News: Centre Onsala related to Chalmers University of TechnologyThu, 08 Dec 2022 10:51:03 +0100 construction starts for telescopes in South Africa and Australia<p><b>​​On site in South Africa and Australia, the SKA observatory celebrates the start of construction for the observatory's world-leading radio telescope on 5 December 2022. Chalmers leads Sweden's participation in the project.</b></p>​<span style="background-color:initial">In the middle of the Karoo desert in South Africa's Northern Cape province lies the site where the telescope SKA-Mid will be built. The SKAO Council Chair Dr Catherine Cesarsky will travel to the Northern Cape province to represent the Observatory at the site of the future SKA-Mid telescope. Director-General Prof Phil Diamond is due to attend a similar ceremony in Western Australia where the SKA-Low telescope will be located. In Sweden, the event will be celebrated with cake at Chalmers University of Technology in Gothenburg; Chalmers and Onsala Space Observatory are coordinating Sweden's contribution to what will be the world's largest and most advanced radio telescopes.</span><div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/SKA_Mid_shot_0103_v02_1001_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /></div> <div><br /><div>John Conway is professor of radio astronomy at Chalmers and director of Onsala Space Observatory.</div> <div><br /></div> <div>- The telescopes in SKA are now becoming a reality on site in South Africa and Australia, and all over the world preparations are underway for both gigantic amounts of data and major scientific breakthroughs. I am grateful for all the work that colleagues in Sweden and all over the world have put in this far on these fantastic telescopes. It is an honour for us to have been entrusted with this task by both the traditional owners of the land and by the governments of the member countries, he says.</div></div> <div><br /></div> <div>Read more: </div> <div><br /><a href="">SKA Observatory celebrates start of telescope construction in Australia and South Africa</a> (media release 5 December 2022, SKAO)</div> <div><span style="background-color:initial"><a href=""><span>More about SKA construction on SKAO's website​</span></a></span></div> <div><span style="background-color:initial"><a href="/en/researchinfrastructure/oso/news/Pages/SKAO-Chalmers-agreement.aspx">Key role in the world's largest radio telescope project</a> (Chalmers article september 2021)</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="font-weight:700">Contacts</span></div> <div><br /></div> <div>Robert Cumming, communicator, Onsala Space Observatory, Chalmers, tel: +46 31-772 5500 or +46 70 493 3114,</div> <div><br /></div> <div><span style="background-color:initial"></span><span style="background-color:initial">John Conway, professor and infrastructure director, Onsala Space Observatory, Chalmers, +46 31-772 5500,​</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"></span><span style="background-color:initial"><em><strong>Bilder och multimedia</strong></em></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">For images and films, see <a href="">the SKAO's media kits at</a></span><br /></div> <div><br /></div> <div><div><i>A (top) - Thousands of smaller antennas will make up SKA-Low, the observatory's telescope in Australia. </i></div> <div></div> <div><i>Illustration: SKAO</i></div> <div></div> <div><i><br /></i></div> <div></div> <div><i>B - A total of 133 dish antennas will make up the telescope SKA-Mid in South Africa.  </i></div> <div></div> <div><i>Illustration: SKAO</i></div> <div><i><br /></i></div> <div></div></div>Mon, 05 Dec 2022 14:00:00 +0100 "portal to space" at Onsala Space Observatory<p><b>Schoolkids and the public will have new opportunities to explore both the universe and our own planet in Chalmers' new visitor center at the Onsala Space Observatory. The observatory is one of few places in the world where visitors can come into close contact with gigantic, working telescopes. The visitor center, built with minimising climate impact as a goal, is made a large extent of reused material. </b></p><div><div>Onsala Space Observatory at Chalmers is a facility for scientists who want to understand both the universe and our planet, the Earth. Here, young people and the general public can come into close contact with the latest technology for understanding space and big questions in astronomy and Earth sciences.</div> <div><br /></div> <div>&quot;Today we have more and larger telescopes at the observatory than we have ever had before. They are awesome to look at, and the work they do is just as impressive. We look forward to meeting curious guests of all ages in the future&quot;, says Eva Wirström, astronomer and deputy director of Onsala Space Observatory.</div> <div><br /></div> <div>Curiosity is a driving force for both researchers and visitors to the observatory, argued Chalmers President Stefan Bengtsson in his speech during the opening ceremony on 27 September.</div> <div><br /></div></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/Invigning-Stefan-220.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><div>&quot;The opportunity for scientists to determine the direction of their research, with their own curiosity as a compass, is something we at Chalmers value highly. The mind must be free - only then can unexpected and ground-breaking discoveries be made! I hope and believe that the visitor center will be a place for inspired meetings - here children and young people can meet scientists, and science at the cutting edge. Their level of knowledge differs, but the curiosity is the same&quot;, said Stefan Bengtsson.</div></div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><div><font color="#212121"><span style="font-size:16px"><b>Designed together with schoolkids</b></span></font></div> <div><span style="color:rgb(33, 33, 33);background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);background-color:initial">In addition to the </span><span style="color:rgb(33, 33, 33);background-color:initial">science </span><span style="color:rgb(33, 33, 33);background-color:initial">conduc</span><span style="color:rgb(33, 33, 33);background-color:initial">ted at </span><span style="color:rgb(33, 33, 33);background-color:initial">Onsala S</span><span style="color:rgb(33, 33, 33);background-color:initial">pace O</span><span style="color:rgb(33, 33, 33);background-color:initial">bservatory, visitors </span><span style="color:rgb(33, 33, 33);background-color:initial">are also given the opportunity to experience</span><span style="color:rgb(33, 33, 33);background-color:initial"> </span><span style="color:rgb(33, 33, 33);background-color:initial">space-related</span><span style="color:rgb(33, 33, 33);background-color:initial"> </span><span style="color:rgb(33, 33, 33);background-color:initial">technology and re</span><span style="color:rgb(33, 33, 33);background-color:initial">search </span><span style="color:rgb(33, 33, 33);background-color:initial">conducted at other parts of Chalmers.</span><br /></div> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span><br /></span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span>On site during the opening, 21 school children participated from two schools that had been involved in developing the content of the new exhibition, Lövgärdesskolan in northern Gothenburg and Kollaskolan in Kungsbacka. Led by Stefan Bengtsson, they counted down from 21 to zero, and then the exhibition's screens - including a large digital globe - were lit up to mark the opening of the new centre.</span></p> <div> </div> <div><font color="#212121"><span style="font-size:16px"><b><br /></b></span></font></div> <div> </div> <p class="chalmersElement-P"><span>In addition to these two schools, also Ara​näsgymnasiet high school in Kungsbacka and Halland Astronomical Society took part in preparatory work for the exhibition, which was carried out in collaboration with researchers from Chalmers' Division for Interaction Design at the department of Computer Science and Engineering.</span></p></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Guided tours for more in the future</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">Work on developing the exhibition will continue in the coming months. At the beginning of 2023, the observatory will start to accept bookings for guided tours all types of visitor groups.</p> <p class="chalmersElement-P"><br /></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">Already on October 16, a public event at the observatory will be held in collaboration with Naturum Fjärås Bräcka. Tickets for this event are being available from Kungsbacka Tourist Office at the address <a>​</a></span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Reuse from roof to toilets</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">The building project, run by Chalmersfastigheter, has had as a goal of maximizing reuse and circularity, and the new visitor center consists largely of reused materials. For instance, the zinc panels around the roof come from the Kiasma <span style="background-color:initial">art </span><span style="background-color:initial">museum </span><span style="background-color:initial">in Helsinki, Finland. The foundation wall is built using leftover parts of concrete pillars from building projects in Gothen</span><span style="background-color:initial">burg, and the toilets come from the head office of a well-known bank in Stockholm. </span></p> <span></span><p class="chalmersElement-P"></p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">The construction project was continuously evaluated for progress in terms of reuse and circularity. The building was designed by White Arkitekter and built by NCC.</p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P">Onsala Space Observatory is part of Chalmers, and is run with the support of the Swedish Research Council (Vetenskapsrådet) and the Swedish mapping authority Lantmäteriet.</p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Photos:</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">- The new visitor center is located among the radio telescopes at Onsala Space Observatory.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">- Chalmers President Stefan Bengtsson gave the opening speech.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">- School children from Lövgärdesskolan in Gothenburg, and Kollaskolan in Kungsbacka have been involved in the design of the exhibition. In the photo we see Larocca Macacero och Henrik Harutyunyan, Lövgärdesskolan.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div></div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">- Oscar Muhr (left) and Rémi Albert, two members of the Chalmers student network Upprymd, guided visitors to the exhibition.</p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> ​​All photos: <a href="">Anna-Lena Lundqvist​</a>​</p>Wed, 28 Sep 2022 00:00:00 +0200 reveal the efficiency of star factories<p><b>​Astronomers solve the mystery of the different star formation activities of two similar-looking dust clouds by reconstructing their 3D shapes​.</b></p>​Using tens of thousands of stars observed by the <a href="">Gaia space telescope</a>, astronomers from Max Planck Institute of Astronomy and Chalmers University of Technology have revealed the 3D shapes of two large star-forming molecular clouds, the California Cloud and the Orion A Cloud. In conventional 2D images, they appear similarly structured, containing filaments – streaks of denser dust and gas – with seemingly comparable densities. In 3D, however, they look quite distinct. In fact, their densities are much more different than their images projected on the plane of the sky would suggest. This result solves the long-standing mystery of why these two clouds form stars at different rates.​<div><br /></div> <div>Cosmic clouds of gas and dust are the birthplaces of stars. More specifically, stars form in the densest pockets of such material. </div> <div><br /></div> <div>“Density, the amount of matter compressed into a given volume, is one of the crucial properties that determine star formation efficiency,” says Sara Rezaei Khoshbakht. She is an astronomer at Max Planck Insitute for Astronomy (MPIA) in Heidelberg, Germany and Chalmers University of Technology. She is the main author of a new article published in The Astrophysical Journal Letters today:<span style="background-color:initial"> </span><a href="">Three-dimensional Shape Explains Star Formation Mystery of California and Orion A​</a><span style="background-color:initial">.</span><br /></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><div>In a pilot study portrayed in the article, Sara Rezaei Khoshbakht and co-author Jouni Kainulainen of Chalmers have applied a method which allows them to reconstruct 3D morphologies of molecular clouds to two giant star-forming clouds – their targets were the Orion A Cloud and the California Cloud.</div> <div><br /></div> <div>Usually, measuring the density within clouds is hard. </div> <div>“Everything we see when we observe objects in space is their two-dimensional projection on an imaginary celestial sphere. Conventional observations lack the necessary depth for us to see the whole cloud” explains Jouni Kainulainen, an expert on interpreting the influence of cosmic matter on stellar light and calculating densities from such data. </div> <div><br /></div> <div>&quot;If the two clouds look the same from our point of view, our 3D models show that they have completely different shapes. It is a almost like they are a pencil and a pancake, seen from the side in our viewpoint in space. On average, the Orion A - the pencil - is much denser than California, which explains its more pronounced star formation activity&quot;, says Jouni Kainulainen.</div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">This study proves its potential to improve star formation research in the Milky Way by adding a third dimension, and the work now published is only </span><span style="background-color:initial">the first step of what the astronomers want to achieve. Sara Rezaei Khoshbakht pursues a project now that ultimately will produce the spatial distribution of dust in the entire Milky Way, and uncover its connection to star formation.​</span></div> <div><span style="background-color:initial"><br /></span></div> <h3 class="chalmersElement-H3"><span>Read m​ore:</span></h3> <div>The text above is based on a press release from MPIA. <a href="">Read the full press release, with more info about the images and animations at the Max Planck Institute for Astronomy​</a><span style="background-color:initial">. </span></div> <div><span style="background-color:initial"><br /></span></div> <h3 class="chalmersElement-H3"><span>Image​s: </span></h3> <div><span style="background-color:initial">Image 1: This image from the VISTA infrared survey telescope at ESO’s Paranal Observatory in northern Chile covers the Orion A molecular cloud, the nearest known massive star factory. Lying about 1350 light-years from Earth, it reveals many young stars and other objects normally buried deep inside the dusty clouds.</span><span style="background-color:initial">. </span><span style="background-color:initial">ESO/VISION survey</span><span style="background-color:initial">.</span><span style="background-color:initial"> </span><a href="">Full scale photo with more information is available at the ESO website</a><span style="background-color:initial">. </span><br /></div> <div><span style="background-color:initial"><br /></span></div> <div>The other image details the shapes of the California and Orion A Clouds from two different perspectives. The colours indicate density, with red colours representing higher values. The images are based on the 3D reconstruction by Sara Rezaei Khoshbakht and Jouni Kainulainen.