Piecewise linear interpolation of noise in finite element approximations of parabolic SPDEs

Andreas Petersson
Joint work with Gabriel Lord, Radboud University
Swedcomp 2022, October 27
Stochastic partial differential equation (SPDE) setting

Consider a stochastic advection-reaction-diffusion equation in $[0, T] \times \mathcal{D}$,

$$
\frac{\partial X}{\partial t}(t, x) = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_j} \left(a_{i,j} \frac{\partial X}{\partial x_i} \right)(t, x) + b(x) \cdot \nabla X(t, x) + f(X(t, x), x) + g(X(t, x), x) \frac{\partial W(t)}{\partial t}(x)
$$

with Gaussian noise W such that $\text{Cov}(W(t, x), W(s, y)) = \min(t, s)q(x, y)$. This is modeled as an Itô SDE in $H = L^2(\mathcal{D})$ (with $\mathcal{D} \subset \mathbb{R}^2$ a convex polygon),

$$
\text{d}X(t) + AX(t) = F(X(t)) \text{d}t + G(X(t)) \text{d}W(t), \quad t \in (0, T],
$$

$$
X(0) = X_0,
$$

where A is elliptic with either Dirichlet or Neumann boundary conditions, F, G Lipschitz non-linearities and W a standard cylindrical Wiener process in the reproducing kernel Hilbert space $H_q(\mathcal{D})$.

We consider fully discrete approximations $X_{h, \Delta t}$ for such SPDEs based on piecewise linear finite elements on a triangulation \mathcal{T}_h of \mathcal{D} with maximal mesh size h and a semi-implicit Euler scheme with time step size Δt.

2
Noise discretization

In the approximation we must, with $\Delta W^j = W(t_{j+1}) - W(t_j)$, compute

$$\mathcal{W}_k = \left\langle G(X^j_{h, \Delta t}) \Delta W^j, \phi_k \right\rangle_H = \int_D g(X^j_{h, \Delta t}(x), x) \Delta W^j(x) \phi_k(x) \, dx$$

for each time t_{j+1} and nodal basis function ϕ_k, $k = 1, \ldots, N_h$.

Conditioned on $X^j_{h, \Delta t}$, $(\mathcal{W}_k)_{k=1}^{N_h}$ is Gaussian with covariance matrix

$$\text{Cov}(\mathcal{W}_k, \mathcal{W}_\ell) = \Delta t \int_D \int_D g(X^j_{h, \Delta t}(x), x) g(X^j_{h, \Delta t}(y), y) \phi_k(x) \phi_\ell(y) q(x, y) \, dx \, dy.$$

We avoid computing this matrix and performing a Cholesky decomposition at each time t_j by discretizing ΔW^j via piecewise linear interpolation.

What is the resulting noise discretization error?
Piecewise linear interpolation of noise

We assume that q is positive semidefinite on $S \supseteq D$ with an additional triangulation $T_{h'}$ on S. We replace

$$\Delta W^j \rightarrow I_h R_{S \rightarrow D} I_{h'} \Delta \tilde{W}^j.$$

Here I_h and $I_{h'}$ are piecewise linear interpolants with respect to T_h and an additional triangulation $T_{h'}$ on S while $R_{S \rightarrow D}$ restricts functions on S to D and \tilde{W} is an extension of W to a cylindrical Wiener process in $H_q(S)$. This is made rigorous by

(i) constructing the extension \tilde{W},
(ii) realizing that evaluation functionals are continuous on RKHS and
(iii) considering $I_h R_{S \rightarrow D} I_{h'}$ as mapping one cylindrical Wiener process to another.

In terms of the basis functions ϕ^j_k associated to the $N_{h'}$ nodes x'_k of $T_{h'}$,

$$I_{h'} \Delta \tilde{W}^j = \sum_{k=1}^{N_{h'}} \Delta \tilde{W}^j(x'_k) \phi^j_k \text{ with } \text{Cov}(\Delta \tilde{W}^j(x'_k), \Delta \tilde{W}^j(x'_\ell)) = \Delta t q(x'_k, x'_\ell).$$

(i) Need only sample $N_{h'}$ values from q without calculating integrals involving q.
(ii) Applicable to the circulant embedding method on a square S with a uniform mesh.
(iii) Straightforward to implement in modern finite element software such as FEniCS.
Stochastic reaction-diffusion eq. with multiplicative Matérn noise, $t = 0.9, 0.95, 1.0$.
Bound on noise discretization error

1. q is bounded and $\exists \gamma \in (0, 1] : q(x, x) - 2q(x, y) + q(y, y) \leq C|x - y|^{2\gamma}, \; x, y \in S$

2. For some $\mu > 0$ there is a $p > 2/\mu$ such that $H_q(S) \hookrightarrow W^{\mu, p}(S)$.

Suppose that q satisfies these assumptions and that $g : \mathbb{R} \times \mathcal{D} \rightarrow \mathbb{R}$ defining G is jointly Lipschitz. Then for $r \in [0, \min(\gamma, \theta))$ and $X_0 \in \text{dom}(A^{(r+1)/2})$ with

$$\theta = \begin{cases}
1/2 & \text{under Dirichlet boundary conditions on } A, \\
1 & \text{under Neumann boundary conditions},
\end{cases}$$

and suitable advection-reaction terms F, we prove the following:

