Aasa Feragen: Using geometry and domain knowledge for improved interpretation of deep learning models
Översikt
Evenemanget har passerat
- Datum:Startar 29 oktober 2024, 10:30Slutar 29 oktober 2024, 11:30
- Plats:MV:L22, Chalmers tvärgata 3
- Språk:Engelska
Abstrakt finns enbart på engelska: Visualization and uncertainty quantification are often used to support our interpretation of deep learning models. In this talk, we show through examples how both visualization and uncertainty quantification can lead to misinterpretation if applied naïvely. Our examples will include equivariant neural networks for graphs and images, as well as uncertainty quantification with structured label variation.