Sustainability of Solar Energy & Energy Storage

Meng Tao
Professor & Fulbright Distinguished Chair in Alternative Energy Technology

Arizona State University
Laboratory for Terawatt Photovoltaics

Phone: (480) 965-9845 Email: meng.tao@asu.edu
U.S. Senator Fulbright

- Graduate of University of Arkansas
- Rhodes Scholar at Oxford 1924–28
- U.S. House of Representative 1942–44
- U.S. Senate 1945–75
- Chair of Senate Foreign Relations Committee 1959–74
- Fulbright Resolution

J. William Fulbright
1905–1995
Objective of Fulbright Program

“...increase mutual understanding between the people of the United States and the people of other countries by means of educational and cultural exchange; to strengthen the ties which unite us with other nations,...”

Public Law 87-256, 1961
Characteristics of the Program

- One of the oldest and largest international exchange programs: 70 years
- Bi-nationalism: “two-way exchange”
- Promotion of mutual understanding
- Public diplomacy: “giving something back”
- Over 160 participating countries

For Swedish graduate students and scholars:

www.fulbright.se
Arizona Landscape

Four Peaks from my home
Outline

- Current & future global energy demands
 - Scales required for PV & storage
- Showstoppers & bottlenecks to terawatt PV & storage
 - Availability of raw materials
 - Energy input for Si wafers & modules
 - Recyclability of end-of-life PV modules
 - Terawatt-scale storage of solar electricity
 - Recycling of batteries
 - Manufacturing and installation costs
- Strategic R&D directions for PV & storage
Acknowledgments

This talk is based primarily on:

Individuals to acknowledge:

- D. Holladay (SEMATECH)
- E. Stechel (ASU)
Background

This analysis started with the establishment of the U.S. Photovoltaic Manufacturing Consortium in Albany, NY in 2011

- A 5-year joint effort initiated by SEMATECH (D. Holladay) & myself (2006–2011)
- Forced me to look into sustainability & scalability of PV & other renewable energy technologies in general
How Much Energy Do We Need?

Current global consumption 18 TW (18×10^{12} W)
Projected demand in 2100 46 TW

Conclusion #1

PV & storage technologies have to be deployed at tens of terawatts, or they will have little impact on our energy mix or carbon emission.

- By 2100, global energy demand is projected to reach 46 TW.
- If 30% from PV, that is 13.8 TW from PV.
- Time-averaged output ~15% of peak output, so ~92 TW_{p} PV installation needed.
- If the average lifetime of PV modules is 25 years, the annual production needs to reach ~3.7 TW_{p}/yr under steady state.

We need ~100 TW_{p} of solar PV installed & ~3.7 TW_{p}/yr annual production!
Implications for PV & Storage

- Terawatt-scale deployment of any PV or storage technology requires massive amounts of natural resources
 - Raw materials, chemicals, electricity, water, transportation…
 - Limited supplies of natural resources could prevent them from reaching a terawatt scale

- There are huge amounts of wastes and end-of-life devices from any PV or storage technology
 - Limited capabilities to handle/recycle them would prevent PV from reaching a terawatt scale
Industry Status as of 12/31/16

- ~0.3 TW\textsubscript{p} global installed capacity
 - Annual revenues ~$300B
 - ~77 GW\textsubscript{p}/yr production
 - ~45% annual growth since 2005
 - ~0.8% global electricity capacity

- If 100 TW\textsubscript{p} by 2100, the industry has to expand ~327\times in 84 yrs

The potential for PV is enormous!

Growth of PV Industry*
Rapid growth expected to continue

* SolarPower Europe 2017
PV Industry Breakdown 2016

Four commercial technologies

- Wafer-Si (~190 µm): 94%
 - Multi-Si ~70% & mono-Si ~24%
- Thin-film (<5 µm): ~6%
 - CdTe ~3.8%
 - Thin-film Si: ~0.6%
 - CuIn_xGa_{1-x}Se_2 (CIGS, x=\sim0.7): ~1.6%

CdTe Market Share

- CdTe peaked in 2009 (13%) & has been losing market share since
- CdTe will continue to lose, & wafer-Si will continue to gain, market shares
Current PV Technologies

