>Tue, 28 Aug 2018 00:00:00 +0200https://www.chalmers.se/en/areas-of-advance/energy/news/Pages/New-article-about-challenges-in-bio-based-production-of-hydrocarbons-in-Nature.aspxhttps://www.chalmers.se/en/areas-of-advance/energy/news/Pages/New-article-about-challenges-in-bio-based-production-of-hydrocarbons-in-Nature.aspxNew article about challenges in bio-based production of hydrocarbons in Nature<p><b>​​Congratulations to our colleagues Eduard Kerkhoven, Yongjin Zhou and Jens Nielsens, at the Division of Systems and Synthetic Biology.Together, they have written an article discussing and summarizing the barriers that needs to be overcome to make hydrocarbons produced from biomass a real alternative to fossil fuels.</b></p><div>The main challenges are to lower development costs of microbial cell factories and to make the conversion of the biomass feedstock more efficient. In their article they also discuss how to develop new tools for cell factory development.</div> <div>The article, “Barriers and opportunities in bio-based production of hydrocarbons, is published in Nature Energy, July 30.<br /><br /></div> <div><a href="https://www.nature.com/articles/s41560-018-0197-x"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read the Abstract in Nature Energy</a></div> <div><br /></div> <div>By: Ann-Christine Nordin</div>Fri, 03 Aug 2018 08:00:00 +0200https://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Mission-innovation-champions-programme.aspxhttps://www.chalmers.se/en/areas-of-advance/energy/news/Pages/Mission-innovation-champions-programme.aspxMission Innovation Champions programme<p><b>​Does your research add something important on the road toward clean energies? Does it help to accelerate the clean energy revolution? If so, you can apply to enter the Mission Innovation Champions programme, in which the choosen projects will be recognized internationally.</b></p><p>​​This is how the Mission Innovations describes the Champions programme: </p> <p><br />&quot;Mission Innovation Champions is a new recognition programme to celebrate and support innovative individuals who are accelerating the clean energy revolution. This programme will recognize exceptional researchers and innovators who are developing novel ways of making energy cleaner, cheaper, and more reliable and using it more efficiently. The programme will call worldwide attention to the most promising ideas from across the globe. The programme will seek to facilitate engagement among the awardees and Mission Innovation governments, research institutes, affiliated organizations, and private sector investors.&quot;<br /><br />Who can register? Individual persons, (teams are not eligible to apply) nskilda forskare).<br />Last day to register: <strong>10 September 2018</strong><br /><br /><em>NB! You can also nominate someone else, it does not have to concern your own work.  </em><br /><br />Read more about the Mission Innovation here:<br /><a href="http://www.mission-innovation.net/" target="_blank">www.mission-innovation.net</a><br />and about the Champions programme and how to register yourself (or someone else) here:<a href="https://www.michampions.net/#home" target="_blank"> www.michampions.net/#home</a></p>Wed, 01 Aug 2018 13:50:00 +0200https://www.chalmers.se/en/departments/e2/news/Pages/Unique-energy-system-is-being-tested-at-Chalmers.aspxhttps://www.chalmers.se/en/departments/e2/news/Pages/Unique-energy-system-is-being-tested-at-Chalmers.aspxUnique energy system is being tested at Chalmers<p><b>​This week, for the first time, a unique local marketplace for electricity, heat and cooling is being tested at Chalmers University of Technology, campus Johanneberg. The EU funded initiative is a collaboration between nine local partners and is being held to find new ways towards a fossil-free energy supply system at international level.​</b></p>​The Fossil-free Energy Districts (FED) project has been running for a year and a half, and now the digital, IoT-based marketplace is ready to be connected to campus buildings and tested in a sharp spot. The idea is that buildings that both consume and in some cases produce energy should communicate with each other to avoid energy consumption peaks that are both expensive and bad for the environment.<br /><br />– FED's marketplace is unique in several ways, partly because it connects both electricity, heat and cooling, and partly because it allows smaller players, such as a property owner who has installed solar panels on the roof, to participate in energy trading. At the same time, the system is connected to the larger external network, in our case Göteborg Energi, which provides cover when needed, says Claes Sommansson, FED Project Manager at Johanneberg Science Park.