C^*-algebras associated to homeomorphisms twisted by vector bundles over finite dimensional spaces

Marzieh Forough

Czech Technical University
based on joint work with Adamo, Archey, Georgescu, Jeong, Strung and Viola and ongoing project with Adamo and Strung
Definition. Let A be C^*-algebra. A C^*-correspondence over A is a right Hilbert A-module E equipped with a *-homomorphism,

$$
\varphi_E : A \to \mathcal{L}(E),
$$

called the **structure map**.

Let E be a right Hilbert A-module and left Hilbert A-module. We say that E is an A-Hilbert bimodule if

$$
\xi \langle \eta, \zeta \rangle_E = E \langle \xi, \eta \rangle \zeta, \quad \xi, \eta, \zeta \in E,
$$

where $\langle \cdot, \cdot \rangle_E$ denotes the right inner product and $E \langle \cdot, \cdot \rangle$ the left inner product.
Definition. Let A be a C^*-algebra. A C^*-correspondence over A is a right Hilbert A-module \mathcal{E} equipped with a *-homomorphism,

$$
\varphi_{\mathcal{E}} : A \to \mathcal{L}(\mathcal{E}),
$$

called the *structure map*.

The map $\varphi_{\mathcal{E}}$ gives \mathcal{E} a left A-module structure, but not necessarily a left Hilbert A-module structure, as there need not be a left A-valued inner product on \mathcal{E}.
Definition. Let A be C^*-algebra. A C^*-correspondence over A is a right Hilbert A-module E equipped with a *-homomorphism,

$$\varphi_E : A \to \mathcal{L}(E),$$

called the structure map.

The map φ_E gives E a left A-module structure, but not necessarily a left Hilbert A-module structure, as there need not be a left A-valued inner product on E.

Let E be a right Hilbert A-module and left Hilbert A-module. We say that E is an A-Hilbert bimodule if

$$\xi \langle \eta, \zeta \rangle_E = \varepsilon \langle \xi, \eta \rangle \zeta, \quad \xi, \eta, \zeta \in E,$$

where $\langle \cdot, \cdot \rangle_E$ denotes the right inner product and $\varepsilon \langle \cdot, \cdot \rangle$ the left inner product.
Cuntz-Pimsner algebras

Definition. Let A and B be \mathcal{C}^*-algebras and let \mathcal{E} be a \mathcal{C}^*-correspondence over A with structure map $\varphi_\mathcal{E} : A \to \mathcal{L}(\mathcal{E})$. A representation (π, τ) of \mathcal{E} on B consists of a \ast-homomorphism $\pi : A \to B$ and a linear map $\tau : \mathcal{E} \to B$ satisfying

1. $\pi(\langle \xi, \eta \rangle_\mathcal{E}) = \tau(\xi)^\ast \tau(\eta)$, for every $\xi, \eta \in \mathcal{E}$;
2. $\pi(a)\tau(\xi) = \tau(\varphi_\mathcal{E}(a)\xi)$, for every $\xi \in \mathcal{E}, a \in A$.

Let $\psi_\tau : \mathcal{K}(\mathcal{E}) \to B$ be the \ast-homomorphism defined on rank one operators by

$$\psi_\tau(\theta_{\xi,\eta}) = \tau(\xi)\tau(\eta)^\ast, \quad \xi, \eta \in \mathcal{E}.$$

We say that the representation (π, τ) is **covariant** if in addition

- $\pi(a) = \psi_\tau(\varphi_\mathcal{E}(a))$ for every $a \in J_\mathcal{E}$, where