Best Research-Cell Efficiencies

Multijunction Cells (2-terminal, monolithic)
- LM = lattice matched
- MM = metamorphic
- IMM = inverted, metamorphic
 - Three-junction (concentrator)
 - Three-junction (non-concentrator)
 - Two-junction (concentrator)
 - Two-junction (non-concentrator)
 - Four-junction or more (concentrator)
 - Four-junction or more (non-concentrator)

Single-Junction GaAs
- Single crystal
- Concentrator
- Thin-film crystal

Crystalline Si Cells
- Single crystal (concentrator)
- Single crystal (non-concentrator)
- Multicrystalline
- Silicon heterostructures (HIT)
- Thin-film crystal

Thin-Film Technologies
- CIGS (concentrator)
- CIGS
- CdTe
- Amorphous Si:H (stabilized)

Emerging PV
- Dye-sensitized cells
- Perovskite cells (not stabilized)
- Organic cells (various types)
- Organic tandem cells
- Inorganic cells (CZTSSe)
- Quantum dot cells

NREL 2016

Efficiency (%)
Cost: A Well-Known Bottleneck

Cost is a major bottleneck: \(\sim 2 \times \) today

But

- PV cost coming down quickly
- Fossil fuel prices trending up

Would the PV industry take off when fossil fuel prices exceed PV cost?

The answer is likely a NO!

2022 Cost of Electricity*

- Solar electricity \(\sim 2 \times \) more expensive than other forms of electricity today
- By 2022 it is likely to be lower than coal and nuclear

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost (¢/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>5.2–15</td>
</tr>
<tr>
<td>PV</td>
<td>6.7</td>
</tr>
<tr>
<td>CSP</td>
<td>18.4</td>
</tr>
<tr>
<td>Geothermal</td>
<td>4.3</td>
</tr>
<tr>
<td>Hydropower</td>
<td>6.6</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>5.7–11</td>
</tr>
<tr>
<td>Coal</td>
<td>12.3–14</td>
</tr>
<tr>
<td>Nuclear</td>
<td>9.9</td>
</tr>
</tbody>
</table>

* DOE EIA, Annual Energy Outlook 2017
A Bottleneck for Wafer Silicon

- The process to make w-Si modules is costly, energy-intensive and polluting: ~4.2 kWh/Wp for monocrystalline Si modules
- Annual production of 3 TWp of mono-Si modules would require ~65% of the 2012 global electricity consumption,* w/o considering transmission losses

C.S. Tao et al, SEMSC 95 (2011) 3176
* DOE EIA, International Energy Statistics 2014
An Alternative Process

• Directional solidification replaces Czochralski growth: 100 kWh/kg down to 15 kWh/kg & less material loss during wafering, but multi-Si ingot
 The industry trades performance for cost!

• Fluidized-bed process may replace Siemens process, but a better purification process is still needed to reduce the energy input
Energy Payback Time

1 W_p PV produces
~1.35 kWh/yr in AZ
~15% time-averaged output

Energy payback time in Arizona
- Location dependent
- ~3 yrs for mono-Si
- ~2 yrs for multi-Si cells
- After that, installed PV produces net energy

Energy input for various scenarios*

<table>
<thead>
<tr>
<th></th>
<th>Siemens Process</th>
<th>Fluidized-Bed Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-Si Cells</td>
<td>~4.2 kWh/W_p</td>
<td>~3.3 kWh/W_p</td>
</tr>
<tr>
<td>Multi-Si Cells</td>
<td>~3.4 kWh/W_p</td>
<td>~2.5 kWh/W_p</td>
</tr>
</tbody>
</table>

* M. Tao, Terawatt Solar Photovoltaics: Roadblocks and Opportunities (Springer, 2014)
Energy Means Cost

Electricity input for poly-Si is ~220 kWh/kg (Siemens)
- In U.S., industrial electricity ~7¢/kWh
- Electricity cost for poly-Si is ~$15/kg: How can the industry profit when the poly-Si price drops below $15/kg?
 - Cheap hydropower, but its capacity is limited*
 - Self-generation ~5¢/kWh, but from fossil fuels
 - Low energy input = low cost + short energy payback time