<br /><br />The FED system handles large amounts of data, both from property owners own systems and information such as weather and electricity pricing, and is updated hour by hour. But it is not the property owners themselves who have to process the information. This work is done by smart digital agents who make decisions to optimize energy efficiency in the area. The AI agents are programmed by Ericsson and based on machine learning, which means that they will get better at their job over time.<br /><br /><div>– The biggest advantage of FED is that it's a flexible system and that's something we'll need in the future when the share of energy from renewable sources, like solar and wind, grows. The uneven supply of these sources causes price fluctuations to grow, but the agents in the FED system can for example predict a cold spell and decide to start heating a house before it happens. In this way, you can buy energy at a lower price, before demand increases, but you also avoid burning fossil fuels like gas and oil, says Ericsson's Joakim Pontén, who has been in charge of the IT solution within FED.</div> <div><br />Researchers at Chalmers have done simulations and analysis to build the models that will make the energy system and the marketplace work. <a href="/en/departments/e2/news/Pages/Chalmers-is-becoming-a-unique-marketplace-for-energy.aspx">Read more about the work of the researchers.</a><br /></div> <br />The two property owners at Chalmers, Akademiska Hus and Chalmersfastigheter, are obvious partners in the project, and together they are making significant investments that will be rolled out in the autumn, including several new solar cells and a large battery for storing solar power. The entire FED system is expected to be operational at the end of the year, and the tests being carried out now are an important milestone.<br /><br />– A major challenge has been to connect the property owners' systems with Ericsson and Göteborg Energi's systems. The test week we are now completing is confirmation that our property systems linked to the parent FED marketplace are working well, says Per Löveryd, Innovation Coordinator at Akademiska Hus. <div><img class="chalmersPosition-FloatLeft" alt="Joakim Pontén and Per Löveryd" src="/SiteCollectionImages/Institutioner/E2/Nyheter/Chalmers%20blir%20unik%20handelsplats%20för%20energi/FED-Per-Löveryd-Joakim-Ponten_500px.jpg" style="margin:5px" /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><div><br /></div> <div>Joakim Pontén, Ericsson and Per Löveryd, Akademiska Hus. <br /></div> <div><br /></div> <div><strong>Facts about the project</strong></div> <div>The Fossil-free Energy Districts project, FED, is an innovative effort by the City of Gothenburg to decrease the use of energy and the dependence on fossil fuel in a built environment. A unique local marketplace for electricity, district heating and cooling is being developed together with nine strong partners. The City of Gothenburg, Johanneberg Sciene Park, Göteborg Energi, Business Region Göteborg, Ericsson, RISE Research Institutes of Sweden, Akademiska Hus, Chalmersfastigheter and Chalmers University of Technology are all contributing with their expertise and knowledge to make FED attractive for other European cities as well. Johanneberg Science Park has the coordinating role on behalf of the city. During 2017−2019 the FED testbed will be situated on Chalmers Campus Johanneberg. FED is co-financed by the European Regional and Development Fund through the Urban Innovative Actions Initiative, an initiative of the European Commission for cities to test new solutions for urban challenges.</div> <div><br /></div> <div>Read more:<br /><a href="https://www.johannebergsciencepark.com/en/projects/fed-fossil-free-energy-districts" target="_blank">About FED on the Johanneberg Science Park website</a><br /><a href="http://www.uia-initiative.eu/en/uia-cities/gothenburgiencepark.com/fed" target="_blank">About FED in Urban Innovative Actions</a><br /><br /></div></div>Wed, 27 Jun 2018 13:00:00 +0200https://www.chalmers.se/en/departments/see/news/Pages/IEW-2018.aspxhttps://www.chalmers.se/en/departments/see/news/Pages/IEW-2018.aspxThe latest and greatest in energy systems modeling<p><b>​Chalmers is hosting the 37th Edition of IEW – the International Energy Workshop – on June 19-21. The IEW is one of the leading conferences for the international energy modeling research community. - I’ve been attending IEW for more than 15 years. The reason that it attracts me to attend every year is that it’s a community conference that brings the leading figures and young researchers together presenting very high-quality research in energy system modeling, says Sonia Yeh, professor of Transport and Energy Systems and head of the organizing committee for IEW 2018. ​</b></p><div><span style="background-color:initial">​</span><span style="background-color:initial">Energy systems modeling is a growing field of research and an increasingly important tool for addressing the complexity of planning and policy making relating to energy. There are many moving parts that interact in an energy system, and many constraints – concerning economy and environment – to take into consideration when choosing a route forward. </span></div> <div><br /></div> <img src="/SiteCollectionImages/Institutioner/SEE/Profilbilder/Sonia_Yeh_170.