$$J_\mathcal{E} := \varphi_\mathcal{E}^{-1}(\mathcal{K}(\mathcal{E})) \cap (\ker \varphi_\mathcal{E})^\perp$$
Definition. Let A be a C^*-algebra and let \mathcal{E} be a C^*-correspondence over A. The *Cuntz–Pimsner algebra of \mathcal{E} over A*, denoted $\mathcal{O}_A(\mathcal{E})$ (or simply $\mathcal{O}(\mathcal{E})$ if the C^*-algebra A is understood) is the C^*-algebra generated by the universal covariant representation of \mathcal{E}. By universality, we mean that the universal covariant representation (π_u, τ_u) satisfies the following: for any covariant representation (π, τ) of \mathcal{E} there exists a surjective linear map $\psi: C^*(\pi_u, \tau_u) \to C^*(\pi, \tau)$ such that $\pi = \psi \circ \pi_u$ and $\tau = \psi \circ \tau_u$.
Definition. Let A be a \mathcal{C}^*-algebra and let \mathcal{E} be a \mathcal{C}^*-correspondence over A. The *Cuntz–Pimsner algebra of \mathcal{E} over A*, denoted $\mathcal{O}_A(\mathcal{E})$ (or simply $\mathcal{O}(\mathcal{E})$ if the \mathcal{C}^*-algebra A is understood) is the \mathcal{C}^*-algebra generated by the universal covariant representation of \mathcal{E}.

By universality, we mean that the universal covariant representation (π_u, τ_u) satisfies the following: for any covariant representation (π, τ) of \mathcal{E} there exists a surjective linear map $\psi: \mathcal{C}^*(\pi_u, \tau_u) \to \mathcal{C}^*(\pi, \tau)$ such $\pi = \psi \circ \pi_u$ and $\tau = \psi \circ \tau_u$.

Marzieh Forough

\mathcal{C}^*-algebras associated to homeomorphisms twisted by vector bundles
Serre-Swan theorem says that if X is a compact metric space and \mathcal{E} is an algebraically finitely generated right $C(X)$-module, then there exists a vector bundle $\mathcal{V} = [V, p, X]$ such that $\mathcal{E} \cong \Gamma(\mathcal{V})$ where $\Gamma(\mathcal{V})$ denotes the $C(X)$-module of continuous sections of \mathcal{V}.
Serre-Swan theorem says that if X is a compact metric space and \mathcal{E} is an algebraically finitely generated right $C(X)$-module, then there exists a vector bundle $\mathcal{V} = [V, p, X]$ such that $\mathcal{E} \cong \Gamma(\mathcal{V})$ where $\Gamma(\mathcal{V})$ denotes the $C(X)$-module of continuous sections of \mathcal{V}.

We denote a vector bundle over a locally compact metric space X by $\mathcal{V} = [V, p, X]$, where $p : V \to X$ is a continuous surjective map and for every $x \in X$, the fibre $p^{-1}(x) \cong \mathbb{C}^{n_x}$ for some $n_x \in \mathbb{Z}_{\geq 0}$.
Serre-Swan theorem says that if X is a compact metric space and E is an algebraically finitely generated right $C(X)$-module, then there exists a vector bundle $\mathcal{V} = [V, p, X]$ such that $E \cong \Gamma(\mathcal{V})$ where $\Gamma(\mathcal{V})$ denotes the $C(X)$-module of continuous sections of \mathcal{V}.

We denote a vector bundle over a locally compact metric space X by $\mathcal{V} = [V, p, X]$, where $p : V \to X$ is a continuous surjective map and for every $x \in X$, the fibre $p^{-1}(x) \cong \mathbb{C}^{n_x}$ for some $n_x \in \mathbb{Z}_{\geq 0}$.

A chart for a vector bundle $\mathcal{V} = [V, p, X]$ is an open subset of X together with an isomorphism $h : U \times \mathbb{C}^{nu} \to \mathcal{V}|_U$ where $\mathbb{C}^{nu} \cong p^{-1}(x)$ for any $x \in U$.
Serre-Swan theorem says that if \(X \) is a compact metric space and \(\mathcal{E} \) is an algebraically finitely generated right \(C(X) \)-module, then there exists a vector bundle \(\mathcal{V} = [V, p, X] \) such that \(\mathcal{E} \cong \Gamma(\mathcal{V}) \) where \(\Gamma(\mathcal{V}) \) denotes the \(C(X) \)-module of continuous sections of \(\mathcal{V} \).

We denote a vector bundle over a locally compact metric space \(X \) by \(\mathcal{V} = [V, p, X] \), where \(p : V \to X \) is a continuous surjective map and for every \(x \in X \), the fibre \(p^{-1}(x) \cong \mathbb{C}^{n_x} \) for some \(n_x \in \mathbb{Z}_{\geq 0} \).