<span style="background-color:initial"><br /></span></div></span></div>Wed, 18 May 2022 12:00:00 +0200 image of the black hole in our galaxy's centre<p><b>Astronomers have unveiled the first image of the supermassive black hole at the centre of our own Milky Way galaxy. This result provides overwhelming evidence that the object is indeed a black hole and yields valuable clues about the workings of such giants, which are thought to reside at the centre of most galaxies. The image was produced by a global research team called the Event Horizon Telescope (EHT) Collaboration, using observations from a worldwide network of radio telescopes.</b></p><div>The science team includes three astronomers from Chalmers’ Department of Space, Earth and Environment: John Conway and Michael Lindqvist, both at Onsala Space Observatory, and Chiara Ceccobello, working in Astronomy and Plasma Physics at the time of the research.</div> <div><br /></div> <div>&quot;Now for the first time we can see the black hole at the centre of the Milky Way. That’s much closer to us than its counterpart in M 87, which we were able to see in the first image from the Event Horizon Telescope in 2019. We also know more about it than any other black hole. This image is putting theories about the nature of space and time to the test. It’s an exciting time to be working in science, says Michael Lindqvist.<br /></div> <div><div><br /></div> <div><span style="background-color:initial">The image is a long-anticipated look at the massive object that sits at the very centre of our galaxy. Scientists had previously seen stars orbiting around something invisible, compact, and very massive at the centre of the Milky Way. This strongly suggested that this object — known as Sagittarius A* (Sgr A*, pronounced &quot;sadge-ay-star&quot;) — is a black hole, and today’s image provides the first direct visual evidence of it.  </span></div> <h3 class="chalmersElement-H3">Four million times more massive than the sun</h3> <div>Although we cannot see the black hole itself, because it is completely dark, glowing gas around it reveals a telltale signature: a dark central region (called a shadow) surrounded by a bright ring-like structure. The new view captures light bent by the powerful gravity of the black hole, which is four million times more massive than our Sun.  </div> <div><br /></div> <div>“We were stunned by how well the size of the ring agreed with predictions from Einstein’s Theory of General Relativity,&quot; said EHT Project Scientist Geoffrey Bower from the Institute of Astronomy and Astrophysics, Academia Sinica, Taipei. &quot;These unprecedented observations have greatly improved our understanding of what happens at the very centre of our galaxy, and offer new insights on how these giant black holes interact with their surroundings.&quot; The EHT team's results are being published today in a special issue of The Astrophysical Journal Letters.</div> <div><br /></div> <div>Because the black hole is about 27 000 light-years away from Earth, it appears to us to have about the same size in the sky as a doughnut on the Moon. To image it, the team created the powerful EHT, which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The EHT observed Sgr A* on multiple nights in 2017, collecting data for many hours in a row, similar to using a long exposure time on a camera. </div> <div><br /></div> <div><span style="background-color:initial">In addition to other facilities, the EHT network of radio observatories includes the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder EXperiment (APEX) in the Atacama Desert in Chile, two telescopes that Chalmers and Onsala Space Observatory have been a part of for a long time.  </span></div> <div><span style="background-color:initial"><br /></span></div> <div>&quot;We can study this wonderful image thanks to long-term investments in science infrastructure in Sweden and around the world. At Chalmers and Onsala Space Observatory, we are proud to have delivered instruments and expertise to the APEX and ALMA telescopes, without which this image would not have been possible&quot;, says John Conway.​<span style="background-color:initial"><br /></span></div> <div><br /></div> <div>APEX is a collaborative project between Onsala Space Observatory, ESO (European Southern Observatory) and the Max Planck Institute for Radio Astronomy. Onsala Space Observatory and Chalmers have been involved in the ALMA project since its inception, and Chalmers has delivered receivers for both telescopes.<br /></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">Similar to the ​image, despite very different black holes</span><br /></div> <div>The EHT achievement follows the collaboration’s 2019 release of the first image of a black hole, called M87*, at the centre of the more distant Messier 87 galaxy. </div> <div><br /></div> <div>The two black holes look remarkably similar, even though our galaxy’s black hole is more than a thousand times smaller and less massive than M87* [3]. &quot;We have two completely different types of galaxies and two very different black hole masses, but close to the edge of these black holes they look amazingly similar,” says Sera Markoff, Co-Chair of the EHT Science Council and a professor of theoretical astrophysics at the University of Amsterdam, the Netherlands. &quot;This tells us that General Relativity governs these objects up close, and any differences we see further away must be due to differences in the material that surrounds the black holes.” </div> <div><br /></div> <div>This achievement was considerably more difficult than for M87*, even though Sgr A* is much closer to us. EHT scientist Chi-kwan (‘CK’) Chan, from Steward Observatory and Department of Astronomy and the Data Science Institute of the University of Arizona, USA, explains: “The gas in the vicinity of the black holes moves at the same speed — nearly as fast as light — around both Sgr A* and M87*. But where gas takes days to weeks to orbit the larger M87*, in the much smaller Sgr A* it completes an orbit in mere minutes. This means the brightness and pattern of the gas around Sgr A* were changing rapidly as the EHT Collaboration was observing it — a bit like trying to take a clear picture of a puppy quickly chasing its tail.” </div> <div><br /></div> <div>The researchers had to develop sophisticated new tools that accounted for the gas movement around Sgr A*. While M87* was an easier, steadier target, with nearly all images looking the same, that was not the case for Sgr A*. The image of the Sgr A* black hole is an average of the different images the team extracted, finally revealing the giant lurking at the centre of our galaxy for the first time.  </div> <div><br /></div> <h3 class="chalmersElement-H3">300 researchers involved​</h3> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/EHT_PR_Secondary_Image_72dpi_340x425.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />The effort was made possible through the ingenuity of more than 300 researchers from 80 institutes around the world that together make up the EHT Collaboration. In addition to developing complex tools to overcome the challenges of imaging Sgr A*, the team worked rigorously for five years, using supercomputers to combine and analyse their data, all while compiling an unprecedented library of simulated black holes to compare with the observations.  </div> <div><br /></div> <div>Scientists are particularly excited to finally have images of two black holes of very different sizes, which offers the opportunity to understand how they compare and contrast. They have also begun to use the new data to test theories and models of how gas behaves around supermassive black holes. This process is not yet fully understood but is thought to play a key role in shaping the formation and evolution of galaxies. </div> <div><br /></div> <div>“Now we can study the differences between these two supermassive black holes to gain valuable new clues about how this important process works,” said EHT scientist Keiichi Asada from the Institute of Astronomy and Astrophysics, Academia Sinica, Taipei. “We have images for two black holes — one at the large end and one at the small end of supermassive black holes in the Universe — so we can go a lot further in testing how gravity behaves in these extreme environments than ever before.”  </div> <div><br /></div> <div>Progress on the EHT continues: a major observation campaign in March 2022 included more telescopes than ever before. The ongoing expansion of the EHT network and significant technological upgrades will allow scientists to share even more impressive images as well as movies of black holes in the near future. </div> <div><br /></div> <h3 class="chalmersElement-H3">Read more: </h3> <div><i style="background-color:initial">The results were presented on May 12, 2022 in six articles in Astrophysical Journal Letters.<a href=""> Link to the research articles​</a>. </i></div> <div><i style="background-color:initial">For high resolution images, please visit <a href=""></a></i></div> <div><span style="background-color:initial"><br /></span></div> <h3 class="chalmersElement-H3"><a href=""></a><span>For more information, contact: ​</span></h3> <div><span style="background-color:initial">​</span><span style="background-color:initial">Robert Cumming, communications officer, Onsala rymdobservatorium, 070 4933114,</span></div> <div><br /></div> <div>Michael Lindqvist, astronomer, Onsala Space Observatory,</div></div>Thu, 12 May 2022 15:00:00 +0200 exoplanet in unique planetary system<p><b>Astronomers have discovered a unique planetary system around the star TOI 500, 155 light years from Earth. The innermost of the four planets is similar to Earth in several ways, but has an orbiting period of just 13 hours and a temperature of over 1300 degrees Celsius. It is believed to have formed further out, and then migrated close to the star in a slow and &quot;quiet&quot; process, lasting billions of years. Until now, it has never been shown that such a scenario could expain the existence and architecture of such a peculiar planetary system​</b></p><p class="MsoNormal"><span lang="EN-US">Judith Korth, one of four Chalmers astronomers involved in the study, recently published in Nature Astronomy, explains why this planetary system is of particular interest:</span></p> <p class="MsoNormal"><span lang="EN-US"><img src="/SiteCollectionImages/Institutioner/SEE/Profilbilder/Judith_Korth_170.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><span style="background-color:initial">“Its architecture is unique. TOI-500 hosts four low-mass planets where the innermost planet has an orbital period of around 13 hours (TOI-500b). Such ultra-short-period planets (USPs) usually show a particular architecture of high-inclined orbits with respect to the outer planets in the system and are thought to be the outcome of so called high-eccentricity migration, where very elliptical orbits gradually become more and more circular from the star’s tidal forces”, says Judith.</span></span></p> <p class="MsoNormal"><span lang="EN-US">“The planets in the TOI-500 system, however, show orbits on a similar plane, and thus, TOI-500 is the first system that could have formed via a different formation scenario, namely the low-eccentricity migration described in the article”.</span></p> <h3 class="chalmersElement-H3">Slow and steady migration towards the star​</h3> <p class="MsoNormal"><span style="background-color:initial">The scientific community unanimously agre</span><span style="background-color:initial">es that a planet like TOI-500b could not have formed in its current position, but that it must have originated in a more external area of ​​the protoplanetary disk, and then migrated much closer to its star. However, there is still a lot of debate on the migration process, but it is common opinion that it usually takes place in a violent way, a process that can involves collisions between planets which set the planets on non-circular and inclined orbits, migrating towards smaller orbits that become increasingly circular.</span></p> <p class="MsoNormal"><span lang="EN-US">In the recent article, however, the authors present simulations with which they demonstrate that the planets around TOI-500 may have formed on almost circular orbits further out in the system, and then performed a slow and steady migration during 2 billions years, in which the planets, without colliding with each other, move along orbits that remain almost circular but gradually smaller and smaller.</span></p> <p class="MsoNormal"><span lang="EN-US">The research, published in the prestigious journal Nature Astronomy was led by Luisa Maria Serrano and Davide Gandolfi of the Physics Department of the University and featured Chalmers astronomers Judith Korth, Carina Persson, Iskra Georgieva and Malcolm Fridlund. </span></p> <h3 class="chalmersElement-H3"><span lang="EN-US">TOI similar to Earth - and also very different</span></h3> <p class="MsoNormal"><span lang="EN-US">The planet closest to the star, named TOI-500b, is a so called Ultra-Short Period (USP) planet , as its orbital period is just 13 hours . It is also considered an Earth analogue, that is, a rocky planet similar to the Earth in radius, mass and density. However, its proximity to the star makes it so hot (around 1350 degrees Celsius) that its surface is most likely an immense expanse of lava.</span></p> <p class="MsoNormal"><span lang="EN-US">“TOI-500b has a size and mass similar to Earth but in reality, it is very different from Earth due to its short orbital period. It is called an Earth-analog, meaning that it has a similar bulk density as our Earth. This does not mean that the planet is also as habitable as our Earth. It is quite the opposite, due to its vicinity to the star the planet is very hot and its surface consists most likely of a lava ocean”, says Judith Korth and continues.</span></p> <p class="MsoNormal"><span lang="EN-US">“However, another similarity to our own Earth could exist for TOI-500b. It could have a secondary atmosphere. I think this will trigger further atmospheric studies in the future which may also give us information about our own atmosphere”.</span></p> <p class="MsoNormal"><span lang="EN-US">TOI-500b was initially identified by NASA 's TESS (Transiting Exoplanet Survey Satellite) space telescope which searches for exoplanets using the so called transit method. This method identifies planets that periodically obscure their home star, causing a decrease in the light received on Earth. The planet was subsequently confirmed thanks to an intense observation campaign conducted by European Southern Observatory (ESO). The data cover an entire year and their analysis, combined with that of the TESS data, made it possible to measure the mass, radius, and orbital parameters of the inner planet.</span></p> <p></p> <h3 class="chalmersElement-H3">An extraordinary planetary system ​​</h3> <p></p> <p class="MsoNormal"><span lang="EN-US">“The same measurements also made it possible to discover 3 additional planets, with orbital periods of 6.6, 26.2 and 61.3 days. TOI-500 is an extraordinary planetary system for understanding the dynamic evolution of planets”, says project leader Davide Gandolfi, University of Turin.</span></p> <p class="MsoNormal"><span lang="EN-US">Judith Korth, of the Department of Space, Earth and Environment at Chalmers, was involved in the dynamical studies: </span></p> <p class="MsoNormal"><span lang="EN-US">“I studied if the system shows transit timing variations that could help us to constrain the planetary and orbital parameters. Unfortunately, this was not the case since the dynamics of the system are dominated by the secular dynamics rather than the resonant dynamics. Furthermore, I studied the long-term stability of the system and tested if we could refine the upper mass limits of the outer planets since we have only the Msini (minimum mass) from the radial velocities. Since the system could have formed via low-eccentricity migration, I also studied the dynamics within a smaller range of mutual inclinations but for a longer time span.”