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:150px;height:150px" /><div>– We try to take a systems perspective and look at the interactions and dynamics within an energy system. In recent years we have focused on how to best incorporate energy from renewable sources or increase the use of electric vehicles in current or future systems. How does supply and demand interact with each other? How will different policy solutions impact the system? It’s really important to look at how different components influence each other, so you don’t focus on one problem and miss other aspects, says Sonia Yeh professor at the division of Physical Resource Theory at Chalmers' department of Space, Earth and Environment. </div> <div><br /></div> <div>An energy system has typically social, technical and economic aspects, and the research is usually focused on long term models, from 10 up to a 100 years.  </div> <div><span style="background-color:initial"> </span></div> <div>– Most people have the misconception that energy models can predict the future. But that is not the case. The future is impossible to predict given all the knowable and unknowable uncertainty. The science (or art) of energy modeling is about simplifying really complicated realities into problems that are manageable and solvable and to extract useful insights for policymakers and for the society. It is not about making projections or forecasts.</div> <div><br /></div> <h6 class="chalmersElement-H6">Three days - three subject areas​</h6> <div>At this year’s conference 116 research papers will be presented, and six keynote speakers will provide high level overviews and summarize the latest research frontiers in three subject areas – climate policy, renewable energy technologies and consumer behaviour. (<a href="https://iew2018.org/program/">Read the full program for IEW 2018 here​</a>). </div> <div><br /></div> <div>– All keynote speakers will be really interesting, but I am especially looking forward to the first day, with keynotes Reyer Gerlagh from Tilburg School of Economics and Management and Thomas Sterner from the School of business, economics and law at the University of Gothenburg. They will be speaking on lessons learned from historical and more recent international climate and energy policy making. </div> <div><br /></div> <div>Two of the departments at the Department of Space, Earth and Environment – Physical Resource Theory and Energy Technology whose research complement each other when it comes to the field of energy systems modeling – are working together organizing the conference. Not only the faculty and senior researchers devoted their time organizing, reviewed over 250 high-quality submitted abstracts and planned the program, 10 PhD students will volunteer at the conference. The conference receives sponsorships from many international organizations and Chalmers Energy Area of Advance. </div> <div><br /></div> <h6 class="chalmersElement-H6">Gender balanced conference​ </h6> <div>– One of the goals for this year is to bring the gender balance and diversity to this traditionally male-dominated field. This year the conference program has a perfect gender balance of 50-50 in keynote speakers, program committee, session chairs and volunteers. Gender balance and diversity are not the ends by themselves, but the means to an end where everyone’s work and contributions are being appreciated and recognized equally, says Sonia. </div> <div><br /></div> <div>IEW will also connect back to another high-level conference held at Chalmers last month – <a href="/en/departments/see/news/Pages/First-ever-conference-on-Negative-CO2-Emissions.aspx">the International Negative CO2 Emissions conference</a> – via a side event. </div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/EoM/Profilbilder/Mariliis_Lehtveer170x220.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:150px;height:194px" />– Hosting two eminent conferences in one year has significantly raised the profile of Chalmers in the international stage”, says Mariliis Lehtveer, organiser of the negative emissions side event, conference coordinator and also a postdoctoral researcher at the Division of Energy Technology.</div> <div><br /></div> <div>– The contributions from our faculty, senior researchers, and PhD students, are the best tool we have to put Chalmers on the map, says Sonia Yeh.   </div> <div><br /></div> <a href="https://iew2018.org/"><div>Visit the web site for the International Energy Wiorkshop, IEW 2018 for more information and a full program. </div></a><div><br /></div> <i>Text and photos: Christian Löwhagen</i>Thu, 07 Jun 2018 00:00:00 +0200https://www.chalmers.se/en/departments/see/news/Pages/First-ever-conference-on-Negative-CO2-Emissions.aspxhttps://www.chalmers.se/en/departments/see/news/Pages/First-ever-conference-on-Negative-CO2-Emissions.aspxFirst ever conference on Negative CO2 Emissions<p><b>​To save the planet, it is not enough that we simply reduce the amount of carbon dioxide emitted into the atmosphere in future. We need to actually lower the current overall level, by removing the man-made carbon dioxide that we have already produced. The challenges and possibilities of doing this are the focus of the first international ‘Negative CO2 Emissions’ conference, May 22-24 at Chalmers University of Technology, Sweden.</b></p><img src="/SiteCollectionImages/Institutioner/SEE/Profilbilder/Anders_Lyngfelt170x170.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />​<span style="background-color:initial">Chalmers Professor Anders Lyngfelt is one of the leaders behind the conference. Since 1998, his work has focused on developing methods for carbon dioxide capture, an endeavour which has seen him become one of the most respected and highly cited academics in his field. </span><div><br /></div> <div>– I'm worried about the climate. If we are to achieve the goals, we need big negative emissions and it is obvious to us that, apart from eliminating carbon dioxide, we need to clean up after us, says Anders Lyngfelt.</div> <div>The conference will feature oral and poster presentations from around 180 international experts in the field, including from USA, UK, Germany, China, Japan, and more. Attendees and speakers will be researchers, politicians and figures from industry. </div> <div><br /></div> <div>Among the keynote speakers will be the so-called ‘father of climate change awareness’, James Hansen. A former director of NASA’s Goddard Institute for Space Studies, now Adjunct Professor at Columbia University, New York, James Hansen will open the conference with his talk ‘Negative CO2 emissions – why, when, and how much?’ </div> <div><br /></div> <div>Also of particular interest will be Tuesday’s session on ‘Bio Energy with Carbon Capture and Storage (BECCS) in Sweden and the rest of the Nordic countries’. BECCS has been suggested as a potentially major technology in the efforts to reduce overall CO2 levels, and the Nordic countries are well placed to make widespread use of this technology. Representatives from Chalmers, KTH, and other Swedish universities, as well as figures from industry and government will discuss the implications and role of BECCS in Swedish climate change policy. </div> <div>Chalmers researchers will also be joined by representatives from the Norwegian Ministry of Petroleum and Energy, the Norwegian environmental organisation Bellona, and the University of Copenhagen, to discuss the potential for BECCS technologies throughout the whole Nordic region. </div> <div><br /></div> <div>This session starts with an invited lecture by State Secretary for Climate Policy Eva Svedling, who will also open the conference together with the president and CEO of Chalmers, Stefan Bengtsson. </div> <div><br /></div> <div><a href="http://negativeco2emissions2018.com/">More info and full programme can be found at the conference web site</a>. </div> <div><span style="background-color:initial">​</span><br /></div> Mon, 21 May 2018 08:00:00 +0200https://www.chalmers.se/en/departments/see/news/Pages/Advanced-biofuels-can-be-produced-extremely-efficiently.aspxhttps://www.chalmers.se/en/departments/see/news/Pages/Advanced-biofuels-can-be-produced-extremely-efficiently.aspxAdvanced biofuels can be produced extremely efficiently, confirms industrial demonstration<p><b>​A chance to switch to renewable sources for heating, electricity and fuel, while also providing new opportunities for several industries to produce large numbers of renewable products. This is the verdict of researchers from Chalmers University of Technology, Sweden, who now, after ten years of energy research into gasification of biomass, see an array of new technological achievements.&quot;The potential is huge! Using only the already existing Swedish energy plants, we could produce renewable fuels equivalent to 10 percent of the world&#39;s aviation fuel, if such a conversion were fully implemented,” says Henrik Thunman, Professor of Energy Technology at Chalmers.​</b></p><h5 class="chalmersElement-H5"><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/Popreport_cover.