Materials Chemistry

120 credits (MSc, 2 years )

Since the dawn of mankind, materials have played an essential role in human development. The Stone Age, the Bronze Age and the Iron Age are part of our history and today we are heading towards the Nano Age.
Using all the tools in chemistry, such as material synthesis and chemical and physical characterization methods, this broad engineering programme aims at deepening the understanding of materials properties in order to design and develop the materials of tomorrow. 

Programme description

Society is increasingly relying on chemistry in creating materials that are more environmentally sustainable, more durable, lighter, consume less energy and are cheaper. 
Centred around organic- and inorganic chemistry, polymers and nanotechnology we train you in how to use these tools in tweaking molecules to give materials specific properties. This could range from high temperature corrosion resistant materials and materials for catalysts in a chemical process or in cars to nanomaterials that have unique traits and precision targeted pharmaceuticals.
Evolving fields where materials chemistry stands for great opportunities are e.g. biodegradable detergents, solvent free paints, polymers made of renewable recourses, polymer based solar panels and diodes, thermoelectric materials that transfers heat to electricity and handling complex emissions from fuel efficient engines that rely on biofuels instead of fossil fuels.
The programme provides you with an engineering education within the materials field where emphasis is on synthesis, chemical characterisation, physical and chemical properties and applications, and top down chemical nano manufacturing. There is also a close
connection to industrially relevant materials, including both present products and the materials of the future.

Educational methods

As a student you will develop the knowledge, skills and attitudes that are necessary to handle the complexity of materials related problem solving in products and processes. This includes e.g. design, development of new and existing materials, synthesis and characterization of material’s properties. Several of the compulsory elective courses have a project based part where e.g. teamwork and innovation processes are included. The projects are to be presented in written reports, posters and/or orally. 

Other Programmes that might interest you

Three courses, during the first semester of the program, are compulsory (orange in figure) There are 20

compulsory elective courses (yellow in figure) out of at least five have to be selected. A master thesis project of 30 or 60 credits (purple in figure) is required. Up to 30 additional credits can be selected from advanced courses on Chalmers or from the compulsory elective courses. For example Project in Material Chemistry (blue in figure).


Compulsory elective courses during year 1

Spring (study period 1): Advanced organic chemistry, Nanomaterials chemistry, Advanced analytical chemistry, Corrosion, Surface engineering, Biological materials, Ceramics engineering, Solvent extraction, Nuclear materials, Advanced organic synthesis

Spring (study period 2): Polymer technology, Catalysis, Applied coordination chemistry, Solid state chemistry, Applied optical spectroscopy


Compulsory elective courses during year 2

Autumn (study period 1): Applied organic molecular spectroscopy, Green chemistry, Design and analysis of experiments.

Autumn (study period 2): Tailored mater and commercialization, Materials in medicine

Please note that the above schematic view corresponds to the academic year starting in autumn 2017. Minor changes may occur.

Programme content in detail

You will find the programme content in detail, incl. syllabus and description of the courses for the current year in the Student Portal, the intranet for enrolled students at Chalmers.
Programme content in detail, incl. syllabus and description of the courses

Career opportunities

Scientists, in industry or academia, and engineers in materials science are active in fields ranging from fundamental materials development to application of materials technology in products and processes. Sweden has cutting edge research in characterisation, design and development of new materials. There is thus a continuous need for materials engineers with a sound chemistry background within Swedish industry, such as automotive, rolling bearings, bioimplants, polymers, surface treatment, paint, packaging materials, hygiene and healthcare products and pharmaceuticals. In addition, sustainable engineering opens up more opportunities such as catalysis, recycling, biodegradable materials, tailored nanomaterials and corrosion resistant alloys.
Besides moving on as PhD-students, previous student have found positions at e.g. Komet, ST1, Emerson, Borealis, SP, Domsjö fabriker, Eka Chemicals, Mölnlycke Healthcare, Elasto Sweden AB, YKI, Tetra Pack, Intellego Technologies, Akzo Nobel, Oxeon, Vinci Technologies, Kronans droghandel, Iggesund paperboard, Volvo Cars, Alström Power, Forbo Forshaga.

Research and industry connections

Connections to research are strong within all areas in the programme. The teachers are researchers and/or PhD-students who all take an active part in the research activities at the department, this guarantees research relevance and novelty in the courses. The connection is strengthened through the Research School in Materials Science and the Area of Advance in Materials Science. In many of the courses the students work in small research projects, which are directly related to the research performed at the division.

Published: Wed 17 Nov 2010. Modified: Mon 16 Apr 2018