</span></p> <p class="MsoNormal"><span lang="EN-US">The article demonstrates the importance of combining the discovery of systems hosting close USP-type planets with numerical simulations to test the possible migratory processes that may have brought them to the current configuration.</span></p> <p class="MsoNormal"><span lang="EN-US">“Acquiring data over long periods of time allows us to study the internal architecture of systems similar to TOI-500 and to understand how the planets settled on their orbits”, concludes Davide Gandolfi, University of Turin.</span></p> <p class="MsoNormal"><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">Read the article <a href="">A low-eccentricity migration pathway for a 13-h-period Earth analoguein a four-planet system in Nature Astronomy</a>.</span></p> <p class="MsoNormal"><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">Images from <a href="">Nasas exoplanet catalog</a>. </span></p> <p class="MsoNormal"><span lang="EN-US">The text is written by Christian Löwhagen, Chalmers, based on the press release from the University of Turin: <a href="">Dalla missione della NASA alle osservazioni UniTo: TOI-500, un sistema planetario di quattro pianeti con un processo di migrazione peculiare - Il pianeta più vicino alla stella è molto simile alla Terra...</a> </span></p>Fri, 06 May 2022 00:00:00 +0200 flashes pinpointed to a surprising location in space<p><b>​Astronomers have been surprised by the closest source of the mysterious flashes in the sky known as fast radio bursts. Precision measurements with radio telescopes reveal that the bursts are made among old stars, and in a way that no one was expecting. The source of the flashes, in nearby spiral galaxy M 81, is the closest of its kind to Earth.​</b></p><div><span style="background-color:initial">Fast radio bursts are unpredictable, extremely short flashes of light from space. Astronomers have struggled to understand them ever since they were first discovered in 2007. So far, they have only ever been seen by radio telescopes.</span></div> <div><br /></div> <div>Each flash lasts only thousandths of a second. Yet each one sends out as much energy as the Sun produces in a day. Several hundred flashes go off every day, and they have been seen all over the sky. Most lie at huge distances from Earth, in galaxies billions of light years away.</div> <div><br /></div> <div>In two papers published in parallel this week in the journals Nature and Nature Astronomy, an international team of astronomers present observations that take scientists a step closer to solving the mystery – while also raising new puzzles. The team is led jointly by Franz Kirsten (Chalmers, Sweden, and ASTRON, Netherlands) and Kenzie Nimmo (ASTRON and University of Amsterdam).</div> <div><br /></div> <div>The scientists set out to make high-precision measurements of a repeating burst source discovered in January 2020 in the constellation of Ursa Major, the Great Bear.</div> <div><br /></div> <div>“We wanted to look for clues to the bursts’ origins. Using many radio telescopes together, we knew we could pinpoint the source’s location on the sky with extreme precision. That gives the opportunity to see what the local neighbourhood of a fast radio burst looks like”, says Franz Kirsten.</div> <div><br /></div> <div>To study the source at the highest possible resolution and sensitivity, the scientists combined measurements from telescopes in the European VLBI Network (EVN). By combining data from 12 dish antennas spread across half the globe, Sweden, Latvia, The Netherlands, Russia, Germany, Poland, Italy and China, they were able to find out exactly where on the sky they were coming from.</div> <div><br /></div> <div>The EVN measurements were complemented with data from several other telescopes, among them the Karl G. Jansky Very Large Array (VLA) in New Mexico, USA.</div> <div><br /></div> <div><br /></div> <span style="font-weight:700"><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/FRBclusterM81_danielle_futselaar_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /></span><div><strong>Close but surprising location</strong></div> <div><br /></div> <div>When they analysed their measurements, the astronomers discovered that the repeated radio flashes were coming from somewhere no one had expected.</div> <div><br /></div> <div>They traced the bursts to the outskirts of the nearby spiral galaxy Messier 81 (M 81), about 12 million light years away. That makes this the closest ever detection of a source of fast radio bursts.</div> <div><br /></div> <div>There was another surprise in store. The location matched exactly with a dense cluster of very old stars, known as a globular cluster.</div> <div><br /></div> <div>“It’s amazing to find fast radio bursts from a globular cluster. This is a place in space where you only find old stars. Further out in the universe, fast radio bursts have been found in places where stars are much younger. This had to be something else,” says Kenzie Nimmo.</div> <div><br /></div> <div>Many fast radio bursts have been found surrounded by young, massive stars, much bigger than the Sun. In those locations, star explosions are common and leave behind highly magnetised remnants.</div> <div><br /></div> <div>Scientists have come to believe that fast radio bursts can be created in objects known as magnetars. Magnetars are the extremely dense remnants of stars that have exploded. And they are the universe’s most powerful known magnets.</div> <div><br /></div> <div>“We expect magnetars to be shiny and new, and definitely not surrounded by old stars. So if what we’re looking at here really is a magnetar, then it can’t have been formed from a young star exploding. There has to be another way”, says team member Jason Hessels, University of Amsterdam and ASTRON.</div> <div><br /></div> <div>The scientists believe that the source of the radio flashes is something that has been predicted, but never seen before: a magnetar that formed when a white dwarf became massive enough to collapse under its own weight.</div> <div><br /></div> <div>“Strange things happen in the multi-billion-year life of a tight cluster of stars. Here we think we’re seeing a star with an unusual story”, explains Franz Kirsten.</div> <div><br /></div> <div>Given time, ordinary stars like the Sun grow old and transform into small, dense, bright objects called white dwarfs. Many stars in the cluster live together in binary systems. Of the tens of thousands of stars in the cluster, a few get close enough for one star collects material from the other.</div> <div><br /></div> <div>That can lead to a scenario known as “accretion-induced collapse”, Kirsten explains.</div> <div><br /></div> <div>“If one of the white dwarfs can catch enough extra mass from its companion, it can turn into an even denser star, known as a neutron star. That’s a rare occurrence, but in a cluster of ancient stars, it’s the simplest way of making fast radio bursts”, says team member Mohit Bhardwaj, McGill University, Canada.</div> <div><br /></div> <div><br /></div> <img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/FRBclusterburstM81_danielle_futselaar_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><div><strong>Fastest ever</strong></div> <div><br /></div> <div>Looking for further clues by zooming into their data, the astronomers found another surprise. Some of the flashes were even shorter than they had expected.</div> <div><br /></div> <div>“The flashes flickered in brightness within as little as a few tens of nanoseconds. That tells us that they must be coming from a tiny volume in space, smaller than a soccer pitch and perhaps only tens of metres across”, says Kenzie Nimmo.</div> <div><br /></div> <div>Similarly lightning-fast signals have been seen from one of the sky’s most famous objects, the Crab pulsar. It is a tiny, dense, remnant of a supernova explosion that was seen from Earth in 1054 CE in the constellation of Taurus, the Bull. Both magnetars and pulsars are different kinds of neutron stars: super-dense objects with the mass of the Sun in a volume the size of a city, and with strong magnetic fields.</div> <div><br /></div> <div>“Some of the signals we measured are short and extremely powerful, in just the same way as some signals from the Crab pulsar. That suggests that we are indeed seeing a magnetar, but in a place that magnetars haven’t been found before”, says Kenzie Nimmo.</div> <div><br /></div> <div>Future observations of this system and others will help to tell whether the source really is an unusual magnetar, or something else, like an unusual pulsar or a black hole and a dense star in a close orbit.</div> <div><br /></div> <div>“These fast radio bursts seem to be giving us new and unexpected insight into how stars live and die. If that’s true, they could, like supernovae, have things to tell us about stars and their lives across the whole universe,” says Franz Kirsten.</div> <div><br /></div> <div><strong><em>Images</em></strong></div> <div><br /></div> <div><span style="background-color:initial">A (top) Source of mysterious radio signals: an artist’s impression of a magnetar in a cluster of ancient stars (in red) close to the spiral galaxy Messier 81 (M81). </span></div> <div>(Image credit: ASTRON/Daniëlle Futselaar,</div> <div><a href="">Access high-resolution image</a></div> <div><br /></div> <div>B Signals from a surprising source. A cluster of ancient stars (left) close to the spiral galaxy Messier 81 (M81) is the source of extraordinarily bright and short radio signals.  </div> <div>(Image credit: ASTRON/Daniëlle Futselaar,</div> <div><a href="">Access high-resolution image</a></div> <div><br /></div> <div><div>C Extremely fast radio signals from a surprising source. A cluster of ancient stars (left) close to the spiral galaxy Messier 81 (M81) is the source of extraordinarily bright and short radio signals. The image shows in blue-white a graph of how one flash’s brightness changed over the course of only tens of microseconds. </div> <div>(Image credit: ASTRON/Daniëlle Futselaar,</div></div> <div><a href="">Access high-resolution image​</a></div> <div> </div> <div><br /></div> <div><strong>Contacts</strong></div> <div><br /></div> <div>Robert Cumming, communications officer, Onsala Space Observatory, Chalmers University of Technology, Sweden, email:, tel: +46 70 493 3114 or +46 (0)31 772 5500</div> <div><br /></div> <div>Franz Kirsten, ASTRON, The Netherlands, and Onsala Space Observatory, Chalmers University of Technology, Sweden, email:, tel: +46 73 394 0845 or +46 31 772 5522</div> <div><br /></div> <div><br /></div> <div><strong>More about the research and about the European VLBI Network and JIVE</strong></div> <strong> </strong><div><br /></div> <div>The research was based on observations with the European VLBI Network, the Karl G. Jansky Very Large Array, with additional data from the Hubble, Chandra and Fermi space telescopes, and the Subaru Telescope located in Hawaii.</div> <div><br /></div> <div>The research is published in two papers in the journals Nature and Nature Astronomy.  </div> <div><em>A repeating fast radio burst source in a globular cluster</em>, by Franz Kirsten et al (<a href=""></a>; <a href="">also available on ArXiv</a>)</div> <div><em>Burst timescales and luminosities link young pulsars and fast radio bursts</em>, by Kenzie Nimmo et al (<a href=""></a>; <a href="">also available on ArXiv</a>).</div> <div><br /></div> <div>VLBI is an astronomical method by which multiple radio telescopes distributed across great distances observe the same region of sky simultaneously. Data from each telescope is sent to a central &quot;correlator&quot; to produce images with higher resolution than the most powerful optical telescopes.</div> <div><br /></div> <div>The European VLBI Network (EVN; is an interferometric array of radio telescopes spread throughout Europe, Asia, South Africa and the Americas that conducts unique, high-resolution, radio astronomical observations of cosmic radio sources. Established in 1980, the EVN has grown into the most sensitive VLBI array in the world, including over 20 individual telescopes, among them some of the world's largest and most sensitive radio telescopes. The EVN is composed of 13 Full Member Institutes and 5 Associated Member Institutes.</div> <div><br /></div> <div>The Joint Institute for VLBI ERIC (JIVE; has as its primary mission to operate and develop the EVN data processor, a powerful supercomputer that combines the signals from radio telescopes located across the planet. Founded in 1993, JIVE is since 2015 a European Research Infrastructure Consortium (ERIC) with seven member countries: France, Italy, Latvia, the Netherlands, United Kingdom, Spain and Sweden; additional support is received from partner institutes in China, Germany and South Africa. JIVE is hosted at the offices of the Netherlands Institute for Radio Astronomy (ASTRON) in the Netherlands.</div> <div><br /></div>Wed, 23 Feb 2022 17:00:00 +0100' secret embraces revealed by Alma<p><b>​Unlike our Sun, most stars live with a companion. Sometimes, two come so close that one engulfs the other - with far-reaching consequences. When a Chalmers-led team of astronomers used the telescope Alma to study 15 unusual stars, they were surprised to find that they all recently underwent this phase. The discovery promises new insight on the sky's most dramatic phenomena – and on life, death and rebirth among the stars.​</b></p>​<span style="background-color:initial">Using the gigantic telescope Alma in Chile, a Chalmers-led team of scientists studied 15 unusual stars in our galaxy, the Milky Way, the closest 5000 light years from Earth. Their measurements show that all the stars are double, and all have recently experienced a rare phase that is poorly understood, but is believed to lead to many other astronomical phenomena. Their results are published this week in the scientific journal Nature Astronomy.</span><div><br /></div> <div>By directing the antennas of Alma towards each star and measuring light from different molecules in close to each star, the researchers hoped to find clues to their backstories. Nicknamed “water fountains”, these stars were known to astronomers because of intense light from water molecules – produced by unusually dense and fast-moving gas.</div> <div><br /></div> <div>Located 5000 m above sea level in Chile, the Alma is sensitive to light with wavelengths around one millimetre, invisible to human eyes, but ideal for looking through the Milky Way’s layers of dusty interstellar clouds towards dust-enshrouded stars.</div> <div><br /></div> <div>&quot;We were extra curious about these stars because they seem to be blowing out quantities of dust and gas into space, some in the form of jets with speeds up to 1.8 million kilometres per hour. We thought we might find clues to how the jets were being created, but instead we found much more than that&quot;, says Theo Khouri, first author of the new study.</div> <div><br /></div> <div><strong>Stars losing up to half their total mass</strong><br /></div> <strong> </strong><div>The scientists used the telescope to measure signatures of carbon monoxide molecules, CO, in the light from the stars, and compared signals from different atoms (isotopes) of carbon and oxygen. Unlike its sister molecule carbon dioxide, CO2, carbon monoxide is relatively easy to discover in space, and is a favourite tool for astronomers.</div> <div><br /></div> <div>&quot;Thanks to Alma's exquisite sensitivity, we were able to detect the very faint signals from several different molecules in the gas ejected by these stars. When we looked closely at the data, we saw details that we really weren't expecting to see&quot;, says Theo Khouri.