Theorem

Let $(T_h)_{h \in (0, 1]}$ on \mathcal{D} be quasiuniform and let $(T'_h)_{h' \in (0, 1]}$ on S be regular with $h \leq Ch'$. Then, $\forall s < \min(\mu, 2)$, $\exists C < \infty$ such that $\forall \Delta t, h \in (0, 1]$,

$$\sup_{j \in \{1, \ldots, N_{\Delta t}\}} \|X^j_{h, \Delta t} - X(t_j)\|_{L^p(\Omega, H)} \leq C(h^{r+1} + \Delta t^{1/2} + (h')^s).$$

A split into an SPDE approximation error and a noise discretization error.
Proof techniques

The approach follows [Kruse, 2014] with the addition of a noise discretization error bound. Main tools for this are **Hilbert–Schmidt** bounds on G such as

Lemma (For $(G(u)v)(x) = g(u(x), x)v(x)$, g Lipschitz)

\[
\forall r \in [0, \gamma), u \in H^r = W^{r,2}(\mathcal{D})
\]

\[
\|G(u)\|_{\mathcal{L}_2(H^q(\mathcal{D}), H^r)} \leq C(1 + \|u\|_{H^r}).
\]

combined with similar negative-norm bounds, interpolation techniques and smoothing of the semigroup in mild SPDE solutions.

We also generalize a **fractional Sobolev norm** bound on piecewise linear finite element interpolants from [Belgacem and Brenner, 2001] to the setting $p \neq 2$.

Proposition

Let $1 < p < \infty$, $sp > 2$ and $r \in [0, s] \cap [0, 1 + 1/p)$. Then, there is a constant $C < \infty$ that does not depend on h such that for all $v \in W^s_p(\mathcal{D})$,

\[
\|(I - I_h)v\|_{W^r_p} \leq Ch^{\min(s-r,2)}\|v\|_{W^s_p}.
\]
No effect of noise discretization for Matérn covariance kernels

We study the error \(\sup_j \mathbb{E} \left[\| X_{h,\Delta t}^j - X(t_j) \|_{L^2(D)}^2 \right]^{1/2} \) numerically with fixed \(\Delta t = 10^{-3} \) and \(h = 2^{-1}, \ldots, 2^{-5} \) in a Monte Carlo simulation. \(D \) is a regular dodecagon with center \((0.5, 0.5)\) and radius 0.5, and \(S \) the unit square. We let \(A = 10^{-2}(-\Delta + 1) \) and consider three examples of kernels \(q \) with different functions \(b, f \) and \(g \) and boundary conditions. \(X \) is replaced by a reference solution.

First example: a Matérn kernel with smoothness parameter \(\nu \in (0, 1) \), \(\mu - 1 = \gamma = \nu \). Interpolation of noise does not affect the convergence rate in this case.

\[
\text{(Neumann b.c., } q(|x - y|) = \sigma^2 2^{1-\nu} / \Gamma(\nu)(\sqrt{2\nu}|x - y|/\rho)^\nu K_\nu((\sqrt{2\nu}|x - y|)/\rho), \rho = 0.25, \sigma^2 = 10, X_0 = 0, b(x) = (0, 0), f(u, x) = f(u) = 10^{-1} + u/(|u| + 1), g(u, x) = g(u) = u/(|u| + 1) \text{ and } h' = h.\text{)}
\]
Domination of noise discretization error for factorizable kernels

Next we compare the cases that q is either the exponential kernel

$$q(x, y) = \sigma^2 \exp(-|x - y|/\rho)$$

or the factorizable exponential kernel

$$q(x, y) = \sigma^2 \exp(-(|x_1 - y_1| + |x_2 - y_2|)/\rho).$$

In both cases $\gamma = 1/2$. But $H_q \hookrightarrow W^{\mu,p}$ with $\mu = 3/2, p = 2$ in the first case and with $\mu < 1$ and some $p > 2$ in the second.

(Dirichlet b.c., $\rho = 0.25, \sigma^2 = 10, X_0 = 0, f(u) = 10^{-1}, g(u) = 1, b(x) = 10^{-1}(1, 1)$ and $h' = h$.)
Sampling on coarse meshes

For smooth kernels q and non-smooth initial data, the SPDE approximation error dominates. Let

$$q(x, y) = \begin{cases} \sigma^2(1 - |x - y|)^4(4|x - y| + 1) & \text{if } |x - y| \in [0, 1], \\ 0 & \text{otherwise,} \end{cases}$$

so that $\gamma = 1, \mu = 5/2$ and let

$$X_0(x) = 3(- \log((x_1 - 0.5)^2 + (x_2 - 0.5)^2))^{1/3}, \quad x = (x_1, x_2) \in D,$$

which is in $D(A^{(r+1)/2})$ for $r = 0$ but not $r > 0$ under Neumann b.c. The error is bounded by $h + \Delta t^{1/2} + (h')^s, s < 2$. We compare the cases $h' \sim \sqrt{h}$ and $h' \sim h$.

(Left: The setting $h' \sim \sqrt{h}$. Right: $\sigma^2 = 10, f(u) = 10^{-1}, g(u) = 1$ and $b(x) = 0$.)
Thank you for listening!

Implementation in FEniCS at bitbucket.org/andreas-petersson/noise-interpolation-in-stochastic-pdes