A chart for a vector bundle \(\mathcal{V} = [V, p, X] \) is an open subset of \(X \) together with an isomorphism \(h : U \times \mathbb{C}^{n_U} \to \mathcal{V}|_U \) where \(\mathbb{C}^{n_U} \cong p^{-1}(x) \) for any \(x \in U \).

An atlas for \(\mathcal{V} \) is a family of charts \(\{h_i : U_i \times \mathbb{C}^{n_i} \to \mathcal{V}|_{U_i}\}_{i \in I} \) such that the \(U_i \) cover \(X \).
The right $C(X)$-module $\Gamma(\mathcal{V})$ admits a right $C(X)$-valued inner product defined as follows.

Let $(\{U_i, h_i\})_{i=1}^N$ be an atlas for \mathcal{V} and $\gamma_1, \ldots, \gamma_N$ be a partition of unity subordinate to U_1, \ldots, U_N. Define

$$\langle \xi, \eta \rangle_{\Gamma(\mathcal{V})}(x) := \sum_{j=1}^N \gamma_j(x) \langle h_j^{-1}(\xi(x)), h_j^{-1}(\eta(x)) \rangle_{\mathbb{C}^n_j},$$

which makes $\Gamma(\mathcal{V})$ into a right Hilbert $C(X)$-module.
The right $C(X)$-module $\Gamma(\mathcal{V})$ admits a right $C(X)$-valued inner product defined as follows.

Let $\{(U_i, h_i)\}_{i=1}^N$ be an atlas for \mathcal{V} and $\gamma_1, \ldots, \gamma_N$ be a partition of unity subordinate to U_1, \ldots, U_N. Define

$$\langle \xi, \eta \rangle_{\Gamma(\mathcal{V})}(x) := \sum_{j=1}^N \gamma_j(x) \langle h_j^{-1}(\xi(x)), h_j^{-1}(\eta(x)) \rangle_{\mathbb{C}^{n_j}},$$

which makes $\Gamma(\mathcal{V})$ into a right Hilbert $C(X)$-module.

Fact. Let X be an infinite compact metric space. Suppose that \mathcal{E} is a finitely generated projective right Hilbert $C(X)$-module. Then there exists a vector bundle $\mathcal{V} = [V, \rho, X]$ and a unitary isomorphism $U : \mathcal{E} \to \Gamma(\mathcal{V})$, where $\Gamma(\mathcal{V})$ is equipped with an inner product as defined in (1) with respect to any choice of atlas for \mathcal{V}.
Examples.

- Let $\mathcal{V} = [X \times \mathbb{C}^n, p, X]$ be a trivial bundle with constant rank $n > 1$, and let $\varphi : C(X) \to \mathcal{L}(\Gamma(\mathcal{V}))$ be given by $\varphi(f)(\xi) = \xi f$. Then $\mathcal{O}(\Gamma(\mathcal{V})) \cong C(X, \mathcal{O}_n)$.

- Let \mathcal{E} be the right Hilbert $C(X)$-module of sections associated to a trivial line bundle $\mathcal{V} = [X \times \mathbb{C}, p, X]$ and let $\alpha : X \to X$ be a homeomorphism. Define $\varphi : C(X) \to \mathcal{L}(\Gamma(\mathcal{V}))$ by $\varphi(f)(\xi) = \xi f \circ \alpha$, then $\mathcal{O}(\mathcal{E}) \cong C(X) \rtimes_{\alpha} \mathbb{Z}$.

- Let X be a compact metric space, \mathcal{V} a vector bundle over X and $\alpha : X \to X$ a homeomorphism. Denote by $\Gamma(\mathcal{V}, \alpha)$ the C^*-correspondence which has right Hilbert $C(X)$-module structure given by $\Gamma(\mathcal{V})$ and structure map $\varphi : C(X) \to \mathcal{K}(\Gamma(\mathcal{V}))$ by $\varphi(f)\xi = \xi f \circ \alpha$.

Marzieh Forough

C^*-algebras associated to homeomorphisms twisted by vector bundles
We have the following characterisation of Hilbert $C(X)$-bimodules which are finitely generated projective as right Hilbert $C(X)$-modules.