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />Report detailing 200 man-years of research  </h5> <div>​We have summarized the work of the last ten years at Chalmers Power Central and GoBiGas in the report: &quot;GoBiGas demonstration – a vital step for a large-scale transition from fossil fuels to advanced biofuels and electrofuels&quot;. Researchers at the division of Energy Technology at the Department of Space, Earth and Environment at Chalmers have worked together with colleagues at the departments of Chemistry and Chemical Engineering, Microtechnology and Nanoscience, Technology Management and Economics, Biology and Biological Engineering, Mechanics and Maritime Sciences​ as well as a wide range of Swedish and international collaborative partners in industry and academia. <a href="http://www.chalmers.se/SiteCollectionDocuments/SEE/News/Popularreport_GoBiGas_results_highres.pdf" style="outline:none 0px"><span style="background-color:initial">Download the report: </span><span style="background-color:initial">GoBiGas demonstration – a vital step for a large-scale transition from fossil fuels  to advanced biofuels and electrofuels. </span></a>(21 Mb). <div><h6 class="chalmersElement-H6">​Pathway to a radical transition</h6></div> <div><div>How to implement a switch from fossil-fuels to renewables is a tricky issue for many industries. For heavy industries, such as oil refineries, or the paper and pulp industry, it is especially urgent to start moving, because investment cycles are so long. At the same time, it is important to get the investment right because you may be forced to replace boilers or facilities in advance, which means major financial costs. Thanks to long-term strategic efforts, researchers at Sweden´s Chalmers University of Technology have now paved the way for radical changes, which could be applied to new installations, as well as be implemented at thousands of existing plants around the globe.</div> <div><br /></div> <div>The solution presented involves widespread gasification of biomass. This technology itself is not new. Roughly explained, what is happening is that at high temperatures, biomass is converted into a gas. This gas can then be refined into end-products which are currently manufactured from oil and natural gas. The Chalmers researchers have shown that one possible end-product is biogas that can replace natural gas in existing gas networks.</div> <h6 class="chalmersElement-H6">The problems with tar are solved​</h6> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/tar-problem-before-and-after.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />Previously, the development of gasification technology has been hampered by major problems with tar being released from the biomass, which interferes with the process in several ways. Now, the researchers from Chalmers’ division of Energy Technology have shown that they can improve the quality of the biogas through chemical processes, and the tar can also be managed in completely new ways, see images to the right. This, in combination with a parallel development of heat-exchange materials, provides completely new possibilities for converting district heating boilers to biomass gasifiers. <a href="https://www.youtube.com/watch?v=1D2sWiGkcFg">Watch an animation with more details about how the problems with tar has been solved​</a>. </div> <div><br /></div> <div>&quot;What makes this technology so attractive to several industries is that it will be possible to modify existing boilers, which can then supplement heat and power production with the production of fossil-free fuels and chemicals.&quot;, says Martin Seemann, Associate Professor in Energy Technology at Chalmers.</div> <div><br /></div> <div>“We rebuilt our own research boiler in this way in 2007, and now we have more than 200 man-years of research to back us up,” says Professor Henrik Thunman. “Combined with industrial-scale lessons learned at the GoBiGas (Gothenburg Biomass Gasification) demonstration project, launched in 2014, it is now possible for us to say that the technology is ready for the world.” </div> <h6 class="chalmersElement-H6">Many applications</h6> <div>The plants which could be converted to gasification are power and district heating plants, paper and pulp mills, sawmills, oil refineries and petrochemical plants.</div> <div><br /></div> <div>“The technical solutions developed by the Chalmers researchers are therefore relevant across several industrial fields”, says Klara Helstad, Head of the Sustainable Industry Unit at the Swedish Energy Agency. “Chalmers´ competence and research infrastructure have played and crucial role for the demonstration of advanced biofuels within the GoBiGas-project.”</div> <div><br /></div> <div>The Swedish Energy Agency has funded energy research and infrastructure at Chalmers for many years. </div> <div>How much of this technological potential can be realised depends on the economic conditions of the coming years, and how that will affect the willingness of the industrial and energy sectors to convert. The availability of biomass is also a crucial factor. Biomass is a renewable resource, but only provided we do not deplete the conditions for its biological production. There is therefore a limit for total biomass output.