Wireless, photonics and space engineering, MSc

120 credits (2 years)

The world is undergoing a fourth industrial revolution. Digital data is the new capital and the Internet has become a resource as precious as water or electricity.​ The master’s programme Wireless, photonics and space engineering will allow you to become a technology innovator. Your creations will be the core engines of the cell phones, antennas, quantum computers, sensors, robots, communication systems and satellites of the future.

Wireless, photonics and space engineering​ master's programme at Chalmers

Wireless, photonics and space engineering​ master's programme at Chalmers

Emerging infrastructure like data centers and new applications such as industrial automation and autonomous driving will require unprecedented investments in photonics and wireless technology. The space industry is likewise transforming, with increasing private businesses and offering new and ubiquitous satellite constellation services for global communications, navigation, Earth observation and space science.

The master’s programme Wireless, photonics and space engineering at Chalmers will prepare you to meet these future challenges by giving you the basic knowledge in photonic and microwave devices, and how these components work at the system level.

Wireless, photonics and space engineering students at ChalmersYou will be offered an unique opportunity to learn about applied electromagnetics by studying a combination of subjects for which Chalmers has world-class facilities. The Onsala space observatory​ has radio telescopes and instruments to study the Earth and the Universe. The Nanofabrication laboratory ​is one of the best equipped university cleanrooms in Europe for research and fabrication of advanced semiconductor devices and integrated circuits. The research laboratories are equipped with state-of-the-art photonics and microwave measurement equipment including the Kollberg Laboratory.

The lectures are given by world-leading researchers and industry professionals, They bring advanced and contemporary knowledge to the lectures they teach. The programme offers a diverse range of learning activities: lectures, tutorial exercises, home assignments, projects, teamwork activities and practical laboratory work. Furthermore, the focus in each of these learning activities is on understanding the concepts and the implications. The aim of the learning in the programme is not to provide you with all the answers, but rather in helping you to ask the right questions.

Topics covered

The programme encompasses technology and fundamentals of electromagnetic components and systems. The courses included in the programme cover topics such as monolithic microwave and photonic integrated circuits, lasers, wireless and fiber optic communication systems, optoelectronics, satellite communication and positioning, antennas, sensor systems and space techniques. Together the research laboratories cover phenomena and applications of electromagnetic waves on all frequencies from microwaves to visible light. 

Master's programme structure

The master's programme runs for a duration of two years, leading to a Master of Science (MSc) degree​. During each year, students can earn 60 credits (ECTS) and complete the programme by accumulating a total of 120 credits. Credits are earned by completing courses where each course is usually 7.5 credits. The programme consists of Compulsory courses, Compulsory elective courses and Elective courses.

Compulsory courses year 1

During the first year the programme starts with five compulsory courses that form a common foundation in wireless, photonics and space engineering. Each course is 7.5 credits.
  • Electromagnetic waves and components
  • Wireless and photonics system engineering
  • Microwave engineering
  • Space science and techniques
  • Photonics and lasers

Compulsory courses year 2

In the second year you must complete a master's thesis in order to graduate. The thesis may be worth 30 credits or 60 credits depending on your choice.
  • ​Master’s thesis

Compulsory elective courses

Through compulsory elective courses, you can then specialize in wireless, photonics or space engineering, or a combination thereof.​​​​​ During year 1 and 2, you need to select at least 3 compulsory elective courses out of the following in order to graduate.

  • Active microwave circuits
  • Electromagnetic sensor systems
  • Antenna engineering
  • Integrated photonics​
  • Radar systems and applications
  • Design of MMIC
  • Optoelectronics
  • Satellite communication
  • Semiconductor devices for modern electronics
  • Millimeter wave and THz technology
  • Fiber optical communication
  • Satellite positioning
  • Wireless link project

Elective courses

You will also be able to select courses outside of your programme plan. These are called elective courses. You can choose from a wide range of elective courses, including the following:
  • Image processing
  • Spectroscopy
  • Introduction to communication engineering
  • Radioastronomical techniques and interferometry
  • Applied signal processing
  • Introduction to microsystems packaging
  • Fundamentals of micro- and nanotechnology
  • Introduction to law​
  • Computational electromagnetics​
  • Implementation of digital signal processing systems​
Programme plan, syllabus, course description and learning outcomes


The industry is in the middle of the fourth industrial revolution, where the physical and digital worlds blend, and skilled experts in wireless and photonics technologies are needed. The telecom, aerospace, medical and automotive industries are all expected to grow in the coming years and students who have graduated from this programme will be in high demand. Our alumni work as technical specialists in design, research, development or production of wireless and photonics components, and systems.