Proposition. Let \mathcal{E} be a non-zero Hilbert $C(X)$-bimodule which is finitely generated projective as a right Hilbert $C(X)$-module. Then there exist a compact metric space $Y \cong X$, line bundle $\mathcal{V} = [V, p, X]$ and homeomorphism $\alpha : X \rightarrow Y$ such that

- $\mathcal{E}_{C(X)} \cong \Gamma(\mathcal{V})$;
- $c(X)\mathcal{E} \cong \Gamma((\alpha^{-1})^*\mathcal{V})$;
- $f\xi = \xi f \circ \alpha$ for every $f \in C(X)$ and every $\xi \in \mathcal{E}$.

If \mathcal{E} is left full, then we may take $X = Y$ and $\mathcal{E} \cong \Gamma(\mathcal{V}, \alpha)$.

Marzieh Forough

C^*-algebras associated to homeomorphisms twisted by vector bundles
We have the following characterisation of Hilbert $C(X)$-bimodules which are finitely generated projective as right Hilbert $C(X)$-modules.

Proposition. Let \mathcal{E} be a non-zero Hilbert $C(X)$-bimodule which is finitely generated projective as a right Hilbert $C(X)$-module. Then there exist a compact metric space $Y \cong X$, line bundle $\mathcal{V} = [V, p, X]$ and homeomorphisms $\alpha : X \to Y$ such that

- $\mathcal{E}_{C(X)} \cong \Gamma(\mathcal{V})$;
- $C(X)\mathcal{E} \cong \Gamma((\alpha^{-1})^* \mathcal{V})$;
- $f\xi = \xi f \circ \alpha$ for every $f \in C(X)$ and every $\xi \in \mathcal{E}$.

If \mathcal{E} is left full, then we may take $X = Y$ and $\mathcal{E} \cong \Gamma(\mathcal{V}, \alpha)$.
A homeomorphism $\alpha : X \to X$ is \textit{minimal} if, whenever $E \subset X$ is a closed subset such that $\alpha(E) \subset E$, then $E \in \{\emptyset, X\}$.
A homeomorphism $\alpha : X \to X$ is minimal if, whenever $E \subset X$ is a closed subset such that $\alpha(E) \subset E$, then $E \in \{\emptyset, X\}$, or equivalently, for every $x \in X$, the orbit of x,

$orb(x) := \{\alpha^n(x) \mid n \in \mathbb{Z}\}$ is dense in X.

Theorem

Let X be a compact metric space, V a vector bundle over X and $\alpha : X \to X$ a homeomorphism. Then $O(\Gamma(\mathcal{Y}, \alpha))$ is simple if and only if α is minimal.
Simplicity of \(\mathcal{O}(\Gamma(\mathcal{V}, \alpha)) \)

A homeomorphism \(\alpha : X \to X \) is *minimal* if, whenever \(E \subset X \) is a closed subset such that \(\alpha(E) \subset E \), then \(E \in \{\emptyset, X\} \),

or equivalently, for every \(x \in X \), the orbit of \(x \),

\[
\text{orb}(x) := \{\alpha^n(x) \mid n \in \mathbb{Z}\}
\]

is dense in \(X \).

Theorem Let \(X \) be a compact metric space, \(\mathcal{V} \) a vector bundle over \(X \) and \(\alpha : X \to X \) a homeomorphism. Then \(\mathcal{O}(\Gamma(\mathcal{V}, \alpha)) \) is simple if and only if \(\alpha \) is minimal.
Theorem Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ where $\mathcal{V} = [V, p, X]$ is a vector bundle and $\alpha : X \to X$ is a homeomorphism. Then $T(\mathcal{O}(\mathcal{E})) \neq \emptyset$ if and only if \mathcal{V} is a line bundle.
Trace space of $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$

Theorem Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ where $\mathcal{V} = [V, p, X]$ is a vector bundle and $\alpha : X \to X$ is a homeomorphism. Then $T(\mathcal{O}(\mathcal{E})) \neq \emptyset$ if and only if \mathcal{V} is a line bundle.