</div></div> <div><br /></div> <div>Text: Christian Löwhagen, Johanna Wilde. </div> <div>Translation: Joshua Worth.</div> <div>Tar illustration: BOID. </div> <div><br /></div> <div><a href="http://goteborgenergi.streamingbolaget.se/video/156153/link"><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/Process-video.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />Watch a film detailing the process in the GoBiGas Plant</a>. </div> <div><br /></div> <div><a href="http://www.mynewsdesk.com/uk/chalmers/pressreleases/advanced-biofuels-can-be-produced-extremely-efficiently-confirms-industrial-demonstration-2511833">Read more in the international press release. ​</a></div> <div>​<br /></div></div>Mon, 21 May 2018 07:00:00 +0200https://www.chalmers.se/en/departments/e2/news/Pages/Prototype-for-wireless-charging-of-buses.aspxhttps://www.chalmers.se/en/departments/e2/news/Pages/Prototype-for-wireless-charging-of-buses.aspxPrototype for wireless charging of buses<p><b>Is it possible to charge electric buses through open air, without physically connecting any electrical equipment to the vehicle? A prototype for wireless charging of city buses is constructed by researchers at Chalmers. The first round of tests is promising.</b></p><div>​<img class="chalmersPosition-FloatRight" alt="Yujing Liu" src="/SiteCollectionImages/Institutioner/E2/Nyheter/Prototypen%20som%20laddar%20bussen%20trådlöst/Yujing_Liu_300x388px.jpg" style="margin:5px;width:200px;height:259px" />In the laboratory at the division of Electric Power Engineering several prototypes for charging electrical vehicles are under construction and testing. <br /><br />In this project, the researchers focus primarily on charging of electric buses operated in cities as they traffic pre-determined routes with specified stops that offer good charging possibilities. Frequent charging allows for substantial reductions in battery size, which lowers the weight and cost of the bus. Alternatively, frequent charging can be used to reduce the depth of discharge, which prolongs the lifetime of the batteries.<br /><br />“The first round of tests on our 50 kW module has been completed in our laboratory and the results are promising so far”, says Yujing Liu, Professor at the department of Electrical Engineering. “The results show a transfer efficiency, from DC to DC, of about 95 percent at the desired power level, across an airgap of 20 centimetres, which is really good.” <br /><br /><strong>Charging the bus from the ground</strong><br />The wireless charging, or inductive power transfer (IPT) as the researchers call it, allows for contactless transfer of power across an air gap that extends from a charging unit in the ground, located at the bus stop, to a similar unit integrated in the vehicle frame of the electric bus. <br /><br />The charging unit in the ground contains a coil which creates a magnetic field. In turn, this magnetic field induces a voltage in a similar coil embedded in the unit placed beneath the vehicle and this induced voltage yields a current that charges the batteries in the electric bus. <br /><br /><span><img class="chalmersPosition-FloatRight" alt="Thomas Rylander" src="/SiteCollectionImages/Institutioner/E2/Nyheter/Prototypen%20som%20laddar%20bussen%20trådlöst/Thomas_Rylander_300x388px.jpg" style="margin:5px;width:200px;height:259px" /><span style="display:inline-block"></span></span>“Essentially, this part of the system is a conventional transformer but, as opposed to a typical transformer, the primary and secondary coils are separated by a relatively large air gap. The gap yields a rather low magnetic coupling and this is compensated for by adding capacitors to the coils such that we get resonance circuits on both the primary and secondary side”, says Thomas Rylander, Professor at the department of Electrical Engineering.<br /><br />To charge the batteries in a bus would require about 200 kW, which will be made possible by connecting charging modules in parallel. <br /><br />The possibility to charge city buses at bus stops, so called opportunity charging, may reduce the size of the battery in the bus, perhaps by as much as 70 percent. About 30 seconds charging at every other bus stop will be enough to keep the batteries at a sufficient charging level – just about the time it takes for passengers to get on or off the bus.<br /><br />Thus, this charging method is different from the one used for the well-known <a href="https://www.electricitygoteborg.se/en" target="_blank">Electricity bus trafficking route 55 in Gothenburg</a>. Bus 55 is charged at the end stops using physical connectors on the roof.