Entrepreneurship is strong in the region including many small enterprises and start-ups, for example Omnisys Instruments (electronic systems for space), Medfield diagnostics (medical imaging), Bluetest (antenna test systems), Iloomina (photonic integration) and Gapwaves (integrated waveguide technology). The region is also a leading European R&D and industrial node including large companies such as Ericsson, Saab, Nvidia and RUAG Space. Ericsson is one of the world's leading information and communication companies and has one of its R&D centers located in Gothenburg, Saab offers defence and security systems, Nvidia develops chip units, including photonics, for mobile computing and datacenter infrastructure, and RUAG Space develops antennas, data handling systems and on-board computers for the space sector.

The opportunities for an academic career are also excellent and a master’s degree from this programme is a perfect background for pursuing PhD studies in our research fields. Chalmers is internationally recognized for the cutting-edge research in microwave electronics, photonics, antennas, THz and mm waves, radio astronomy, plasma physics, space geodesy and remote sensing.

Research within Wireless, photonics and space engineering

The teachers in the programme are active researchers at Chalmers. At the Department of Microtechnology and Nanoscience, they conduct application-oriented research on high-speed electronics for future communication and remote sensing applications, optoelectronics and fibre optics for long haul transmission and short reach interconnects, THz imaging systems, and advanced receivers for space applications. Since microwave power amplifiers dominate the energy consumption in mobile communication networks, advanced transistor technologies and amplifier designs for increasing power efficiency are developed. Their research also  focus on different methods to increase data flow in fibre optical communication systems. For example, new optical amplifiers with extremely low noise with the potential to fourfold the transmission distance for long distance links has been presented, as well as energy and cost-efficient lasers for high capacity short distance links. This technology is well suited for interconnects and networks within for example data centres or supercomputers.

At the Department of Space, Earth and Environment, teachers conduct research in microwave and optical remote sensing, space geodesy  and radio astronomy. One project develops methods to quantify gas emission from active volcanoes which also provide information on ozone depletion and climate change. A method based on UV/visible light for quantifying hydrocarbon emission from oil-related industrial activities has also been developed. Radar data from satellite missions and tower instruments are used to understand the role of forests, oceans and sea ice in climate change. The activities also include the Square Kilometer Array (SKA), the world's largest and most advanced radio telescope. A compact feed antenna with extremely large bandwidth is developed for this purpose. This antenna technique can also be used in satellite communication terminals, radio links and medical imaging.​


Sustainable development

The programme is highly interlinked with the achievement of the UN Sustainable development goals (SDGs). The table below provides an overview of the sustainable development goals and the associated targets within the programme.
SDGs for Wireless, photonics and space engineering at Chalmers

Goal 9: Industry, Innovation and Infrastructure
Wireless and photonics technology are key enablers for the fourth industrial revolution, e.g. 5G and 6G communication networks and Internet of Things (IoT).

Goal 11: Sustainable cities and communities
Wireless and photonics sensor systems are needed for transforming cities and achieving sustainability. Important examples include autonomous vehicles and pollution monitoring.

Goal 13: Climate action
Electromagnetic sensor systems are essential for supporting climate change action, e.g. monitoring from space of CO2 emissions and the retreat of glaciers, sea ice and forests.

Student interview

“We get to fabricate and test our own solutions”​
Teanette, South Africa, Wireless, photonics and space engineering

Why did you choose this programme?
– I was first introduced to high frequency design in my bachelor’s degree, and explored it briefly in my bachelor’s thesis. My interest was especially piqued after a study visit to a radio astronomy observatory in South Africa, where the engineers shared the unique challenges they face and the clever ways in which they overcome them. Not only does this programme explore all the aspects of high frequency design that I am interested in (communications, microwave sensing, space observation), but it also provides students with the resources to fabricate and test their high frequency solutions.

What have you been working on?
– During my first study period, I worked on a group assignment where we were tasked with designing a transatlantic communication link. The goal was to create a link with a capacity of up to 10 Tb/s using deep sea optical fibre cables. We had to consider many interesting design challenges to achieve this, such as the effects of optical noise in the system, how to modulate optical signals, and how to compensate for optical dispersion along the fibre. As a student who had not worked with optics before, it was both an enlightening and rewarding experience to complete this task in a group of international students with different backgrounds.

What do you like the most about your programme?
– Engineering is not a purely theoretical field and, by implication, engineering students tend to be people who enjoy solving real-life problems in a concrete, tangible fashion. I really appreciate the fact that this course provides students with the resources and opportunities to realize their design solutions. I am especially excited about the fabrication of our high-frequency PCB design, which will be manufactured and tested later in the second study period.

What do you want to do in the future?
– Ultimately, I want to complete a PhD in high frequency design. However, I would like to build up some industry experience and broaden my skillset before finalising a thesis topic. Two fields which I’d like to pursue for their interesting applications of high frequency design are biomedical engineering and radio astronomy. With regards to the latter, I look forward to visiting the Onsala Space Observatory that is operated by Chalmers later in the programme.

​​Student Blogs

Page manager Published: Tue 17 Jan 2023.