The gauge action gives us an associated conditional expectation onto the fixed point C^*-subalgebra given by

$$\Phi : \mathcal{O}(\mathcal{E}) \to \mathcal{O}(\mathcal{E})^\sigma, \quad a \mapsto \int_T \sigma_z(a)dz. \quad (2)$$

Let \mathcal{V} be a line bundle. Let μ be an α-invariant probability measure on X, and let

$$\tau_{\mu}(f) = \int_X fd\mu,$$

which is evidently a state. Then $\tau_{\mu} \circ \Phi$ is tracial.
Trace space of $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$

Theorem Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ where $\mathcal{V} = [V, p, X]$ is a vector bundle and $\alpha : X \to X$ is a homeomorphism. Then $T(\mathcal{O}(\mathcal{E})) \neq \emptyset$ if and only if \mathcal{V} is a line bundle.

The gauge action gives us an associated conditional expectation onto the fixed point \mathbb{C}^*-subalgebra given by

$$
\Phi : \mathcal{O}(\mathcal{E}) \to \mathcal{O}(\mathcal{E})^\sigma, \quad a \mapsto \int \sigma_z(a)dz.
$$

(2)

Let \mathcal{V} be a line bundle. Let μ be an α-invariant probability measure on X, and let

$$
\tau_\mu(f) = \int_X f d\mu,
$$

which is evidently a state. Then $\tau_\mu \circ \Phi$ is tracial. Indeed, every tracial state arises in this way.
Theorem Let X be an infinite compact metric space, $\mathcal{V} = [V, p, X]$ a line bundle, and $\alpha : X \to X$ an aperiodic homeomorphism. Let $\mathcal{E} := \Gamma(\mathcal{V}, \alpha)$.

Then there are affine homeomorphisms

$$T(\mathcal{O}(\mathcal{E})) \cong T(C(X) \rtimes_{\alpha} \mathbb{Z}) \cong M^1(X, \alpha),$$

where $M^1(X, \alpha)$ denotes the space of α-invariant Borel probability measures.
Theorem. Let X be an infinite compact metric space, $\mathcal{V} = [V, p, X]$ a line bundle, and $\alpha : X \to X$ an aperiodic homeomorphism. Let $\mathcal{E} := \Gamma(\mathcal{V}, \alpha)$. Then there are affine homeomorphisms

$$T(\mathcal{O}(\mathcal{E})) \cong T(C(X) \rtimes_\alpha \mathbb{Z}) \cong M^1(X, \alpha),$$

where $M^1(X, \alpha)$ denotes the space of α-invariant Borel probability measures.

Corollary. Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ where $\mathcal{V} = [V, p, X]$ is a line bundle and $\alpha : X \to X$ is a minimal homeomorphism. Then $\mathcal{O}(\mathcal{E})$ is stably finite.
Theorem (Elliott, Gong, Lin, Niu, Tikuisis, Winter, White,...) Let A and B be simple, separable, unital with finite nuclear dimension and which satisfy the UCT. Then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$.
Theorem (Elliott, Gong, Lin, Niu, Tikuisis, Winter, White,...) Let A and B be simple, separable, unital with finite nuclear dimension and which satisfy the UCT. Then $A \cong B$ if and only if $\text{Ell}(A) \cong \text{Ell}(B)$.

We have already showed that when $O(\Gamma(\mathcal{V}, \alpha))$ is simple and Katsura proved that $O(\Gamma(\mathcal{V}, \alpha))$ satisfy the UCT. So when does it have finite nuclear dimension?
Theorem Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha: X \to X$ an aperiodic homeomorphism. Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$, then $O(\mathcal{E})$ has finite nuclear dimension.
Theorem Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha : X \to X$ an aperiodic homeomorphism. Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$, then $\mathcal{O}(\mathcal{E})$ has finite nuclear dimension. If α is minimal, then the nuclear dimension is one.
Theorem Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha : X \to X$ an aperiodic homeomorphism. Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$, then $\mathcal{O}(\mathcal{E})$ has finite nuclear dimension. If α is minimal, then the nuclear dimension is one.