</div> <div><br /></div> <div>The observations confirmed that the stars were all blowing off their outer layers. But the proportions of the different oxygen atoms in the molecules indicated that the stars were in another respect not as extreme as they had seemed, explains team member Wouter Vlemmings, astronomer at Chalmers.</div> <div><br /></div> <div>&quot;We realised that these stars started their lives with the same mass as the Sun, or only a few times more. Now our measurements showed that they have ejected up to 50% of their total mass, just in the last few hundred years. Something really dramatic must have happened to them&quot;, he says.</div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/WaterFountains_DanielleFutselaar_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /><span style="background-color:initial">Why were such small stars losing so much mass so quickly? The evidence all pointed to one explanation, the scientists concluded. These were all double stars, and they had all just been through a phase in which the two stars shared the same atmosphere - one star entirely embraced by the other. </span><br /></div> <div><br /></div> <div>&quot;In this phase, the two stars orbit together in a sort of cocoon. This phase, we call it a &quot;common envelope” phase, is really brief, and only lasts a few hundred years. In astronomical terms, it’s over in the blink of an eye&quot;, says team member Daniel Tafoya.</div> <div><br /></div> <div>Most stars in binary systems simply orbit around a common centre of mass. These stars, however, share the same atmosphere. It can be a life-changing experience for a star, and may even lead to the stars merging completely. </div> <div><br /></div> <div><strong>Clues to the future</strong></div> <div>Scientists believe that this sort of intimate episode can lead to some of the sky's most spectacular phenomena. Understanding how it happens could help answer some of astronomers' biggest questions about how stars live and die, Theo Khouri explains.</div> <div><br /></div> <div>&quot;What happens to cause a supernova explosion? How do black holes get close enough to collide? What makes the beautiful and symmetric objects we call planetary nebulae? Astronomers have suspected for many years that common envelopes are part of the answers to questions like these. Now we have a new way of studying this momentous but mysterious phase&quot;, he says.</div> <div><br /></div> <div>Understanding the common envelope phase will also help scientists study what will happen in the very distant future, when the Sun too will become a bigger, cooler star – a red giant – and engulf the innermost planets.</div> <div><br /></div> <div>“Our research will help us understand how that might happen, but it gives me another, more hopeful perspective. When these stars embrace, they send dust and gas out into space that can become the ingredients for coming generations of stars and planets, and with them the potential for new life”, says Daniel Tafoya.</div> <div><img src="/SiteCollectionImages/Institutioner/SEE/Nyheter/W43A_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /></div> <div>Since the 15 stars seem to be evolving on a human timescale, the team plan to keep monitoring them with Alma and with other radio telescopes. With the future telescopes of the SKA Observatory, they hope to study how the stars form their jets and change their surroundings. They also hope to find more – if there are any.</div> <div><br /></div> <div>“Actually, we think the known &quot;water fountains” could be almost all the systems of their kind in the whole of our galaxy. If that's true, then these stars really are the key to understanding the strangest, most wonderful and most important process that two stars can experience in their lives together&quot;, concludes Theo Khouri.</div> <div><br /></div> <div><a href="">Press release in Spanish from ALMA Observatory</a></div> <div><a href="">Press release in Spanish from CSIC (Spain)​</a></div> <div><br /></div> <div><strong>Images</strong></div> <div><br /></div> <div><em>A (top) - A pair of stars at the start of a common envelope phase. In this artist's impression, we get a view from very close to a binary system in which two stars have just started to share the same atmosphere. The bigger star, a red giant star, has provided a huge, cool, atmosphere which only just holds together. The smaller star orbits ever faster round the stars' centre of mass, spinning on its own axis and interacting in dramatic fashion with its new surroundings. the interaction creates powerful jets that throw out gas from its poles, and a slower-moving ring of material at its equator.</em></div> <em> </em><div><em style="background-color:initial">Image credit: Danielle Futselaar, <a href="">​</a></em><br /></div> <div><em style="background-color:initial"><a href="">Link to high-resolution image (TIFF)​</a></em><br /></div> <em> </em><div><br /></div> <em> </em><div><span style="background-color:initial"><em>B – Alma’s image of water-fountain star system W43A, which lies about 7000 light years from Earth in the constellation Aquila, the Eagle. The double star at its centre is much too small to be resolved in this image. However, Alma’s measurements show the stars’ interaction has changed its immediate environment. The two jets ejected from the central stars are seen in blue (approaching us) and red (receding). Dusty clouds entrained by the jets are shown in pink.</em></span></div> <em> </em><div><em>Credit: ALMA (ESO/NAOJ/NRAO), D. Tafoya et al.</em></div> <div><em><a href="">Link to high-resolution image (JPEG)</a></em></div> <div><em><br /></em></div> <div><br /></div> <div><strong>More about the research, and about Alma</strong></div> <div><br /></div> <div>The research is published in the paper “Observational identification of a sample of likely recent Common-Envelope Events” in <a href="">Nature Astronomy</a>, by Theo Khouri (Chalmers), Wouter H. T. Vlemmings (Chalmers), Daniel Tafoya (Chalmers), Andrés F. Pérez-Sánchez (Leiden University, Netherlands), Carmen Sánchez Contreras (Centro de Astrobiología (CSIC-INTA), Spain), José F. Gómez (Instituto de Astrofísica de Andalucía, CSIC, Spain), Hiroshi Imai (Kagoshima University, Japan) and Raghvendra Sahai (Jet Propulsion Laboratory, California Institute of Technology, USA).</div> <div><br /></div> <div><div>Link to science paper at Nature Astronomy: <a href="">​</a><span></span><span></span></div> <div>Shareable link to the science paper: <a href=""></a></div></div> <div><br /></div> <div>Alma (Atacama Large Millimeter/submillimeter Array) is an international astronomy facility is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). </div> <div>Chalmers and Onsala Space Observatory have been involved in Alma since its inception; receivers for the telescope are one of many contributions. Onsala Space Observatory is host to the Nordic Alma Regional Centre, which provides technical expertise to the Alma project and supports astronomers in the Nordic countries in using Alma.</div> <div><br /></div> <div><strong>Contacts</strong></div> <div><br /></div> <div>Robert Cumming, communications officer, Onsala Space Observatory, Chalmers, +46 31 772 5500, +46 70 49 33 114,</div> <div><br /></div> <div>Theo Khouri, astronomer, Department of Space, Earth and Environment, Chalmers, +46 760 958023,</div> ​Thu, 16 Dec 2021 17:00:00 +0100 role in the world's largest radio telescope project<p><b>​Chalmers will lead Sweden’s participation in the project to build the world's largest radio telescopes. At a ceremony held in Manchester and Gothenburg on September 30, 2021, a new agreement was signed between Chalmers and the intergovernmental organisation SKA Observatory. The agreement covers the next two years, giving time for Sweden to establish a formal membership in the international organisation.</b></p>​<span style="background-color:initial">The international SKA Observatory (SKAO) was established in early 2021. Its two vast telescopes, located at remote sites in South Africa and Australia, will together become one of this century’s most important scientific facilities. </span><div><br /><span style="background-color:initial"></span><div>“With the new agreement in place, Chalmers has a new, official role as leading Swedish interests in the construction of the SKA Observatory's giant telescopes. Funding for Swedish participation in the construction project is already secured, thanks to support from the Swedish Research Council and Vinnova”, says Lars Börjesson, board member of the SKAO.</div> <div><br /></div> <div>The two SKA telescopes are made up of many individual antennas, each sensitive to invisible radio waves from space. In total, 197 dish antennas will be placed in South Africa, forming a telescope for shorter wavelengths. Over 130 000 smaller antennas will make up the other telescope, located in Australia, sensitive to longer wavelength. </div> <div><br /></div> <div>Both will be able to map radio waves from the cosmos with unprecedented sensitivity. <span style="background-color:initial">The telescopes will investigate the mysteries of dark energy, dark matter, and cosmic magnetism, study how galaxies have</span><span style="background-color:initial"> </span><span style="background-color:initial">evolved</span><span style="background-color:initial">, test Einstein’s theories, and search for clues to the origins of life.</span></div> <div><br /></div> <div>“Scientists in Sweden and all over the world want to use the SKA telescopes to ask some of our biggest questions about the universe. <span style="background-color:initial">Membership in the SKA Observatory makes it possible for Swedish science and technology to be involved in building of these unique telescopes. It also ensures access to scientific data, and the chance to make exciting discoveries in astronomy and physics</span><span style="background-color:initial">”, explains John Conway.</span></div> <div><strong><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/ska_signing1_bengtsson_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br />Openings for industry</strong></div> <div><br /></div> <div>The new agreement means that Swedish companies are now eligible to tender for industrial contracts on equal terms as the SKAO’s current member countries. </div> <div><br /></div> <div>“This is a great opportunity for Sweden’s high-tech industries to get involved in a challenging and extremely exciting project”, says John Conway, director of Onsala Space Observatory and professor of radio astronomy at Chalmers.</div> <div><br /></div> <div>When the SKA telescopes are operational, they will generate data in quantities that make what today counts as &quot;big data&quot; look small. </div> <div><br /></div> <div>The new agreement also means a green light for the establishment in Sweden of one of SKAO's regional data processing centres. These centres are designed to handle the flood of data from SKA’s telescopes and supply final data products to astronomers.</div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/ska_signing3_zoom_72dpi_340x193.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /><br /><br /></div> <div><strong>Swedish tech opening new windows on the universe</strong></div> <div><br /></div> <div>The documents signed on 30 September 2021 by Stefan Bengtsson, Chalmers' president, and Philip Diamond, Director General of the SKA Observatory, give Chalmers the responsibility of representing Sweden in the project during the next two years. During that time, national processes will continue towards establishing Sweden as a member country of SKAO.</div> <div><br /></div> <div>“Sweden has been involved in the SKA project since the start. It’s wonderful to welcome Chalmers and Onsala Space Observatory in this new official role, just as building work is starting in South Africa and in Australia”, says Philip Diamond.</div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/ska_signing2_chalmers_72dpi_340x201.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /><span style="background-color:initial">“Before long, the SKA telescopes will begin to show us a whole new universe, giving scientists all over the world new discoveries and new challenges. When that happens, we can be proud of having supplied key Swedish technology to the project, technology with its roots right here at Chalmers and at Onsala Space Observatory”, says Stefan Bengtsson.</span><br /></div> <div> </div> <div><br /></div> <div><strong>More about Sweden’s role in the SKA project</strong></div> <div><br /></div> <div>Onsala Space Observatory represented Swedish interests in the SKA design process between 2012 and 2021 as a member of the SKA Organization. </div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/SKA-Mid_wide_angle_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br />Chalmers and Swedish companies have made important contributions to the design and prototyping of the SKA telescopes, with the support of Big Science Sweden and working together with colleagues in Canada, France, India, Spain and South Africa.</div> <div><br /></div> <div><ul><li>The telescopes’ physically largest radio receivers, known as Band 1, have been designed and prototyped at Onsala Space Observatory. After a competitive procurement process, they will be manufactured by a Swedish company and a complete set delivered to SKAO's telescope in South Africa. </li> <li><span style="background-color:initial">Innovative low-noise amplifiers for Band 1 and for two other SKA receiver bands will supplied by the Gothenburg company Low Noise Factory, making use of the Chalmers MyFab clean room facility for the fabrication of core components.</span><br /></li> <li><span style="background-color:initial">The digital sampler design for the telescope in South Africa is now being finalised by the Gothenburg company Qamcom Research &amp; Technology AB. T</span>he digital samplers will also be manufactured by a Swedish company after a competitive procurement process.<br /></li></ul></div> <div><br /></div> <div>Swedish involvement in the SKAO is also opening new opportunities in data storage, machine learning and artificial intelligence. </div> <div><br /></div> <div>“At Onsala Space Observatory we’ve already started exploring these opportunities, working together Chalmers Fraunhofer Centre for Industrial Mathematics. That was demonstrated recently by an outstanding Swedish team performance in a recent international data challenge, applying machine learning to simulated SKA data”, says John Conway.</div> <div><br /></div> <div><strong>More about the SKA Observatory and Onsala Space Observatory</strong></div> <div><br /></div> <div><span style="background-color:initial">The SKAO, formally known as the SKA Observatory, is a global collaboration of Member States whose mission is to build and operate cutting-edge radio telescopes to transform our understanding of the Universe, and deliver benefits to society through global collaboration and innovation.</span><br /></div> <div><div><br /></div> <div>Headquartered in the UK, its two telescope arrays will be constructed in Australia and South Africa and be the two most advanced radio telescope networks on Earth. A later expansion is envisioned in both countries and other African partner countries. Together with other state-of-the-art research facilities, the SKAO’s telescopes will explore the unknown frontiers of science and deepen our understanding of key processes, including the formation and evolution of galaxies, fundamental physics in extreme environments and the origins of life. Through the development of innovative technologies and its contribution to addressing societal challenges, the SKAO will play its part to address the United Nations’ Sustainable Development Goals and deliver significant benefits across its membership and beyond.