Electricity consumption for Si PV is 2.5–4.2 kWh/W_p
- Electricity cost for 1 W_p is 17–29¢/W_p
- Si modules sold for 32–37¢/W_p today: Little room for profit

* N.S. Lewis, MRS-B 32 (2007) 808
Requirements for TW PV

Material requirements
- Abundant material
- Low-cost material
- Energy-efficient synthesis
- Low-cost synthesis
- Low-carbon synthesis
- Minimum health & environmental impact
- Stability & reliability in air & under UV
- Recyclability of modules

Device requirements
- High minority carrier lifetime
- High absorption coefficient
 - Direct bandgap
- Broad absorption spectrum
- Suitable bandgap
 - ~1.4 eV
- Both conduction types
- Suitable resistivity

None of the current PV technologies meets all of these requirements!

CdTe Solar Cells

Phenomenal growth
- First to reach $1/W_p$
- Grew 25-fold in 4 years
- But having been losing market share since

What will limit CdTe cells?
- Known reserve of Te 24,000 tons*
- Best scenario 492 GW_p
- ~0.16% of the 2100 energy demand

Abundance of Elements

Our energy/environmental crisis will not be solved by CdTe

USGS, Rare Earth Elements – Critical Resources for High Technology 2002

* USGS, Mineral Commodity Summary 2013
Best-Scenario Estimation

Estimation based on material consumption in PV modules and material reserve

- If there is 10 g of a material on the planet and each module takes 1 g of that material, at best we can make 10 modules
- It assumes 100% material utilization
 - All the reserve can be extracted: Some too expensive to extract
 - All the reserve exclusively for PV: Other industries often compete for the material
 - No material loss during fabrication
- It also assumes infinite module lifetime
 - Current modules are typically rated for 25 years
- None of these assumptions can be true – best scenarios
Other Scarce Materials

Indium in CIGS
- Known reserve 11,000 tons*
- Best scenario 1.1 TW_p from CuIn_{0.7}Ga_{0.3}Se₂
- ~0.36% of the 2100 energy demand
- Competitions for In
 - FPD, LED, lasers, nitride power devices
 - Hard for the PV industry to compete

Silver in wafer-Si
- Used as front electrode
- Known reserve 530,000 tons*
- Best scenario 20.5 TW_p
 - 0.11 g/cell
 - 4.26 W_p/cell assumed
- ~6.7% of the 2100 energy demand
- Competitions for Ag
 - Solders, brazing alloys, batteries, catalyst, jewelry, silverware...

* USGS, Mineral Commodity Summary 2015

C.S. Tao et al, SEMSC 95 (2011) 3176
Conclusion #2

Without technical breakthroughs, current commercial PV technologies excluding thin-film Si would provide ~7% of the 2100 energy demand under best scenarios.

<table>
<thead>
<tr>
<th>Cell Technology</th>
<th>Efficiency Used</th>
<th>Limiting Material</th>
<th>Reserve Base (ton)</th>
<th>Maximum Wattage</th>
<th>Averaged Output (TW)</th>
<th>% of 2100 Energy Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer-Si</td>
<td>17.5%</td>
<td>Silver</td>
<td>530,000</td>
<td>20.5 TW_p</td>
<td>3.08</td>
<td>6.7%</td>
</tr>
<tr>
<td>CdTe</td>
<td>12.8%</td>
<td>Tellurium</td>
<td>24,000</td>
<td>492 GW_p</td>
<td>0.074</td>
<td>0.16%</td>
</tr>
<tr>
<td>CIGS</td>
<td>14.3%</td>
<td>Indium</td>
<td>11,000</td>
<td>1.1 TW_p</td>
<td>0.165</td>
<td>0.36%</td>
</tr>
<tr>
<td>Thin-film Si*</td>
<td>9.8%</td>
<td>TW capable</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Thin-film Si PV is the only technology capable of terawatt-scale deployment today, but it has lower efficiency, higher cost & is losing market share (0.6%)