Theorem Let X, Y be compact metric spaces with finite dimensional, $\alpha : X \to X$ and $\beta : Y \to Y$ be minimal homeomorphisms and let \mathcal{V} and \mathcal{W} be vector bundles over X and Y, respectively. Then $\mathcal{O}_{C(X)}(\Gamma(\mathcal{V}, \alpha)) \cong \mathcal{O}_{C(Y)}(\Gamma(\mathcal{W}, \beta))$ if and only if

$$\text{Ell}(\mathcal{O}_{C(X)}(\Gamma(\mathcal{V}, \alpha))) \cong \text{Ell}(\mathcal{O}_{C(Y)}(\Gamma(\mathcal{W}, \beta))).$$
Corollary Let where $\alpha: X \to X$ is a minimal homeomorphism and $\dim(X) < \infty$. Then $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ is stable rank one if and only if \mathcal{V} is a line bundle. Otherwise it is purely infinite.
Let \mathcal{V} be a line bundle over a compact metric space and $\alpha: X \rightarrow X$ be a homeomorphism.

Theorem. $\mathcal{C}(X)$ is a maximal abelian subalgebra of $\mathcal{O}(\Gamma(\mathcal{V},\alpha))$ if and only if α is topologically free (that is, the set of aperiodic points is dense).
Let \mathcal{V} be a line bundle over compact metric space and $\alpha: X \to X$ be a homeomorphism.

When does $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ have a Cartan subalgebra?
Let \mathcal{V} is a line bundle over compact metric space and $\alpha: X \rightarrow X$ be a homeomorphism.

When does $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ have a Cartan subalgebra?

Or in particular, when $C(X)$ is a Cartan subalgebra of $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$?

Theorem. $C(X)$ is a maximal abelian subalgebra of $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ if and only if α is toplogically free (that is the set of aperiodic points is dense).
Let \mathcal{V} be a line bundle over compact metric space and $\alpha: X \to X$ be a homeomorphism.

When does $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ have a Cartan subalgebra?

Or in particular, when $C(X)$ is a Cartan subalgebra of $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$?

Theorem. $C(X)$ is a maximal abelian subalgebra of $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ if and only if α is topologically free (that is the set of aperiodic points is dense).
Theorem The following conditions are equivalent:

(a) $C(X)$ is a Cartan subalgebra of $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$;
(b) α is topologically free;
(c) If ideal $I \triangleleft \mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ has zero intersection with $C(X)$, then $I = 0$.
Theorem The following conditions are equivalent:

(a) $C(X)$ is a Cartan subalgebra of $\mathcal{O}(\Gamma(V, \alpha))$;

(b) \(\alpha \) is topologically free;

(c) If ideal \(I \triangleleft \mathcal{O}(\Gamma(V, \alpha)) \) has zero intersection with \(C(X) \), then \(I = 0 \).

Question What is the role of the line bundle \(V \) in the description of the Cartan pair of \((\mathcal{O}(\Gamma(V, \alpha)), C(X)) \)?
Renault constructed a bijection between isomorphism classes of twists over topologically principal, second countable etale groupoids and isomorphism classes of Cartan pairs of separable C^*-algebras.
Renault constructed a bijection between isomorphism classes of twists over topologically principal, second countable etale groupoids and isomorphism classes of Cartan pairs of separable C^*-algebras.

Let B be a Cartan subalgebra of separable C^*-algebra A, Renault, based on the work of Kumjian, constructed Weyl groupoid $\mathcal{G}_{(A,B)}$ and Weyl twist $\Sigma_{(A,B)}$ over $\mathcal{G}_{(A,B)}$ such that $(C(\mathcal{G}_{(A,B)}^{(0)}), C^*_r(\mathcal{G}_{(A,B)}; \Sigma_{(A,B)}))$ is a Cartan pair and isomorphic to (B, A).

Marzieh Forough
Theorem. The Weyl groupoid associated to the Cartan pair $(\mathcal{O}(\Gamma(\mathcal{V}, \alpha)), \mathcal{C}(X))$ is isomorphic to $X \times_\alpha \mathbb{Z}$.

For every line bundle \mathcal{V} over X, one can associate a principal circle bundle $P\mathcal{V}$ in a "canonical way". Define $j_\alpha: X \times_\alpha \mathbb{Z} \to X$ by $j_\alpha(\alpha k(x), k, x) \mapsto x$, then Deaconu-Kumjian-Muhly showed that $j_\alpha^*(P\mathcal{V})$ defines a twist on $X \times_\alpha \mathbb{Z}$. Let denote this twist by $\Sigma_{\mathcal{V}, \alpha}$.
Theorem. The Weyl groupoid associated to the Cartan pair $(\mathcal{O}(\Gamma(\mathcal{V}, \alpha)), C(X))$ is isomorphic to $X \times_\alpha \mathbb{Z}$.

