The gauge group and perturbation semigroup of an operator system

Rui Dong
ruidong@science.ru.nl

Department of Mathematics
Radboud University Nijmegen

March 16th, 2022
Outline

Background information about operator systems

The gauge group of an operator system

Perturbation Semigroup of an operator system

Gauge group of the Toeplitz system

References
Definition

Let \mathcal{H} be a Hilbert space, $B(\mathcal{H})$ be the set of all bounded operators on \mathcal{H}. A concrete operator system is a (usually closed) linear subspace \mathcal{E} of $B(\mathcal{H})$ that is closed under the involution, i.e., $x \in \mathcal{E}$ implies $x^* \in \mathcal{E}$.
Background information about operator systems

Definition

Let \mathcal{E} be an operator system, $\varphi : \mathcal{E} \to \mathcal{E}$ be a linear map, and φ_n be the induced map $\varphi_n : M_n(\mathcal{E}) \to M_n(\mathcal{E})$.

1. The map φ is called completely bounded if $\sup_{n>0} \|\varphi_n\| < \infty$, and we set

$$\|\varphi\|_{cb} = \sup_{n>0} \|\varphi_n\|.$$

2. The map φ is called n–positive if φ_n is positive, and φ is called completely positive if φ_n is n–positive for all $n > 0$.

In addition if φ is unital we call it a unital completely positive (UCP) map.
Fact about a UCP map φ

Let $\{V_i\}_{i \leq k} \subset B(\mathcal{H})$ such that $\sum V_i^* V_i = \text{Id}$. Then the map

$$\varphi : B(\mathcal{H}) \to B(\mathcal{H})$$

$$x \mapsto \sum V_i^* x V_i$$

is a unital completely positive map.
We can embed \mathcal{E} into some C^*-algebra \mathcal{A}, and then take the gauge group of \mathcal{E} as the collection of unitary elements of \mathcal{A} that keep \mathcal{E} invariant under the unitary transformation, i.e.,

$$G(\mathcal{E}) := \{ u \in \mathcal{A} : u^* \mathcal{E} u \subset \mathcal{E} \}.$$

The C^*—algebra \mathcal{A} can be taken as

1. the C^*-envelope,
2. the injective envelope,
3. the C^*-algebra $C^*(\mathcal{E})$ generated by \mathcal{E}.
4. else
We define the gauge group $\mathcal{G}(\mathcal{E})$ of \mathcal{E} as

$$\mathcal{G}(\mathcal{E}) := \{ U \in \mathcal{U}(\mathcal{C}^*(\mathcal{E})) \mid U^* \mathcal{E} U \subset \mathcal{E} \},$$

here $\mathcal{U}(\mathcal{C}^*(\mathcal{E}))$ denotes the group of all the unitary elements in $\mathcal{C}^*(\mathcal{E})$.
Definition

We denote by $\text{UCP}_{\text{rank}=1}(\mathcal{E})$ the collection of rank-1 unital completely positive maps, i.e.,

$$\text{UCP}_{\text{rank}=1}(\mathcal{E}) := \left\{ \varphi : \mathcal{E} \to \mathcal{E} \mid \varphi(\cdot) = V^*(\cdot)V \text{ for some } V \in B(\mathcal{H}) \text{ with } V^*V = \text{Id} \right\}.$$

Proposition

There is a multiplicative map $\Psi : \mathcal{G}(\mathcal{E}) \to \text{UCP}_{\text{rank}=1}(\mathcal{E})$ defined as

$$\Psi : U \mapsto U^*(\cdot)U, \quad U \in \mathcal{G}(\mathcal{E}).$$
Inspired by the definition of perturbation semigroups introduced in [CCvS13, NvS16, Hes16], we define the perturbation semigroup \(\text{Pert}(\mathcal{E}) \) of an operator system as follows:

Definition

Let \(\mathcal{E} \) be an operator system, we define the perturbation semigroup \(\text{Pert}(\mathcal{E}) \) as the collection of all the finite sums of the form

\[
\sum a_i \otimes b_i^\circ \in C^*(\mathcal{E}) \otimes C^*(\mathcal{E})^\circ
\]

satisfying the following requirements:

1. \(\sum a_i b_i = \text{Id} \),
2. \(\sum a_i \mathcal{E} b_i \subset \mathcal{E} \),
3. \(\sum a_i \otimes b_i^\circ = \sum b_i^* \otimes a_i^\circ \).

Here \(C^*(\mathcal{E})^\circ \) denotes the opposite algebra of \(C^*(\mathcal{E}) \) and \(b_i^\circ, a_i^\circ \in C^*(\mathcal{E})^\circ \).
We denote by $\text{UCBH}(\mathcal{E})$ the collection of all unital completely bounded Hermitian maps over \mathcal{E}, i.e.,

$$\text{UCBH}(\mathcal{E}) := \{\Psi : \mathcal{E} \to \mathcal{E} \mid \Psi(x^*) = \Psi(x)^*, \Psi(\text{Id}) = \text{Id}, \Psi \text{ is completely bounded}\}.$$

Proposition ([Don21])

There is a semigroup homomorphism Φ from $\text{Pert}(\mathcal{E})$ to $\text{UCBH}(\mathcal{E})$ defined by

$$\Phi : \text{Pert}(\mathcal{E}) \to \text{UCBH}(\mathcal{E})$$

$$\omega \mapsto \sum a_i(\cdot) b_i$$

with $\omega = \sum a_i \otimes b_i^\circ \in \text{Pert}(\mathcal{E})$.
We denote by $\overline{\text{Pert}(\mathcal{E})}$ the closure of $\text{Pert}(\mathcal{E})$ with respect to the Haagerup tensor norm $\| \cdot \|_h$.