C.S. Tao et al, SEMSC 95 (2011) 3176
Annual Production of Materials

- It limits deployment rate of PV
 - Need $\sim 3.7 \text{ TW}_p/\text{yr}$
- CdTe
 - Annual production of Te ~ 550 tons*
 - Te to be depleted in 44 yrs
 - Best scenario $11 \text{ GW}_p/\text{yr}$
 - Current production $\sim 2.9 \text{ GW}_p/\text{yr}$ by First Solar
 - Room for growth limited: It has to lose market share
- Wafer-Si
 - Production of Ag 26,100 tons/yr**
 - Ag to be depleted in 20 yrs
 - Best scenario 1.01 TW$_p$/yr
- CIGS
 - Production of In 820 tons/yr**
 - In to be depleted in 14 yrs
 - Best scenario 83 GW$_p$/yr

* USGS, Minerals Yearbook 2012
** USGS, Mineral Commodity Summary 2015
Conclusion #3

Without technical breakthroughs, current commercial PV technologies excluding thin-film Si would plateau at ~1.1 TW_p/yr under best scenarios

<table>
<thead>
<tr>
<th>Cell Technology</th>
<th>Efficiency Used</th>
<th>Limiting Material</th>
<th>Annual Production (ton)</th>
<th>Annual Production (GW_p/yr)</th>
<th>Years to Depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer-Si</td>
<td>17.5%</td>
<td>Silver</td>
<td>26,100</td>
<td>1,010</td>
<td>20</td>
</tr>
<tr>
<td>CdTe</td>
<td>12.8%</td>
<td>Tellurium</td>
<td>550</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>Cl GS</td>
<td>14.3%</td>
<td>Indium</td>
<td>820</td>
<td>83</td>
<td>14</td>
</tr>
<tr>
<td>Thin-film Si*</td>
<td>9.8%</td>
<td>TW capable</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* Thin-film Si PV is the only technology capable of terawatt-scale deployment today, but it has lower efficiency, higher cost & is losing market share

C.S. Tao et al, SEMSC 95 (2011) 3176
Storage of Solar Electricity

First showstopper: $\sim 3 \text{ TW}_p$ PV w/o storage
- The grid can serve as a buffer, to some extent, w/o storage
 - But unlikely to take $>10\%$ from PV & wind w/o storage
- Current global electricity capacity 5.5 TW^*
 - Limits PV & wind capacity to $\sim 550 \text{ GW}$ or $\sim 3.7 \text{ TW}_p$

Second showstopper: $\sim 36 \text{ TW}_p$ PV w/o conversion
- In US, 32% of energy we use is non-renewable electricity**
 - Another 5% is electricity from hydropower
- Current global energy consumption $\sim 18 \text{ TW}$
 - If 30% of energy is non-renewable electricity, i.e. 5.4 TW
 - Limits PV to $\sim 36 \text{ TW}_p$ unless solar electricity is converted to a fuel

* DOE EIA, International Energy Statistics 2014
** DOE EIA, Annual Energy Review 2011
Storage Options

- **GW capable**
 - Pumped hydropower
 - Compressed air
 - Limited by geology
- **kW to MW**
 - Various batteries
 - Flywheel
 - Supercapacitor
 - Hear storage
 - Superconducting magnet

Storage Performance*

TW scale storage requires GW scale capacity for hours to months

IRENA, Electricity Storage 2012

* B. Dunn et al, Science 334 (2011) 928
Case Study for Batteries

If 30% from PV by 2100, i.e. 13.8 TW
- If 50% of solar electricity requires storage, i.e. a minimum of $\sim 1.7 \times 10^{11}$ kWh to be stored on a daily basis
 - Actually more than 50% in Sweden
- Typical laptop batteries are 50 Wh each
 - 473 laptop batteries/person for the 7 billion people on Earth

Sustainability of battery technology
- Amounts of natural resources needed to make these batteries
- Amounts of wastes and end-of-life batteries to handle

Materials for batteries must be Earth-abundant!
Earth-Abundant Elements?

Reduced Periodic Table of Earth-Abundant Elements*

- Cutoff 100 million tonnes known reserve
- Only 27 elements in the table
- No Li, V, Br, or Cd
- Can we find an efficient, low-cost storage medium in the table?