<br /><br /><strong>Higher efficiency and reduced battery size</strong><br />“The two major challenges that may limit the applications of inductive power transfer in electrical vehicles are the transfer efficiency and the size of the equipment”, says Yujing Liu. “However, the progress in fast-switching power electronics and high-frequency electromagnetic materials has led to new opportunities. We want to explore the benefits of using these kinds of new technology and high-quality materials for reducing losses and the size of the equipment.”<br /><br />Using high electric frequency, it is possible to reduce the magnetic energy and leakage field, which is important for applications in public places like city buses.<br /><br /><span><img class="chalmersPosition-FloatRight" src="/SiteCollectionImages/Institutioner/E2/Nyheter/Prototypen%20som%20laddar%20bussen%20trådlöst/powerelectronics_transformer_750px.jpg" alt="" style="margin:5px" /><span style="display:inline-block"></span></span><br /><br /><span><em>The pictures show the first prototype of power electronics (to the left) and the primary side transformer (to the right) used for inductive power transfer. Illustrations: Felix Mannerhagen<span style="display:inline-block"></span></em></span><br /><br />“This experimental prototype for inductive power transfer is to be considered state-of-the-art today. It will serve as a platform for several future research projects”, says Thomas Rylander. “The work is interdisciplinary, both experimental and theoretical. The seed project funding from the department of Electrical Engineering has initiated an entirely new and very exciting collaboration for us.”<br /><br /><strong>Facts about the project</strong><br />Objective: To develop a prototype for wireless charging of electric vehicles, considered state-of-the-art, which can serve as a platform for future research projects in the field<br />Long-term purpose: To contribute to sustainable, competitive and efficient traffic solutions<br />Participants: Thomas Rylander, Yujing Liu, Tomas McKelvey, Torbjörn Thiringer, Felix Mannerhagen, Daniel Pehrman, Johan Winges</div> <div>This seed project is based on the thesis &quot;Multi-Objective Optimization of Inductive Power Transfer Systems for EV Charging” by Roman Bosshard, 2015.​<br /><br /><em>Text: Yvonne Jonsson</em><br /><em><span><span><span style="display:inline-block"></span></span></span>Photo: Oscar Mattsson</em><br /><br /><strong>For more information, contact</strong><br /><span><a href="/sv/personal/Sidor/yujing-liu.aspx">Yujing Liu</a>, Professor, Department of Electrical Engineering, Chalmers<br /><a href="mailto:%20yujing.liu@chalmers.se">yujing.liu@chalmers.se</a><a href="mailto:%20yujing.liu@chalmers.se"><span style="display:inline-block"></span></a></span><br /><br /><a href="/en/Staff/Pages/thomas-rylander.aspx">Thomas Rylander</a>, Professor, Department of Electrical Engineering, Chalmers<br /><a href="mailto:%20rylander@chalmers.se">rylander@chalmers.se</a><br /><br /></div>Wed, 16 May 2018 08:00:00 +0200https://www.chalmers.se/en/news/Pages/Areas-of-Advance-Award-for-research-into-future-energy-services.aspxhttps://www.chalmers.se/en/news/Pages/Areas-of-Advance-Award-for-research-into-future-energy-services.aspxAreas of Advance Award for research into future energy services<p><b>​Sustainability, digitalisation and service innovation in the energy sector are the ingredients of the collaborative project which is receiving the 2018 Areas of Advance Award. Chalmers researchers Árni Halldórsson, Holger Wallbaum, Ida Gremyr and Sofia Börjesson are receiving the award for their multidisciplinary collaboration.</b></p>​ <br />Digitalisation is contributing to far-reaching changes in almost all sectors of society, which means that we can do things in different ways and do completely new things. At the same time, we must address the question – how?<br /><br />Researchers from the departments of Technology Management and Economics, and Architecture and Civil Engineering are collaborating on the project “Energy Services: Processes for Innovation, Provision, and Use of Customer Feedback”. <br /><br />“The energy sector faces a challenge as on the one hand it needs to obtain a good return on its sales of renewable energy and from its capabilities and technology, while on the other also contributing to the customer’s energy efficiency. We are therefore looking at new ways of designing services which provide added value for customers, promoting the transition to sustainable energy consumption and guaranteeing steadyrevenue streams”, says project manager Halldórsson.