</div> <div><br /></div> <div>The SKAO recognises and acknowledges the Indigenous peoples and cultures that have traditionally lived on the lands on which the SKAO facilities are located.</div></div> <div><br /></div> <div><span style="background-color:initial">Onsala Space Observatory is Sweden's national infrastructure for radio astronomy, hosted by the Department of Space, Earth and Environment at Chalmers University of Technology. The observatory provides researchers with equipment for the study of both the distant universe and of our earth. At Onsala, 45 km south of Gothenburg, the observatory operates four radio telescopes and a station in the international telescope Lofar. The SKA project is one of several international projects that the observatory participates in. Onsala Space Observatory receives funding from the Swedish Research Council and from the Swedish National Mapping Agency to support its activities in astronomy and geoscience, respectively.</span><br /></div> <div><span style="background-color:initial"><br /></span></div> <div><strong>Contacts</strong></div> <div><br /></div> <div>Robert Cumming, communicator, Onsala Space Observatory, Chalmers, tel: +46 31-772 5500 or +46 70 493 3114,</div> <div><br /></div> <div>John Conway, professor and infrastructure director, Onsala Space Observatory, Chalmers, +46 31-772 5500,</div> <div><br /></div> <div><strong><em>Images</em></strong></div> <div><strong><em><br /></em></strong></div> <div><em>A (top) - Nighttime composite image of the SKA combining all elements in South Africa and Australia. Credit: SKAO, ICRAR, SARAO / Acknowledgment: The GLEAM view of the centre of the Milky Way, in radio colour. Credit: Natasha Hurley-Walker (Curtin / ICRAR) and the GLEAM Team.</em></div> <div><em>Image credit: SKAO</em></div> <div><em></em></div> <div><em><br /></em></div> <div><div><em>B - At a ceremony on 30 September 2021, Stefan Bengtsson, president of Chalmers (foreground) and </em><em style="background-color:initial">Philip Diamond director general of the SKAO </em><em style="background-color:initial">(right, on screen</em><em style="background-color:initial">) </em><em style="background-color:initial">signed the new agreement between the SKAO and Chalmers. </em></div> <div><em style="background-color:initial">Image credit: Chalmers/R. Cumming</em></div> <div><em> </em></div> <div><div><em>C - The signing ceremony was held at the SKAO headquarters at Jodrell Bank, UK, and at Chalmers, with guests participating digitally. This screenshot shows Stefan Bengtsson and the Chalmers event (upper right) and professor Catherine Cesarsky, chair of the SKAO Board (below).</em></div> <div><em>Image credit: SKAO</em></div> <div><em><br /></em></div> <div><em></em></div></div> <div><em>D - The signing ceremony on 30 September 2021 in Gothenburg was attended by John Conway, director of Onsala Space Observatory, Lars Börjesson, board member of the SKAO, Stefan Bengtsson, president of Chalmers and Eva Wirström, division head for Onsala Space Observatory. </em></div> <div><em>Image credit: Chalmers/R. Cumming</em></div></div> <div><br /></div> <div><div><em>E –  This image shows an artist’s impression of the array of 197 dish antennas in South Africa. Of these 64 antennas (right half of image) are already in place in the form of the MeerKAT telescope. </em></div> <div><em>Image credit: SKAO</em></div></div> <div> </div> <div><br /></div></div> ​Thu, 07 Oct 2021 08:00:00 +0200 automated fact-checkers clean up the mess?<p><b>​The dream of free dissemination of knowledge seems to be stranded in fake news and digital echo chambers. Even basic facts seem hard to be agreed upon. So is there hope in the battle to clean up this mess?  </b></p>​Yes! Many efforts are made within the Information and Communications Technology (ICT) research area to find solutions. Learn more about it at our <span style="background-color:initial">seminar, focusing on automated fact-checking, both in research and practice.</span><div><div><br /></div> <div><b>DATE: </b>18 November 2021 (The date has already passed, but see the film from the seminar, link below)</div> <div><b>TIME: </b>09:45–12:00 CET</div> <div><b style="background-color:initial">LOCATION:</b><span style="background-color:initial"> Online or at Lingsalen, Studenternas Hus, Götabergsgatan 17 </span><span style="background-color:initial">​(Registration link below</span><span style="background-color:initial">). </span><br /></div> <div><em>Note! The physical seminar is only for students and staff at Chalmers and University of Gothenburg.</em></div> <div><br /></div> <div><div><a href="" target="_blank" title="link to Youtube"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />SEE THE FILM FROM THE SEMINAR​</a></div> <span style="background-color:initial"></span><div><br /><span style="background-color:initial"></span><div><div> <h3 class="chalmersElement-H3">AGENDA​</h3> <div><div></div> <div><div><b>09:45 Introduction </b></div> <div><b>Erik Ström</b>, Director, Information and Communications Technology Area of Advance</div> <div><b>10:00 Looking for the truth in the post-truth era</b></div> <div><b>Ivan Koychev,</b> University of Sofia, Bulgaria. He gives a brief overview of automatically finding the claims and facts in texts along with confirmation or refutation.</div> <div><b>10:30 Computational Fact-Checking for Textual Claims</b></div> <div><b>Paolo Papotti,</b> Associate Professor, EURECOM, France. He will cover the opportunities and limitations of computational fact-checking and its role in fighting misinformation. He will also give examples from the &quot;infodemic&quot; associated with the COVID-19 pandemic.</div> <div><b>11:00 Pause</b></div> <div><b>11:10 Panel discussion. </b></div> <div><b>In the panel:</b></div> <div>Moderator <b>Graham Kemp</b>, professor, Department of Computer Science and Engineering, Chalmers. </div> <div><b>Sheila Galt</b>, retired professor of Applied Electromagnetics, Chalmers. Engaged researcher in the Swedish Skeptics Association (Vetenskap och Folkbildning, VoF) for many years.</div> <div><b>Bengt Johansson</b>, professor in Journalism, University of Gothenburg. He has a strong focus on the field of media, power, and democracy. </div> <div><b>Jenny Wiik</b>, researcher and project leader for Media &amp; Democracy. Her research is looking into, e.g., automation of journalism. </div> <div>The keynotes, <b>Ivan Koychev</b> and <b>Paolo Papotti </b>are also part of the discussion.</div> <div><b>12:00 The end​</b></div></div> <div><b><br /></b></div> <div></div></div> <div><em>Chalmers ICT Area of Advance arranges this event as part of the Act Sustainable week.</em></div> <div><br /></div> <div><a href="" target="_blank" title="link to the Act Sustainable website"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read more and register</a> (at theAct Sustainable website)</div> <div><a href="" target="_blank" title="link to the Act Sustainable website"></a><a href="" target="_blank" title="Link to start page Act Sustainable website"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read more about the Act Sustainable week​</a>​<br /></div></div></div> <div><br /></div></div></div></div> ​Fri, 01 Oct 2021 00:00:00 +0200’ inner secrets revealed in detail<p><b>​Astronomers at Chalmers are part of the international team behind new, uniquely detailed images from the gigantic radio telescope Lofar which reveal the inner workings of galaxies. The images are the culmination of almost a decade of work in combining data from a network of over 70 000 antennas spread over nine European countries, among them Sweden.</b></p><div><span style="background-color:initial"><strong>Revealing a hidden universe in high definition</strong></span><br /></div> <div><br /></div> <div>The universe is awash with electromagnetic radiation, of which visible light comprises just the tiniest slice. From short-wavelength gamma rays and X-rays, to long-wavelength microwave and radio waves, each part of the light spectrum reveals something unique about the universe. </div> <div><br /></div> <div>The Lofar network captures images at FM radio frequencies that, unlike shorter wavelength sources like visible light, are not blocked by the clouds of dust and gas that can cover astronomical objects. Regions of space that seem dark to our eyes, actually burn brightly in radio waves – allowing astronomers to peer into star-forming regions or into the heart of galaxies themselves.</div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/I3_HerculesA_Timmerman_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br />The new images, made possible because of the international nature of the collaboration, push the boundaries of what we know about galaxies and super-massive black holes. A special issue of the scientific journal <em>Astronomy &amp; Astrophysics</em> is dedicated to new research papers describing these images and the scientific results.</div> <div><br /></div> <div>The international team of scientists, led by Leah Morabito at Durham University, UK, includes Chalmers astronomers John Conway and Eskil Varenius, and Deepika Venkattu, Ph.D. student at the Department of Astronomy, Stockholm University. </div> <div><br /></div> <div><strong>Better resolution by working together</strong></div> <div><br /></div> <div>The images reveal the inner workings of nearby and distant galaxies at a resolution 20 times sharper than typical Lofar images. This was made possible by the unique way the team made use of the array.</div> <div><br /></div> <div>The 70 000 Lofar antennas are spread across Europe, with the majority being located in the Netherlands. In standard operation, only the signals from antennas located in the Netherlands are combined, and creates a “virtual telescope” equivalent to a dish with a diameter of 120 kilometres. By using the signals from all the European antennae, the team have increased this diameter to almost 2000 kilometres, which provides twenty-fold sharper resolution.</div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/M2_Resolution_Fade_Movie_72dpi_340x340.gif" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /><span style="background-color:initial">Unlike other radio telescope arrays that combine multiple signals in real time to produce images, Lofar uses a new concept where the signals collected by each antenna are digitised, transported to central processor, and then combined to create an image. Each Lofar image is the result of combining the signals from tens of thousands of antennas, which is what makes their extraordinary resolution possible.</span><br /></div> <div><br /></div> <div>- With its network of antennas over the whole of Europe, Lofar is showing us that it’s possible to make astonishingly detailed images of universe as we have never seen it before”, said John Conway, professor of radio astronomy at Chalmers, director of Onsala Space Observatory, and member of the team.</div> <div><br /></div> <div><strong>Jets and outflows from supermassive black holes</strong></div> <div><br /></div> <div>Supermassive black holes can be found lurking at the heart of many galaxies. Many of these are “active” black holes, which devour infalling matter and belch it back out into the cosmos as powerful jets and outflows of radiation. These jets are invisible to the naked eye, but they burn bright in radio waves and it is these that the new high-resolution images have focused upon. </div> <div><br /></div> <div>“These high-resolution images allow us to zoom in to see what’s really going on when supermassive black holes launch radio jets, which wasn’t possible before at frequencies near the FM radio band”, said team </div> <div>member Neal Jackson, University of Manchester, UK.</div> <div><br /></div> <div>The team’s work forms the basis of nine scientific studies that reveal new information on the inner structure of radio jets in a variety of different galaxies. </div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/badole_gravitational_lens_sv_72dpi_340x164.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /><strong style="background-color:initial">A decade-long challenge</strong><br /></div> <div><strong><br /></strong></div> <div>Even before Lofar started operations in 2012, the European team of astronomers began working to address the colossal challenge of combining the signals from more than 70 000 antennas located as much as 2000 km apart. The result, a publicly-available data-processing pipeline, which is described in detail in one of the scientific papers, will allow astronomers from around the world to use Lofar to make high-resolution images with relative ease.</div> <div><br /></div> <div> “Our aim is that this allows the scientific community to use the whole European network of Lofar telescopes for their own science, without having to spend years to become an expert”, said Leah Morabito.</div> <div><br /></div> <div><strong>Super images require supercomputers</strong></div> <div><strong><br /></strong></div> <div>The relative ease of the experience for the end user belies the complexity of the computational challenge that makes each image possible. Lofar doesn’t just take pictures of the night sky; it must stitch together the data gathered by more than 70 000 antennas, which is a huge computational task. To produce a single image, more than 13 terabits of raw data per second – the equivalent of more than a three hundred DVDs every second – must be digitised, transported to a central processor and then combined. </div> <div><br /></div> <div>“To process such immense data volumes we have to use supercomputers. These allow us to transform the terabytes of information from these antennas into just a few gigabytes of science-ready data, in only a couple of days”, said team member Frits Sweijen, Leiden University, Netherlands.</div> <div><br /></div> <div><strong>Contacts:</strong></div> <div> </div> <div>Robert Cumming, communicator, Onsala Space Observatory, Chalmers, tel: +46 70 493 3114,</div> <div>John Conway, professor of radio astronomy and director of Onsala Space Observatory, Chalmers, +46 31-772 5500,</div> <div><br /></div> <div><span style="background-color:initial"><strong>More about Lofar</strong></span><br /></div> <div><br /></div> <div>The International Lofar Telescope is a trans-European network of radio antennas, with a core located in Exloo in the Netherlands. Lofar works by combining the signals from more than 70,000 individual antenna dipoles, located in antenna stations across the Netherlands and in partner European countries. The stations are connected by a high-speed fibre optic network, with powerful computers used to process the radio signals in order to simulate a trans-European radio antenna that stretches over 1,300 kilometres. The International Lofar Telescope is unique, given its sensitivity, wide field-of-view, and image resolution or clarity. The Lofar data archive is the largest astronomical data collection in the world. </div> <div>Lofar was designed, built and is presently operated by Astron, the Netherlands Institute for Radio Astronomy. France, Germany, Ireland, Italy, Latvia, the Netherlands, Poland, Sweden and the UK are all partner countries in the International Lofar Telescope.</div> <div><br /></div> <div><strong>Images</strong></div> <div><strong><br /></strong></div> <div>For a complete set of images, animations and infographics, see the <a href="">press release at Astron​</a>.