A4

Enelektronspektrum
Mål

Försöket avser att:

- Demonstrera kvantisering av elektronernas energinivåer i atomer.
- Experimentellt bestämma våglängderna för några av våtets spektrallinjer i det synliga området.
- Beräkna Rydbergskonstanten utifrån de uppmätta spektrallinjerna för väte.
- Konstruera ett energinivåschema för väteatomens.
- Bestämma väteatomens jonisationsenergi.
- Uppmätta delar av natriums spektrum i det synliga området.
- Utifrån det uppmätta spektrallinjerna bestämma vilka övergångar som observerats och räkna ut energinivåernas position för natrium.

Inledning

Spektroskopiska mätningar av detta slaget ger information om strukturen hos de enskilda atomerna i gasen och gick hand i hand med utvecklingen av alltmer förfinade atommodeller. Den första moderna atommodellen skapades av J.J. Thomson (1904) och byggde helt och hållet på klassisk fysik. Ernst Rutherford visade att atomer måste ha en positivt laddad kärna och han skapade en ny modell 1911 med planetsystemet som förebild, där elektronerna kretsade som planet runt en positivt laddad kärna och hölls på plats av den elektrostatiska interaktionen.

Den som formellt löste problemet var den danske fysikern Niels Bohr. Bohr presenterade 1913 ett antal postulat (grundläggande antaganden) som avvek från klassisk fysik och utgjorde ett av de första stegen mot den moderna kvantfysiken. I Bohrs modell tillåts elektronerna bara att röra sig i vissa banor där de inte utsände
strålning och efter att modellen utvecklats vidare av bl a Wilson och Sommerfeld kunde den användas för att förutsäga mycket fina detaljer i våtets spektrum. Även andra atomer med endast en elektrin i det yttersta skale, som natrium, kan delvis beskrivas med Sommerfelds modell.

För att förstå spektra uppmätta från mer komplicerade atomer, som exempelvis helium, fick man vänta tills kvantmekaniken formulerades av bl a Schrödinger (1925). Då övergavs tanken på bestämda elektrobanor och istället gavs elektronerna både partikel och vågegenskaper, vilket tillåt dem att beskrivas som fördelade med en viss sannolikhet i rummet och tiden. De möjliga sannolikhetsfördelningarna beskrivas av lösningarna till den berömda Schrödingerekvationen.

Rydbergs formel

Redan 1888 ställde den svenske fysikern Janne Rydberg upp en formel för våglängderna på de spektrallinjer man kunde se från en gas av väteatomer. Han härledde sin formel direkt från experimentella data och fick

\[
\frac{1}{\lambda} = R_n \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) \quad \quad n, n' = 1, 2, 3, \ldots \quad n' > n.
\]

(1)

\(R_n\) är en konstant som kallas Rydbergskonstanten. Med den här generella formeln kunde man beskåra alla synliga och osynliga linjer i våtets spektrum som man hade hittat.

Bohrs teori för väteliknande system

De postulat som Bohr ställde upp var:

1. Elektronen rör sig runt kärnan i cirkulära banor under inflytande av den elektrostatiska växelverkan med kärnan.
2. Bara vissa banor är tillåtna. I de tillåtna banorna utstrålar inte elektronen någon energi och rörelsen kan beskrivas med klassisk mekanik.
3. En elektron kan spontant hoppa från en bana med högre energi \((E_n)\) till en med den lägre energin \((E_{n'})\). Överskottsenergin utsänds som en foton (ljuspartikel) vars energi är \(hf = E_{n'} - E_n\). Våglängden ges då av:

\[
\frac{1}{\lambda} = \frac{1}{hc} (E_{n'} - E_n),
\]

(2)

c är ljusets hastighet och \(h\) Plancks konstant. Ekvationen kallas Bohrs frekvensvillkor.
4. För de tillåtna banorna är elektronens rörelsemängdsmoment en multipel av Plancks konstant:

\[L = m_e v r = n \frac{\hbar}{2\pi} \quad n = 1, 2, 3, \ldots \]

(3)

Villkoret kallas Bohrs kvantiseringsregel.

Figur 1. Bohrs atommodell.

Utifrån Bohrs postulat kan vi beräkna de tillåtna radierna för elektronbanorna, energin elektronen har i de olika banorna och vilken färg ljuset har som sänds ut när elektronen byter bana. Allt som behövs är att ställa upp uttrycket för elektronens potentiella energi relativt kärnan och dess rörelseenergi, samt låta den attraktiva coulombkraften balansera centripetalkraften. Allt enligt klassisk mekanik och elektrostatik.

Löser man ekvationerna (se Appendix I) fås elektronens totala energi i de tillåtna banorna:

\[E_n = -\frac{m_e e^4}{8\varepsilon_0^2 \hbar^2} \frac{1}{n^2} \quad n = 1, 2, 3, \ldots \]

(4)

\(E_n \) beror bara på en rad kända naturkonstanter (elektronens massa \(m_e \), elementarpartikelladdningen \(e \), dielektricitetskonstanten \(\varepsilon_0 \), Plancks konstant \(\hbar \)) och heltallet \(n \) som numrerar banan. Energin kan alltså endast anta ett – visserligen oändligt – men numrerbart antal värden. Att endast vissa värden kan antas kallas i modern fysik för kvantisering. \(n = 1 \) ger den innersta banan och elektronens lägsta möjliga energi.