<br /><br /><strong>Customers become key players</strong><br />Customers and end-users can become key players in the energy company’s ecosystem and contribute to continued energy efficiency. <br /><br />“New digital technology allows us to measure performance, using sensors for example, gather data and analyse phenomena more extensively than in the past. This gives us the opportunity to design new innovative services,” says Gremyr.<br /><br />Researchers working on the project have started assessing processes and needs throughout the chain from energy supplier, property owner/manager to customer, to learn key lessons which will form the basis of future energy services.<br /><br />“The idea is that the design of the services can contribute to a more sustainable society by influencing customer behaviour, for example. It is also interesting to analyse the conditions required for new types of services to become established,” Wallbaum says.<br /><br /><strong>A collaborative research approach</strong><br />The project is a pilot study which was made possible through seed funding provided by the Energy Area of Advance and the work is being undertaken in close collaboration with Göteborg Energi. <br /><br />“Here we have a great opportunity to get involved with Göteborg Energi and understand their perspective, the same goes for the customer and end-user side, and from there we try to conceptualise the service development. We don’t yet know where this will take us, there is no final template so we are navigating from our different perspectives,” Börjesson says.<br /><br />“What is clear is that this is a key issue. Everyone knows this work has to be done but just what is needed is complex. It affects different areas of expertise, systems, people, business models and technologies,” Gremyr says.<br /><br /><strong>Research spotlighted in professional education</strong><br />Future services will of course also create complexity for purchasing and procurement, something which Halldórsson has lectured on through Chalmers Professional Education. In other respects it can be seen that the service development area has not yet made much of an impact in the education provided at Chalmers.<br /><br />“There are many new subject areas which have emerged and which do not yet form part of Chalmers’ courses. But there are already educational components where these can be included, such as in degree projects, or quite simply by shining the spotlight on our research in our teaching,” says Börjesson.<br /><br /><strong>Applications in all industries</strong><br />The researchers are already aware of opportunities for continued collaboration after they have completed their pilot study. <br />“The project we are conducting on sustainability and digitalisation can be applied to other contexts. This then opens many doors – in a number of different industries,” Halldórsson says.<br /><br />They all agree that the Areas of Advance have an important role to play in promoting multidisciplinary collaboration at Chalmers. This in turn lays the foundations for an exchange of expertise and renewal.<br />“New contacts can also reduce the thresholds for collaboration in our infrastructures, where you might not always realise that you are in demand,” says Wallbaum.<br /><br />“And seed funding from the Area of Advance gives the slight nudge which makes collaboration happen,” Börjesson says.<br /><br /><br /><strong>Award winners </strong><br /><a href="/en/staff/Pages/sofia-borjesson.aspx" target="_blank">Sofia Börjesson</a>, Professor, Technology Management and Economics. She conducts research into the organisation and management of innovation in established organisations and into the prerequisites for innovation. <br /><br /><a href="/en/staff/Pages/ida-gremyr.aspx" target="_blank">Ida Gremyr</a>, Professor, Technology Management and Economics. She conducts research into quality management and service development, service innovation and processes for increased customer interaction.<br /><br /><a href="/sv/personal/Sidor/arni-halldorsson.aspx" target="_blank">Árni Halldórsson</a>, Professor, Technology Management and Economics. He conducts research into service supply chains, customer-supplier relationships and energy efficiency.<br /><br /><a href="/en/staff/Pages/holger-wallbaum.aspx">Holger Wallbaum</a>, Professor, Architecture and Civil Engineering. He conducts research on sustainability strategies for building stocks, energy-efficient renovation and smart infrastructures.<br /><br /><br /><br /><strong>The Areas of Advance Award</strong><br />Through the Areas of Advance Award, the leadership at Chalmers wants to reward people who have made significant contributions to interdisciplinary collaborations and who, in the spirit of the Areas of Advance, integrate research, education and utilisation. The award will be bestowed during the doctoral degree ceremony on 2 June 2018.<br /> <br /><em>Text: Malin Ulfvarson</em><br /><em>Photo: Johan Bodell</em>Wed, 09 May 2018 16:00:00 +0200