</div> <div><br /></div> <div><em>A – Merging galaxies Arp 299. A galaxy-sized wind is revealed billowing out from a giant star factory, in a dust-enshrouded nucleus, that was triggered as two galaxies merge. Here, Lofar’s observations are shown in orange together with an image taken in visible light by the Hubble Space Telescope. </em><i style="background-color:initial"><a href="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/665x318%20Enskilda%20artikelbilder/arp299_rev_300dpi_full.jpg">Access high-resolution image</a></i><em><br /></em></div> <div><em>Image credit: N. Ramírez-Olivencia et el. [radio]; NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), edited by R. Cumming [optical]</em></div> <div><em>Science paper: </em><span style="background-color:initial"><i><a href="/SiteCollectionDocuments/Centrum/Onsala%20rymdobservatorium/Forskningsartiklar/P5_MergingGalaxies_Ramirez-Olivencia.pdf">Ramírez-Olivencia m. fl. (pdf)​</a></i></span></div> <div><em><br /></em></div> <div><em>B – Hercules A. This galaxy is powered by a supermassive black hole located at its centre, which feeds on the surrounding gas and channels some of this gas into extremely fast jets. The new high-resolution observations reveal that this jet grows stronger and weaker every few hundred thousand years. This variability produces the beautiful structures seen in the giant lobes, each of which is about as large as the Milky Way galaxy. </em><i style="background-color:initial"><a href="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/665x318%20Enskilda%20artikelbilder/I3_HerculesA_Timmerman_300dpi_full.jpg" style="outline:0px">Access high-resolution image</a></i></div> <div><em>Image credit: R. Timmerman; LOFAR &amp; Hubble Space Telescope</em></div> <div><em>Science paper: </em><span style="background-color:initial"><i><a href=""></a></i></span></div> <div><em><br /></em></div> <div><em>C - Sharper galaxy images with Lofar. This animation shows real radio galaxies from the science paper Morabito et al. (2021). The animation fades from the standard resolution to the high resolution, showing the detail we can see by using the new techniques.</em></div> <div><em>Image credit: L. K. Morabito; LOFAR Surveys KSP</em></div> <div><em>Science paper: </em><span style="background-color:initial"><i><a href=""></a></i></span></div> <div><em><br /></em></div> <div><em>D – Gravitational lens.  Lofar’s observations reveal the structure of a distant galaxy – a quasar - whose light has been bent by gravity around a massive cluster of galaxies in front of it. The illustration in the left panel shows how a gravitational lens works. </em></div> <div><em>Image credit: S. Badole; NASA, ESA &amp; L. Calçada</em></div> <div><em>Science paper: </em><span style="background-color:initial"><i><a href=""></a></i></span></div> ​Tue, 17 Aug 2021 18:00:00 +0200 eclipse linked Gothenburg kids to space - and to Chalmers<p><b>​Seeing a solar eclipse can be a memorable experience. In three new Chalmers projects, the solar eclipse on 10 June gave young people extra access to space and to science. But not without a bit of luck with the weather, technology and social distancing.</b></p>​<span style="background-color:initial">One of the sky’s biggest events of the year began at 11:30 on the second Thursday in June, when the moon slid gently in front of the sun, a partial solar eclipse visible from Gothenburg and many other places. The event was also an important part of three different initiatives, in three different places, all with the aim of giving young people extra science capital, with the help of Chalmers. </span><div><br /><span style="background-color:initial"></span><div>In all three locations, plans had been changing, right until the last minute. This was the moment of truth for two school classes and their teachers, a handful of Chalmers students, several radio astronomers and two unsuspecting telescopes.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/lovgardet_solf_lank_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /></div> <div>On the stone steps to the playground at the Lövgärdesskolan, a school on the north side of Gothenburg, the entire year 4 gathered to look at the eclipse. They were well prepared. Science teacher Catrine Berglund had sneaked in micro-lessons about space throughout the spring term, and students had painted space motifs on corridor walls to add to the excitement. And the day before, Robert Cumming from Onsala Space Observatory had delivered two &quot;sun cradles&quot; for projecting the sun safely.</div> <div><br /></div> <div>The school had also bought in special eclipse glasses for the whole class - useful for anyone who wants to look at the sun. But the clouds looked dishearteningly dense and grey. Would the sun come out at all?</div> <div><br /></div> <div>In Slottsskogen Park in central Gothenburg, another group gathered: a handful of students in the newly started network Upprymd. During the spring, they had met over Zoom to be trained in public engagement about space. Now getting to know each other in person for the first time, they could start their mission as communicative astronomers.</div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/slottsskogen2_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><span style="background-color:initial">​</span></div> <div>Equipped with binoculars and a cardboard screen, the plan was to show the eclipse to other park visitors. Here, clouds and eye protection were part of the challenge. How could they balance keeping a good corona-safe distance, but at the same time being open and friendly?</div> <div><br /></div> <div>South of the city, at Onsala Space Observatory, Robert Cumming and Eskil Varenius took the opportunity to try a new way of viewing the solar eclipse with the observatory's smallest radio telescopes, SALSA, as part of a third project, “SALSA for years 7-9”, funded by the Swedish Research Council. With an improved user interface, SALSA is currently being adapted to make radio astronomy projects possible for students in their younger teens. </div> <div><br /></div> <div>Here, at least, the weather wasn’t a problem. Radio telescopes can see the sky through thick clouds, and SALSA is no exception. But they had never been used before to see a solar eclipse, and the software was also brand new and untested. On top of that, the plan was to show SALSA live on a link for the school in Gothenburg. Would it really succeed?</div> <div><br /></div> <div>And just where had the sun got to? The wait was nervous in all three places. Gaps finally appeared in the clouds, first in Onsala, then over the park, and finally also at the schoolyard, but those moments were few and easy to miss.</div> <div><br /></div> <div>There! The round disk of the sun, clearly with a chunk missing! For those who got a look, it really was a moment to remember. </div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/salsa_solf_20210610_72dpi_340x277.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /></div> <div><br /></div> <div>The kids on the school stairs didn’t all see the eclipse, but everyone had experienced something out of the ordinary. A reporter from local radio station was on hand to broadcast live, and young enthusiasts Amina and Huzaifa and their friends got to explain the phenomenon to the listeners. In the city park, the students chose eclipse glasses over projection as the best way to share the sight of the cloud-shrouded eclipse, but everyone was satisfied in the end. In Onsala, the measurements clearly showed that the moon really had blocked some of the sun’s radio waves - the experiment was successful. Network issues affected the live connection to the school (and to some extent also the observatory's high-tech reputation). But contact was made and everyone got to say hi.</div> <div><br /></div> <div>After almost two hours, the sun was back to being whole again and it was all over for this time. However, all three projects will continue during the rest of the year. At the school, a special space day is planned for 23 September 2021. For the student network Upprymd, there will be online question and answer sessions with school classes and other events. They’ll also test SALSA and its new software, and start to help school students and teachers make their own radio observations.</div> <div><br /></div> <div>For the solar eclipse over western Sweden we’ll have to wait until 25 October 2022. What are we going to come up with for that? With a bit more science capital to spare, there will be new opportunities for everyone.</div> <div>The project with Lövgärdesskolan is run in collaboration with the City of Gothenburg, the housing company Poseidon and space industry company CAES (Cobham Gaisler).</div> <div><br /></div> <div>Text: Robert Cumming</div> <div><br /></div> <div><em>Images:</em></div> <div><em><br /></em></div> <div><em>A (top) </em><span style="background-color:initial"><em>Johannes Reldin photographed the eclipsed sun through the mesh of one of the SALSA antennas. </em></span></div> <em> </em><div><br /></div> <div><em>B </em><span style="background-color:initial"><em>S</em></span><span style="background-color:initial"><em>ALSA and Robert Cumming on a live </em></span><span style="background-color:initial"><em>link from Onsala with year 4 students. Photo: Eva Loström/Lövgärdesskolan</em></span></div> <em> </em><div><br /></div> <div><em>C Students in the Upprymd network watching the eclipse in Slottsskogen park. Credit: Andri Spilker</em></div> <div><em> </em></div> <em> </em><div><em>D Radio partial eclipse:  the top graph shows measurements with SALSA throughout the day on 10 June 2021. During the solar eclipse (dashed lines mark its beginning and end) the radio waves from the sun were clearly less than usual. (Credit: Eskil Varenius)</em></div> ​</div>Fri, 18 Jun 2021 09:00:00 +0200 interstellar clouds to habitable planets<p><b>​An international team of astronomers, among them scientists from Chalmers, has published a comprehensive survey of water’s journey through space. Using data from the Herschel Space Observatory, they have shown that life's most important molecule can thrive in all new-born solar systems - not just ours.</b></p><div>Only ten years ago, it was not known how and where water is formed in space, and how it eventually ends up on a planet like Earth. </div> <div><br /></div> <div>Now, an international research team has put together everything scientists know about water in interstellar clouds, and the origin of water on newborn, potentially habitable, planets. The article, published in the journal Astronomy &amp; Astrophysics, is based on observations with the Herschel Space Observatory. </div> <div><br /></div> <div><strong style="background-color:initial">Space telescopes</strong><br /></div> <div><br /></div> <div><span></span><div><span style="background-color:initial">Seeing water in space </span>is a challenge for astronomers. Even the best ground-based telescopes are affected by water vapour in our own atmosphere.</div> <div><br /></div> <div><div><span style="background-color:initial">Following an early pioneering effort by </span><a href="/sv/institutioner/see/nyheter/Sidor/Satelliten-Odin-firar-20-ar-i-rymden.aspx" style="outline:0px">the Swedish science satellite Odin​</a><span style="background-color:initial">, the Herschel Space Observatory was launched in 2009 by the European Space Agency, ESA.</span><br /></div></div> <div><br /></div> <div>During its four-year mission, Herschel had as one of its main objectives to investigate water in space. Of particular importance was the instrument HIFI, which was built under Dutch leadership with important contributions from Sweden, and in particular from Chalmers.</div></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">In the new study, Ewine van Dishoeck and her colleagues have been able to study how water molecules follow each part of the process that leads to the birth of new stars and planets.</span><br /></div> <div><span style="background-color:initial"><br /></span></div> <div><strong>Starts with Ice</strong></div> <div><span style="background-color:initial"><div><br /></div> <div><span style="background-color:initial">The new study shows that </span><span style="background-color:initial"></span><span style="background-color:initial">most of the water is formed as ice on tiny dust particles in cold and tenuous interstellar clouds.</span></div> <div><span style="background-color:initial"><br /></span></div> <div>When a cloud collapses into new stars and planets, this water is largely preserved and quickly anchored into pebble-sized dust particles. In the rotating disk around the young star, these pebbles then form the building blocks for new planets.<br /></div> <div><br /></div></span></div> <div> <div>&quot;Water is mostly transported as ice from large interstellar clouds to these disks. The ice seems not to melt or break up on the way in. We can't say yet exactly how much water there is in these disks, but it's enough to form oceans on Earth-like planets&quot;, says Per Bjerkeli, astronomer at Chalmers.<br /></div> <div><br /></div> <div>Earth's water has also migrated here in this way, the researchers believe. <span style="background-color:initial">Furthermore, they have calculated that most new solar systems are born with enough water to fill several thousand oceans. </span><br /></div> <div><br /></div> <div><span style="background-color:initial">&quot;It's fascinating to realise that when you drink a glass of water, most of those molecules were made more than 4.5 billion years ago in the cloud from which our sun and the planets formed&quot;, says Ewine Van Dishoeck.</span><br /></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/Rho_Ophiuchi_star-forming_region_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /><br /></span><span style="background-color:initial">For water molecules, the road from interstellar clouds to the drinking glass is complex, the scientists show. Previous studies with the Herschel Space Observatory showed how </span><span style="background-color:initial">hot water vapour seen and copiously produced near forming stars is lost to space in powerful outflows.</span><span style="background-color:initial"> Now, the researchers have also been able to trace both cold water vapor and ice deposits in these star systems, among other things by examining weak signals from heavy water (where the molecule H<sub>2</sub>0 contains one or two atoms of heavy hydrogen, or deuterium).</span><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">Many mysteries remain concerning water's path to the planets which new and future telescopes will have to address. NASA/ESA's James Webb telescope, which will be launched later this year, as well as the radio telescope ALMA in Chile and the future radio telescope SKA all have roles to play. The instrument </span><span style="background-color:initial">MIRI</span><span style="background-color:initial"> </span><span style="background-color:initial">on board the James Webb Telescope </span><span style="background-color:initial">will be able to detect warm water vapour in the innermost zones of dust disks.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">– </span><span style="background-color:initial">Herschel has already shown that planet-forming disks are rich in water ice. With MIRI we can now follow that trail into the regions where Earth-like planets are formed, says </span><span style="background-color:initial">Michiel Hogerheijde, astronomer at Leiden University and the University of Amsterdam.</span><span style="background-color:initial">​</span></div> <div><br /></div> <div>Press release in English from NOVA: <a href="" style="outline:0px"></a></div> <div><br /></div> <div><strong>More about the research and the Herschel Space Observatory </strong></div> <strong> </strong><div><br /></div> <span style="background-color:initial">Herschel was a space telescope of the European Space Agency (ESA) built in cooperation with NASA. Its HIFI and PACS instruments were used for the water research. HIFI was designed and built by a consortium of institutes and university departments across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, the Netherlands, with major contributions from Germany, France, and the USA. The PACS instrument was developed by a consortium of institutes and universities across Europe led by the Max Planck Institute for Extraterrestrial Physics in Germany. Chalmers scientists played an active role in the scientific planning for Herschel, and were involved in several projects using data from the telescope.