Proposition ([Don21])

Let $\mathcal{E} \subset B(\mathcal{H})$ be a unital operator system, the map $\Phi : \text{Pert}(\mathcal{E}) \to \text{UCBH}(\mathcal{E})$ can be extended to a map

$$\tilde{\Phi} : \overline{\text{Pert}(\mathcal{E})} \to \text{UCBH}(\mathcal{E}),$$

such that $\tilde{\Phi} \mid_{\text{Pert}(\mathcal{E})} = \Phi$. Moreover, if we equip $\overline{\text{Pert}(\mathcal{E})}$ and $\text{UCBH}(\mathcal{E})$ with the metric topology induced by Haagerup tensor norm $\| \cdot \|_h$ and complete bound norm $\| \cdot \|_{cb}$ respectively, the map $\tilde{\Phi}$ is contractive.
Example

Let \(\{E_{ij}\} \), \(1 \leq i, j \leq 2 \) be the standard matrix units for \(M_2(\mathbb{C}) \). Define

\[
\text{Toep}_2 = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \subset M_2(\mathbb{C}) \right\}.
\]

Take \(\omega_1, \omega_2 \in \text{Pert}(\text{Toep}_2) \) given as

\[
\omega_1 = E_{12} \otimes E_{12}^\circ + E_{21} \otimes E_{21}^\circ + E_{11} \otimes E_{11}^\circ + E_{22} \otimes E_{22}^\circ,
\]
\[
\omega_2 = (E_{12} + E_{21}) \otimes (E_{12} + E_{21})^\circ.
\]

By a direct computation we obtain that \(\Phi(\omega_1) = \Phi(\omega_2) \) on \(\text{Toep}_2 \), both give rise to the transposition map on \(\text{Toep}_2 \).

\[
\|\Phi(\omega_1)\|_{cb} = 1 < \|\omega_1\|_h = 2.
\]
Definition

We denote by $\text{Pert}^+(\mathcal{E})$ the subsemigroup of $\text{Pert}(\mathcal{E})$:

$$\text{Pert}^+(\mathcal{E}) := \{ \omega \in \text{Pert}(\mathcal{E}) \mid \omega = \sum a_i \otimes a_i^* \circ \text{ for some } a_i \in C^*(\mathcal{E}) \}.$$

Proposition ([Don21])

Let $\text{Pert}^+(\mathcal{E})$ be the closure of $\text{Pert}^+(\mathcal{E})$ with respect to Haagerup tensor norm. We can extend the map $\Phi : \text{Pert}^+(\mathcal{E}) \to \text{UCP}(\mathcal{E})$ to a map

$$\tilde{\Phi} : \text{Pert}^+(\mathcal{E}) \to \text{UCP}(\mathcal{E}),$$

such that $\tilde{\Phi}_{|_{\text{Pert}^+(\mathcal{E})}} = \Phi$. Moreover, we have $\|\omega\|_h = 1$ and $\|\tilde{\Phi}(\omega)\|_{cb} = 1$ for every $\omega \in \text{Pert}^+(\mathcal{E})$.
We denote by Toep_n the Toeplitz system that contains all the $n \times n$ complex Toeplitz matrices T of the form

$$T := \begin{pmatrix}
 t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\
 t_{1} & t_{0} & t_{-1} & \cdots & t_{-n+2} \\
 \vdots & t_{1} & t_{0} & \ddots & \vdots \\
 t_{n-2} & \vdots & \ddots & \ddots & t_{-1} \\
 t_{n-1} & t_{n-2} & \cdots & t_{1} & t_{0}
\end{pmatrix}$$

with $t_k \in \mathbb{C}$ for $k = -n + 1, \ldots, n - 1$.
Proposition ([Don21])

The gauge group \(\mathcal{G}(\text{Toep}_n) \) is generated by the diagonal matrices \(U_{\alpha,\beta} \) and anti-diagonal matrix \(V \) of the form

\[
U_{\alpha,\beta} = \begin{pmatrix}
\alpha & 0 & \cdots & 0 \\
0 & \beta & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \overline{\alpha}^{n-2}\beta^{n-1}
\end{pmatrix}, \quad V = \begin{pmatrix}
0 & \cdots & 0 & 1 \\
0 & \cdots & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & \cdots & 0 & 0
\end{pmatrix},
\]

here \(|\alpha| = |\beta| = 1 \).
Corollary ([Don21])

The group of $\text{UCP}_{\text{rank}=1}(\text{Toep}_n)$ is isomorphic to the semidirect product of $U(1)$ and \mathbb{Z}_2, and the gauge group $G(\text{Toep}_n)$ is different from $\text{UCP}_{\text{rank}=1}(\text{Toep}_n)$ by a phase factor, that is,

$$\text{UCP}_{\text{rank}=1}(\text{Toep}_n) = U(1) \rtimes \mathbb{Z}_2$$

and

$$G(\text{Toep}_n) = U(1) \rtimes (U(1) \rtimes \mathbb{Z}_2).$$

Moreover, We have the short exact sequence which is independent of n:

$$1 \longrightarrow U(1) \longrightarrow G(\text{Toep}_n) \longrightarrow \text{UCP}_{\text{rank}=1}(\text{Toep}_n) \longrightarrow 1.$$