For every line bundle \mathcal{V} over X, one can associate a principal circle bundle $P_{\mathcal{V}}$ in a "canonical way".

Define $j_\alpha: X \times_\alpha \mathbb{Z} \to X$ by $j_\alpha(\alpha k(x), k, x) \mapsto x$, then Deaconu-Kumjian-Muhly showed that $j_\alpha^*\alpha(P_{\mathcal{V}})$ defines a twist on $X \times_\alpha \mathbb{Z}$. Let denote this twist by $\Sigma_{\mathcal{V}, \alpha}$.
Theorem. The Weyl groupoid associated to the Cartan pair $(\mathcal{O}(\Gamma(\mathcal{V}, \alpha)), C(X))$ is isomorphic to $X \times_\alpha \mathbb{Z}$.

For every line bundle \mathcal{V} over X, one can associate a principal circle bundle $\mathcal{P}_\mathcal{V}$ in a "canonical way".
Theorem. The Weyl groupoid associated to the Cartan pair $(\mathcal{O}(\Gamma(\mathcal{V}, \alpha)), C(X))$ is isomorphic to $X \times_\alpha \mathbb{Z}$.

For every line bundle \mathcal{V} over X, one can associate a principal circle bundle $\mathcal{P}_\mathcal{V}$ in a ”canonical way”.

Define $j_\alpha : X \times_\alpha \mathbb{Z} \to X$ by $j_\alpha(\alpha^k(x), k, x) \mapsto x$, then Deaconu-Kumjian-Muhly showed that $j_\alpha^*(\mathcal{P}_\mathcal{V})$ defines a twist on $X \times_\alpha \mathbb{Z}$.
Theorem. The Weyl groupoid associated to the Cartan pair $(\mathcal{O}(\Gamma(\mathcal{V}, \alpha)), C(X))$ is isomorphic to $X \times_{\alpha} \mathbb{Z}$.

For every line bundle \mathcal{V} over X, one can associate a principal circle bundle $\mathcal{P}_\mathcal{V}$ in a "canonical way".

Define $j_{\alpha}: X \times_{\alpha} \mathbb{Z} \to X$ by $j_{\alpha}(\alpha^k(x), k, x) \mapsto x$, then Deaconu-Kumjian-Muhly showed that $j_{\alpha}^*(\mathcal{P}_\mathcal{V})$ defines a twist on $X \times_{\alpha} \mathbb{Z}$. Let denote this twist by $\Sigma_{\mathcal{V}, \alpha}$.
Theorem Let $\alpha : X \to X$ be a topologically free homeomorphism on compact metric space X and $\mathcal{V} = (V, p, X)$ be a complex line bundle. Then Cartan pairs $(C^r(X \times_{\alpha} \mathbb{Z}, \Sigma_{\mathcal{V}, \alpha}), C(X))$ and $(C(X) \rtimes_{\Gamma(\mathcal{V}, \alpha)} \mathbb{Z}, C(X))$ are isomorphic. In particular, the Weyl twist associated to the Cartan pair $(C(X), C(X) \rtimes_{\Gamma(\mathcal{V}, \alpha)} \mathbb{Z})$ is isomorphic to $\Sigma_{\mathcal{V}, \alpha}$.
Theorem Let $\alpha: X \to X$ be a topologically free homeomorphism on compact metric space X and $\mathcal{V} = (V, p, X)$ be a complex line bundle. Then Cartan pairs $(C^*_r(X \times_\alpha \mathbb{Z}, \Sigma_{V,\alpha}), C(X)))$ and $(C(X) \rtimes_{\Gamma(\mathcal{V},\alpha)} \mathbb{Z}, C(X))$ are isomorphic. In particular, the Weyl twist associated to the Cartan pair $(C(X), C(X) \rtimes_{\Gamma(\mathcal{V},\alpha)} \mathbb{Z})$ is isomorphic to $\Sigma_{V,\alpha}$.

So non-trivial line bundles \Rightarrow non-trivial twists.
Thank you for listening!