* M. Tao, Terawatt Solar Photovoltaics: Roadblocks and Opportunities (Springer, 2014)
Recycling of PV Modules

- Stead-state 100 TWₚ total installation & 25-yr module lifetime
 - 4 TWₚ/yr modules through their lifetime
 - If 17% efficiency, there are 2.4×10^4 km²/yr waste modules
 - The size of New Jersey has to be recycled each year
 - IREA predicts 78 million tons of waste modules by 2050*
 - Equal to over 4.2 billion waste modules by 2050

- CdTe is recycled by First Solar
 - Cd is toxic & Te is rare

- PV CYCLE recovers only Al frame & glass from Si modules

Recycling of Si Modules

- With >90% of the market, Si modules are rarely recycled & technology not ready yet
 - Ag would be depleted in 20 years
 - Pb is toxic

- There are financial incentives to recycle Si modules
 - ~6 g/module of Ag worth $2.70–9.30/module
 - 98% recovery and $13–45/oz of Ag price
 - ~650 g/module of solar-grade Si worth ~$8/module
 - 85% recovery and $15/kg of poly-Si
 - Savings in energy to purify Si
 - ~$15/module to recover

Si module recycling can be a profitable business w/o government support
Cost Breakdown

- Installation
 - 75% of the system cost
 - Balance of system, design, permitting, financing, labor, hardware...

- Energy
 - Poly-Si, wafering, Al frame

- Raw materials
 - Ag, Si, glass, Al frame, EVA, backsheet...

- Processing
 - Diffusion, AR coating, metallization, interconnect...
 - Non-vacuum continuous processing

* A. Goodrich et al, SEMSC 114 (2013) 110
Strategic R&D Directions

For a sustainable PV industry

- Wafer-Si based
 - Energy-efficient purification for solar-grade Si
 - Substitution of Ag with an Earth-abundant metal (Cu or Al)
 - Recyclability of end-of-life modules
 - Module standardization for lower system cost
 - Non-vacuum inline continuous fabrication
 - Low-kerf wafering of ingot

- Thin-film Si: lower cost & higher efficiency

- Future PV: Earth-abundant, energy-efficient materials

- Cross-cutting: Terawatt-scale storage of solar electricity
 - Storage medium must be Earth-abundant
 - Recyclability of storage batteries
My Research Portfolio

- A scalable & sustainable Si PV industry
 - Electrorefining of metallurgical-grade Si
 - Substitution of Ag electrode with Al
 - Profitable recycling of Si cells & modules
 - Spray deposition of Earth-abundant metal oxides for PV
 - Module standardization through efficiency uniformization
 - Grain boundary passivation by sulfur

- A scalable & sustainable thin-film PV industry
 - Metal oxysulfide absorber with \sim1.4 eV direct bandgap

- A sustainable solar energy infrastructure
 - A $\text{Zn} \leftrightarrow \text{ZnO}$ loop for off-grid storage of solar electricity
 - Load-managing PV systems for 25% lower LCOE
Si Module Recycling

- PV CYCLE recovers only Al & glass
- Our 3-step process
 - Module recycling
 - Cell recycling
 - Waste handling

A Recycling Process for Si Modules

- Who is going to pay for it? It pays for itself!
- ~99% module by weight recovered
- Recovered Si is solar-grade Si & recovered metals >99% pure
- ~$12/module in revenue from Ag & solar-grade Si
Recovery of Multiple Metals

Voltammetry of Solution Deposits by EDX

Voltammetry of Solution
- HNO_3 to dissolve 4 metals from cells: Ag, Pb, Cu & Sn
- Sn precipitates as SnO$_2$ in leach solution
- Sequential electrowinning to recover Ag, Cu & Pb from leach solution

Deposits by EDX
- Recovered metals >99% pure
- Our target >98% metal recovery
- Recovered Ag ~5.7 g/module worth ~$3.50 @ $17/oz of Ag

W.-H. Huang et al, 43rd PVSC (2016)
Recovery of Solar-Grade Si

How to maximize Si recovered?

- Only the base is solar-grade Si
 - NaOH to etch emitter & BSF in Si

- Sheet resistance monitoring
 - ~30 min to reach the base

Sheet Resistance vs. Time

- 85% recovery of solar-grade Si
- Recovered Si ~0.55 kg/module worth $9.35 at $17/kg of Si

Evolution of the Cell