</span></div> <div><span style="background-color:initial">​<br /></span></div> <div><span style="background-color:initial">​<img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/Water_trail-credit-ESA-ALMA-NASA-LE-Kristensen_72dpi_340x254.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />The results are </span><span style="background-color:initial">published in a paper by Ewine F. van Dishoeck et al., <em>Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy, </em>in the journal Astronomy &amp; Astrophysics. Link to the paper: </span><a href="">​</a><span style="background-color:initial"> (see also </span><a href=""></a><span style="background-color:initial">).</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><div>Ewine van Dishoeck led the water research programme WISH (<a href="">Water in Star-forming regions with Herschel</a>). ​The team consists of 50 astronomers, among them Chalmers scientists Per Bjerkeli, René Liseau och Magnus Persson, and Bengt Larsson (Stockholm University).</div> <div><br /></div> <div><em>Images</em></div> <em> </em><div><br /></div> <em> </em><div><div><em>A (top) - The path of water molecules from vast interstellar clouds to potentially habitable planets has been traced in the star-forming region Rho Ophiuchi, 440 light years distant in the constellation Ophiuchus. This wide-angle image from Herschel, taken in light with a wavelength between 70 and 250 micrometers with the telescope's camera PACS, is 4 degrees wide (equivalent to eight full moons). In the brightest part of the image (above right) lies the young star VLA 1623, subject of detailed observations of water with the instrument HIFI.</em></div> <em> </em><div><em>Image: ESA / Herschel / NASA / JPL-Caltech, CC BY-SA 3.0 IGO; Acknowledgment: R. Hurt (JPL-Caltech)</em></div> <em> </em><div><a href="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/750x340/Rho_Ophiuchi_star-forming_region_H2O_300dpi_full.jpg"><em>Download high resolution image (with molecules)</em></a><em> or </em><a href=""><em>see the original image at ESA</em></a></div> <em> </em><div><br /></div> <em> </em><div><em>B - The </em><span style="background-color:initial"><em>star-forming region </em></span><span style="background-color:initial"><em>Rho Ophiuchi, 440 light</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>years</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>distant </em></span><span style="background-color:initial"><em>in the constellation</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>Ophiuchus</em></span><span style="background-color:initial"><em>. This wide-angle image from</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>Herschel,</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>taken in light with a wavelength between 70 and 250 micrometers with the telesco</em></span><span style="background-color:initial"><em>pe'</em></span><span style="background-color:initial"><em>s camera</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>PACS, is 4 degrees wide (equivalent to eight full moons). In the brightest part</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>of the image</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>(above right) lies</em></span><span style="background-color:initial"><em> the young star VLA 1623,</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>subject of</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>detailed observations</em></span><span style="background-color:initial"><em> </em></span><span style="background-color:initial"><em>of water with the instrument HIFI.</em></span></div> <em> </em><div><em>Image: ESA / Herschel / NASA / JPL-Caltech, CC BY-SA 3.0 IGO; Acknowledgment: R. Hurt (JPL-Caltech)</em></div> <em> </em><div><a href="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/750x340/Rho_Ophiuchi_star-forming_region_300dpi_full.jpg"><em>Download high resolution image (without molecules)</em></a><em> or </em><a href=""><em>view in original version at ESA</em></a></div> <em> </em><div><br /></div> <em> </em><div><em>C - This illustration shows the </em><span style="background-color:initial"><em>Journey of water from interstellar clouds to habitable worlds. From top left to bottom right: water in a cold interstellar cloud, near a young, forming star with an outflow, in a protoplanetary disc, in a comet and in the oceans of an exoplanet. The first three stages show the spectrum of water vapour measured by the HIFI instrument on the Herschel space observatory. The signals from the cold interstellar cloud and from the protoplanetary disk have been exaggerated in this image by a factor of 100 compared to those from the young, forming star in the centre.​</em></span></div> <em> </em><div><em>Image: ESA / ALMA / NASA / L. E. Kristensen</em></div></div> <div><em><br /></em></div> <div><div><strong>Contacts</strong></div> <div><br /></div> <div>Robert Cumming, communications officer, Onsala Space Observatory, +46 70 493 31 14,</div> <div><br /></div> <div>Per Bjerkeli, astronomer, Department of Space, Earth and Environment, +46 31 772 64 30,</div></div> <div><br /></div></span></div>Wed, 14 Apr 2021 15:00:00 +0200 hole's magnetic fields revealed by the Event Horizon Telescope<p><b>​​A new view of the supermassive black hole shows the centre of galaxy M 87 in polarised light. The observations with the Event Horizon Telescope (EHT) reveal how energetic jets form close to the black hole, 55 million light years distant. Astronomers from Chalmers are part of the international EHT collaboration.</b></p>​<span style="background-color:initial">The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of a black hole, has revealed a new view of the massive object at the centre of the galaxy Messier 87 (M87): how it looks in polarised light. This is the first time astronomers have been able to measure polarisation, a signature of magnetic fields, this close to the edge of a black hole. The observations are key to explaining how the galaxy, located 55 million light-years away, is able to launch energetic jets from its core.</span><div><br /></div> <div>“We are now seeing the next crucial piece of evidence to understand how magnetic fields behave around black holes, and how activity in this very compact region of space can drive powerful jets that extend far beyond the galaxy,” says Monika Mościbrodzka, Coordinator of the EHT Polarimetry Working Group and Assistant Professor at Radboud University in the Netherlands.</div> <div><br /></div> <div>On 10 April 2019, scientists released the first ever image of a black hole, revealing a bright ring-like structure with a dark central region — the black hole’s shadow. Since then, the EHT collaboration has delved deeper into the data on the supermassive object at the heart of the M87 galaxy collected in 2017. They have discovered that a significant fraction of the light around the M87 black hole is polarised.</div> <div><br /></div> <div>“This work is a major milestone: the polarisation of light carries information that allows us to better understand the physics behind the image we saw in April 2019, which was not possible before,” explains Iván Martí-Vidal, also Coordinator of the EHT Polarimetry Working Group and GenT Distinguished Researcher at the University of Valencia, Spain. He adds that “unveiling this new polarised-light image required years of work due to the complex techniques involved in obtaining and analysing the data.”</div> <div><br /></div> <div>Light becomes polarised when it goes through certain filters, like the lenses of polarised sunglasses, or when it is emitted in hot regions of space where magnetic fields are present. In the same way that polarised sunglasses help us see better by reducing reflections and glare from bright surfaces, astronomers can sharpen their view of the region around the black hole by looking at how the light originating from it is polarised. Specifically, polarisation allows astronomers to map the magnetic field lines present at the inner edge of the black hole. </div> <div><br /></div> <div>“The newly published polarised images are key to understanding how the magnetic field allows the black hole to 'eat' matter and launch powerful jets,” says EHT collaboration member Andrew Chael, a NASA Hubble Fellow at the Princeton Center for Theoretical Science and the Princeton Gravity Initiative in the US.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/eso2105b_72dpi_340x227.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /></div> <div>The bright jets of energy and matter that emerge from M87’s core and extend at least 5000 light-years from its centre are one of the galaxy’s most mysterious and energetic features. Most matter lying close to the edge of a black hole falls in. However, some of the surrounding particles escape moments before capture and are blown far out into space in the form of jets. </div> <div><br /></div> <div><span style="background-color:initial">Astronomers have relied on different models of how matter behaves near the black hole to better understand this process. But they still don’t know exactly how jets larger than the galaxy are launched from its central region, which is comparable in size to the Solar System, nor how exactly matter falls into the black hole. With the new EHT image of the black hole and its shadow in polarised light, astronomers managed for the first time to look into the region just outside the black hole where this interplay between matter flowing in and being ejected out is happening. </span><br /></div> <div><br /></div> <div>The observations provide new information about the structure of the magnetic fields just outside the black hole. The team found that only theoretical models featuring strongly magnetised gas can explain what they are seeing at the event horizon. </div> <div><br /></div> <div>“The observations suggest that the magnetic fields at the black hole’s edge are strong enough to push back on the hot gas and help it resist gravity’s pull. Only the gas that slips through the field can spiral inwards to the event horizon,” explains Jason Dexter, Assistant Professor at the University of Colorado Boulder, US, and Coordinator of the EHT Theory Working Group. </div> <div><br /></div> <div>To observe the heart of the M87 galaxy, the collaboration linked eight telescopes around the world – including the ALMA (Atacama Large Millimeter/submillimeter Array) and APEX (Atacama Pathfinder EXperiment) in northern Chile – to create a virtual Earth-sized telescope, the EHT. The impressive resolution obtained with the EHT is equivalent to that needed to measure the length of a credit card on the surface of the Moon.</div> <div><br /></div> <div>“With ALMA and APEX, which through their southern location enhance the image quality by adding geographical spread to the EHT network, European scientists were able to play a central role in the research,” says Ciska Kemper, European ALMA Programme Scientist at ESO. “With its 66 antennas, ALMA dominates the overall signal collection in polarised light, while APEX has been essential for the calibration of the image.”</div> <div><img src="/SiteCollectionImages/Centrum/Onsala%20rymdobservatorium/340x/eso2105d_72dpi_340x340.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" /></div> <div><br /></div> <div>&quot;ALMA data were also crucial to calibrate, image and interpret the EHT observations, providing tight constraints on the theoretical models that explain how matter behaves near the black hole event horizon,&quot; adds Ciriaco Goddi, a scientist at Radboud University and Leiden Observatory, the Netherlands, who led an accompanying study that relied only on ALMA observations.</div> <div><br /></div> <div>The EHT setup allowed the team to directly observe the black hole shadow and the ring of light around it, with the new polarised-light image clearly showing that the ring is magnetised. The results are published today in two separate papers <span style="background-color:initial">by the EHT collaboration </span><span style="background-color:initial">in </span><span style="background-color:initial">Astrophysical Journal Letters</span><span style="background-color:initial">. </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The research involved over 300 researchers from multiple organisations and universities worldwide. </span></div> <div></div> <div><br /></div> <div><div>Chalmers scientists Michael Lindqvist and John Conway, <span style="background-color:initial">both at</span><span style="background-color:initial"> </span><span style="background-color:initial">Onsala Space Observatory and the Department of Space, Earth and Environment, </span><span style="background-color:initial">represent Sweden in the EHT collaboration. </span><span style="background-color:initial"></span></div> <div></div> <div><br /></div> <div> &quot;In Onsala we have participated <span style="background-color:initial">since the 1960s </span><span style="background-color:initial">in the development of very long baseline interferometry (VLBI),</span><span style="background-color:initial"> the technique used in the EHT. </span><span style="background-color:initial"></span><span style="background-color:initial">Onsala Space Observatory</span><span style="background-color:initial"> is one of three partners in APEX, one of the telescopes in the EHT network, and we have worked for many years with our partners building up capacity for VLBI at APEX&quot;, says Michael Lindqvist.</span></div> <span></span><div></div> <div><br /></div> <div>“The Swedish contribution to this research has been significant&quot;, says Iván Martí-Vidal, who worked at Onsala Space Observatory until 2018. “The observatory in Onsala has also been responisble for calibrating ALMA data, and its role as a partner in the APEX telescope has been critical for being able to calculate and correct for the instrumental polarisation in ALMA.&quot; </div> <div><br /></div> <div>Detailed knowledge of these aspects is of great importance for the conclusions about the supermassive black hole that have now been presented.</div> </div> <div><br /></div> <div><strong>More information</strong></div> <div><br /></div> <div>This research is presented in two papers by the EHT collaboration published on 24 March 2021 in Astrophysical Journal Letters: &quot;First M87 Event Horizon Telescope Results VII: Polarization of the Ring&quot; (doi: 10.3847/2041-8213/abe71d) and &quot;First M87 Event Horizon Telescope Results VIII: Magnetic Field Structure Near The Event Horizon&quot; (doi: 10.3847/2041-8213/abe4de). Accompanying research is presented in the paper &quot;Polarimetric properties of Event Horizon Telescope targets from ALMA&quot; (doi: 10.3847/2041-8213/abee6a) by Goddi, Martí-Vidal, Messias, and the EHT collaboration, which has been accepted for publication in ​​Astrophysical Journal Letters.</div> <div><br /></div> <div><a href="">See ESO's press release for links to the science papers and more background information</a><span style="background-color:initial">.</span><br /></div> <div><span style="background-color:initial"><br /></span></div> <div><div><span style="font-weight:700">Contacts</span></div> <div><br /></div> <div>Robert Cumming, communications officer, Onsala Space Observatory, Chalmers, +46 70-493 31 14,</div> <div><br /></div> <div>Michael Lindqvist, astronomer, Onsala Space Observatory, Chalmers,</div> <div><br /></div> <div><em><strong>Images</strong></em></div> <div><em><br /></em></div> <div><span></span><a href=""><em>See ESO's press release for high-resolution images</em></a><span style="background-color:initial"><em>.</em></span><br /></div> <div><br /></div> <div><div><i>A (överst) - <span style="background-color:initial"></span></i><span style="background-color:initial"><i>A view of the M87 supermassive black hole in polarised light. </i></span><span style="background-color:initial"><i>The lines mark the orientation of polarisation, which is related to the magnetic field around the shadow of the black hole.</i></span></div> <div><span style="background-color:initial"><i>Bild: EHT-samarbetet</i></span></div> <div><i><br /></i></div> <div><i>B - Composite image showing </i><span style="background-color:initial"><i>M 87's supermassive black hole and jet, as seen in polarized light. Images from different radio telescopes show the jet's polarisation at different scales. Top: ALMA observations taken at the same time as the EHT observations. In the middle are measurements with the VLBA in the USA. The EHT observations are shown at the bottom of the image.</i></span></div> <div><i>Bild: <span style="background-color:initial">EHT Collaboration; ALMA (ESO/NAOJ/NRAO), Goddi et al.; VLBA (NRAO), Kravchenko et al.; J. C. Algaba, I. Martí-Vidal</span></i></div> <div><i><br /></i></div> <div><i>C: Jetstrålen i M 87 i polariserat ljus uppmätt av ALMA. </i></div> <div><i>Bild: ALMA (ESO/NAOJ/NRAO), Goddi et al.</i><br /></div></div> <div><i><br /></i></div> <div><br /></div> <div><br /></div> <span style="background-color:initial"></span></div> <div><br /></div> <div><br /></div>Wed, 24 Mar 2021 15:00:00 +0100 birth of a new global observatory<p><b>​A new, global intergovernmental organization in radio astronomy has been founded. The SKA Observatory (SKAO) will build and operate the world's largest and most complex radio telescopes to answer big questions about the universe. Chalmers leads Sweden's participation in the project.</b></p>​<span style="background-color:initial">The new observatory, SKAO, was launched on 4 February 2021 when the first meeting of its governing Council was held. The observatory is the world’s second intergovernmental organisation dedicated to astronomy. </span><div>Catherine Cesarsky has been appointed as the first Chair of the SKAO Council.</div> <div><br /></div> <div>“This is a historic moment for radio astronomy”, she said. “Behind today’s milestone, there are countries that had the vision to get deeply involved because they saw the wider benefits their participation in SKAO could bring to build an ecosystem of science and technology involving fundamental research, computing, engineering, and skills for the next generation, which are essential in a 21st century digital economy.”</div> <div><br /></div> <div>The new observatory has its headquarters at on the grounds of the Jodrell Bank UNESCO World Heritage Site in the United Kingdom, with telescopes located at sites in Australia and South Africa.</div> <div><br /></div> <div>SKAO’s telescope in South Africa will be composed of 197 dish antennas, each 15 m in diameter, located in the Karoo region. Of these, 64 already exist and are operated by the South African Radio Astronomy Observatory (SARAO). The telescope in Australia will be composed of 131 072 two-metre-tall antennas located on the Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) Murchison Radio-astronomy Observatory. </div> <div><br /></div> <div>The creation of SKAO follows a decade of detailed engineering design work, scientific prioritisation, and policy development under the supervision of its predecessor the SKA Organisation, supported by more than 500 engineers, over 1,000 scientists and dozens of policy-makers in more than 20 countries; and is the result of 30 years of thinking and research and development since discussions first took place about developing a next-generation radio telescope.</div> <div><br /></div> <div>Philip Diamond, professor at the University of Manchester, has been appointed as the first Director-General of SKAO.</div> <div><br /></div> <div>“Today marks the birth of a new observatory,” he said. “And not just any observatory – this is one of the mega-science facilities of the 21st century. It is the culmination of many years of work and I wish to congratulate everyone in the SKA community and in our partner governments and institutions who have worked so hard to make this happen. For our community, this is about participating in one of the great scientific adventures of the coming decades. It is about skills, technology, innovation, industrial return, and spin offs but fundamentally it is about a wonderful scientific journey that we are now embarking on.” </div> <div><br /></div> <div>Lars Börjesson, professor of physics at Chalmers, is Sweden’s representative as an observer to the SKAO Council.</div> <div><br /></div> <div>“The establishment of the SKA Observatory is a major event for the field of radio astronomy, and a decisive organisational step towards the construction of the SKA telescope”, he said. “We’ve reached this milestone thanks to a huge amount of work in a truly global network, involving the world’s leading radio astronomy institutes and observatories. Together, across international borders, we have combined expertise and enthusiasm to develop the SKA’s science goals, its technical design and organisational structure, and this is something we can be really proud of. For Sweden, funding has now been secured for participation in the construction phase, and the formal process for membership in the SKA Observatory has been initiated.”</div> <div><br /></div> <div>The first SKAO Council meeting follows the signature of the SKA treaty, formally known as the convention establishing the SKA Observatory, on 12 March 2019 in Rome, and its subsequent ratification by Australia, Italy, the Netherlands, Portugal, South Africa and the United Kingdom and entry into force on 15 January 2021, marking the official birth date of the observatory.</div> <div><br /></div> <div>The council is composed of representatives from the Observatory’s Member States, as well as observer countries aspiring to join SKAO. Sweden is one of several observer countries that took part in the design phase of the SKA, along with Canada, China, France, Germany, India, Spain and Switzerland. These countries’ future accession to SKAO is expected in the coming weeks and months, once their national processes have been completed. Representatives of national bodies in Japan and South Korea complement the select list of observers in the SKAO Council.</div> <div><br /></div> <div>At its first meeting, the SKAO Council approved policies and procedures that have been prepared in recent months – covering governance, funding, programmatic and HR matters, among others. These approvals are required to transfer staff and assets from the SKA Organisation to the observatory.</div> <div><br /></div> <div>“The coming months will keep us very busy, with hopefully new countries formalising their accession to SKAO and the expected key decision of the SKAO Council giving us green light to start the construction of the telescopes,” added Prof. Diamond.</div> <div><br /></div> <div>SKAO will begin recruitment in Australia and South Africa in the next few months, working alongside local partners CSIRO and SARAO to supervise construction, which is expected to last eight years, with early science opportunities starting in the mid 2020s. </div> <div><br /></div> <div><strong>About the SKA Observatory</strong></div> <div><br /></div> <div>SKAO, formally known as the SKA Observatory, is a global collaboration of member states to build and operate cutting-edge radio telescopes to answer fundamental questions about our universe. Headquartered in the UK, its first two telescopes, the two largest and most complex radio telescope networks ever built, will be constructed in Australia and South Africa. A later expansion is envisioned in both countries and other African partner countries. SKAO’s telescopes will conduct transformational science and, together with other state-of-the-art research facilities, address gaps in our understanding of the universe including the formation and evolution of galaxies, fundamental physics in extreme environments and the origins of life. Through the development of innovative technologies and its contribution to addressing global societal challenges, SKAO will play its part to address the United Nations’ Sustainable Development Goals and deliver significant non-science impact across its membership and beyond. </div> <div><br /></div> <div>Current SKAO Members are Australia, Italy, the Netherlands, Portugal, South Africa and the United Kingdom with several other countries, among them Sweden, aspiring to membership or engagement with SKAO in the future.</div> <div><br /></div> <div><strong>About Onsala Space Observatory and Sweden’s role in the SKA project</strong></div> <div><br /></div> <div>Onsala Space Observatory is Sweden's national facility for radio astronomy. The observatory provides researchers with equipment for the study of the earth and the rest of the universe. In Onsala, 45 km south of Gothenburg, it operates four radio telescopes and a station in the international telescope Lofar. The SKA is one of several international projects that the observatory participates in. The observatory is hosted by the Department of Space, Earth and Environment at Chalmers University of Technology, and is operated on behalf of the Swedish Research Council.</div> <div><br /></div> <div>Between 2012 and 2021, Onsala Space Observatory represented Sweden as a member country of the SKA Organization. Chalmers and Onsala Space Observatory have been working on the development of the SKA since its inception. Scientists in Sweden have worked both in preparing the SKA's scientific programme, and developing the technical components and systems that the telescopes need to be able to make new discoveries. Sweden has contributed with the development and prototypes of receivers for SKA's dish antennas, for example unique low-noise amplifiers.</div> <div><br /></div> <div>With the support of Big Science Sweden, Chalmers and Onsala Space Observatory engaged companies in the SKA at an early stage, particularly in areas where Sweden is strong (e.g. radio and microwave engineering, ICT and signal processing), developing close collaborations with several universities and institutes. Thanks to both technical development work and cooperation with other research organizations involved in SKA's development, Sweden has been able to lead the completion and delivery of two important systems for SKA’s telescope in South Africa (about 200 receivers for the frequency band 350 - 1050 MHz, low noise amplifiers for several frequency bands and digitising systems for faint signals). In this work, Sweden works together with colleagues in Canada, France, India, Spain and South Africa.</div> <div><br /></div> <div><strong>Contacts</strong></div> <div><br /></div> <div>Robert Cumming, communicator, Onsala Space Observatory, Chalmers, tel: +46 31-772 5500 or +46 70 493 3114,</div> <div>John Conway, professor and director, Onsala Space Observatory, Chalmers, +46 31-772 5500,</div> <div><br /></div> <div><em>Images</em></div> <div><br /></div> <div><em>A (top) - </em><span style="background-color:initial"><em>Composite image of the SKA combining all elements in South Africa and Australia. This image blends photos of real hardware already on the ground on both sites with artist's impressions of the future SKA antennas. From left: artist's impression of the future SKA dishes blend into the existing precursor MeerKAT telescope dishes in South Africa. From right: artist's impression of the future SKA-Low stations blends into the existing AAVS2.0 prototype station in Western Australia.</em></span></div> <div><em>Credit: SKA Organisation</em></div> <div><em><br /></em></div> <div><div><span style="background-color:initial"><i>Mer information och material finns på <a href=""></a> och <a href=""></a></i></span></div> <div><span style="background-color:initial"><a href="">Read this release at the SKAO​</a></span></div> <div><i style="background-color:initial"><a href="">SKAO Prospectus</a></i><br /></div> <div><i><a href="">SKAO Media Kit</a></i></div> <div><i><a href="">About Catherine Cesarsky</a></i></div> <div><i><a href="">About Philip Diamond</a></i></div> <em></em></div> <div><br /></div> ​Fri, 05 Feb 2021 17:00:00 +0100 exoplanets challenge theories on planet formation<p><b>Astronomers have revealed a system consisting of six exoplanets, five of which are locked in a rare rhythm around their central star. The researchers believe the system could provide important clues about how planets, including those in the Solar System, form and evolve.</b></p><p>The Swedish research contribution in this study has been significant, with the participation of, among others, Malcolm Fridlund and Carina Persson at Chalmers University of Technology.<br /><span style="background-color:initial"></span></p> <p><br /></p> <div><span style="background-color:initial"><div>The first time the team observed TOI-178, a star some 200 light-years away in the constellation of Sculptor, they thought they had spotted two planets going around it in the same orbit. However, a closer look revealed something entirely different. </div> <div><br /></div> <div>– Through further observations we realised that there were not two planets orbiting the star at roughly the same distance from it, but rather multiple planets in a very special configuration, says Adrien Leleu from the Université de Genève and the University of Bern, Switzerland, who led a new study of the system published today in Astronomy &amp; Astrophysics.</div> <div><br /></div> <div>The new research has revealed that the system boasts six exoplanets and that all but the one closest to the star are locked in a rhythmic dance as they move in their orbits. In other words, they are in resonance. This means that there are patterns that repeat themselves as the planets go around the star, with some planets aligning every few orbits. </div> <div><br /></div> <div>The five outer exoplanets of the TOI-178 system follow a complex chain of resonance, one of the longest yet discovered in a system of planets. The five outer planets in the TOI-178 system follow a 18:9:6:4:3 chain: while the second planet from the star (the first in the resonance chain) completes 18 orbits, the third planet from the star (second in the chain) completes 9 orbits, and so on. </div> <div><br /></div> <div>The six exoplanets found are very close to the star, with orbital periods ranging from 2 to 21 days, which is closer than the the star's so called habitable zone. But the researchers suggest that, by continuing the resonance chain, they might find additional planets that could exist in or very close to this zone. <br /></div> <div><br /></div> <div>– For a planet to be in the habitable zone where liquid water can be found on the surface, the orbital period in this system must be at least 40 days. The fact that the planets around TOI-178 have orbits so extremely close to their star means that any water on their surfaces would boil away, even though the star is cooler than our Sun, says Carina Persson, at the department of Space, Earth and Environment.<br /></div> <div><br /></div> <div><div><span style="background-color:initial">Read the full press release from ESO, European Southern Observatory: </span><span style="background-color:initial"><a href="">Puzzling six-exoplanet system with rhythmic movement challenges theories of how planets form</a>.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The study is published in the article: </span><a href=""><div style="display:inline !important"><span style="background-color:initial">&quot;</span><span style="background-color:initial">Six transiting planets and a chain of Laplace resonances in</span></div></a></div> <div><a href=""><span style="background-color:initial">TOI-178&quot;</span><span style="background-color:initial">, in Astronomy and Astrophysics</span></a><span style="background-color:initial">. </span></div></div></span></div>Wed, 27 Jan 2021 00:00:00 +0100