Energinivåerna brukar ritas in i ett energinivådiagram för att få en översiktsbild som även visar möjliga övergångar för elektroner mellan olika energinivåer. Ett skalenligt
energinivådiagram för väte utan absoluta värden visas i Figur 2. Övergångar till en viss energinivå kallas för serier, vilka för väte (ett urval visat i Figur 2) är döpta efter personerna som upptäckte dem.

\[
\begin{align*}
E &\quad \text{Fri elektron} \\
0 &\quad \text{Paschen-serien} \\
2 &\quad \text{Balmer-serien} \\
3 &\quad \text{Lyman-serien} \\
\end{align*}
\]

\[n = 1 \]

\[\lambda = \frac{1}{h} \left(E_n - E_0 \right) = \frac{m_e e^4}{8 \epsilon_0^2 \hbar^2 c} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right), \quad n, n' = 1, 2, 3, \ldots, n' > n. \] (5)

Där \(n' \) betecknar en högre liggande energinivå än \(n \) och \(c \) är ljushastigheten. Om vi jämför ekvation (1) som Rydberg ställde upp rent empiriskt och ekvation (11) som vi härlett med hjälp av Bohrs atommodell ser vi att uttrycken är identiska om vi väljer

\[R_\infty = \frac{m_e e^4}{8 \epsilon_0^2 \hbar^2 c}. \] (6)

Vi har alltså fått fram ett teoretiskt uttryck som gör det möjligt att beräkna Rydbergkonstanten och de korrekta våglängderna för vätes spektrallinjer.

Figur 2. Vätets energinivåer

En jämförelse mellan Bohr och Rydberg

De spektrallinjer vi observerar hänförr, enligt Bohrs andra postulat, från det fotoner (ljuspartiklar) som sänds ut då elektronen hoppar mellan två energinivåer. De möjliga våglängderna ges enligt (2) och (4) av

\[\frac{1}{\lambda} = \frac{1}{hc} \left(E_n - E_0 \right) = \frac{m_e e^4}{8 \epsilon_0^2 \hbar^2 c} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right), \quad n, n' = 1, 2, 3, \ldots, n' > n. \] (5)

Där \(n' \) betecknar en högre liggande energinivå än \(n \) och \(c \) är ljushastigheten. Om vi jämför ekvation (1) som Rydberg ställde upp rent empiriskt och ekvation (11) som vi härlett med hjälp av Bohrs atommodell ser vi att uttrycken är identiska om vi väljer

\[R_\infty = \frac{m_e e^4}{8 \epsilon_0^2 \hbar^2 c}. \] (6)

Vi har alltså fått fram ett teoretiskt uttryck som gör det möjligt att beräkna Rydbergkonstanten och de korrekta våglängderna för vätes spektrallinjer.
Jonisationsenergi
Elektronens potentiella energi är vanligtvis definierad så att den är noll då elektronen befinner sig oändligt långt borta från kärnan. Om elektronen har en energi som är lägre än noll är den alltså bunden till atomkärnan. Om atomen ges ett så stort energitillskott att elektronen inte längre är bunden till kärnan, d v s har den totala energin noll, säger man att atomen är joniserad. Den lägsta energi som krävs för att jonisera atomen från grundställendet kallas jonisationsenergin.

Kvantteori för enelektronsystem
När Schrödinger 1925 lanseerade sin Schrödingerekvation övergavs tanken på att elektronerna rör sig i välbestämda banor. Man hade tidigare i experiment funnit att partiklar på vissa sätt bär sig som en våg, precis som ljus hade visat sig ha vissa partikelegenskaper. Till exempel byrta elektronstrålar som skjuts mot en spalt upp i samma mönster som ljus, medan fotoner kan fås att krocka med elektroner i en elastisk stöt (Comptoneffekt).

Elektronens tillstånd, t ex var den finns i rummet, beskrivs i kvantmekaniken av en vågfunktio, \(\psi \). Genom att lösa Schrödingerekvationen får vi reda på både de möjliga tillstånden beskrivna av vågfunktionerna och vilken energi elektronen har i respektive tillstånd. För atträcka ut energitillstånden för en vätatom ställer vi upp Schrödingerekvationen

\[
\left[\frac{-\hbar^2}{2m_e} \nabla^2 + V(r) \right] \psi = E \psi,
\]

(7)
dað \(m_e \) är elektronens massa, \(h = h/2\pi \), \(\nabla^2 \) den s k Laplaceoperatorm, vilken innebär att man deriverar två gånger m a p alla rumskoordinater och \(E \) är energi för elektronen. \(V(r) \) är den potential elektronen befinner sig i, d v s Coulombfältet från laddningen i kärnan.

Lösningen för vågfunktioen kan i sfäriska koordinater delas upp i två delar, \(R(r) \) som endast beror avståndet från kärnan, \(r \), och \(Y(\theta, \phi) \) som beror på de sfäriska vinkelkoordinaterna \(\theta \) och \(\phi \), d v s

\[
\psi(r, \theta, \phi) = R_n(l)Y_{l,m}(\theta, \phi)
\]

(8)

Antalet möjliga lösningar till ekvationen är oändligt, men uppräknningel vilket innebär att de kan numreras. I fallet vätatomens kan dessutom relativt enkelt slutför de vågfunktionen beräknas. De olika lösningarna numreras m h a tre kvanttal: \(n, l \) och \(m \) som kan anta värdena:

\(n = 1, 2, 3, ..., \)
\(l = 0, 1, 2, ..., n-1 \)
\(m = 0, \pm 1, \pm 2, ..., \pm l \)

Eftersom \(|\psi(r, \theta, \phi)|^2 \) ger sannolikheten att finna elektronen på en viss plats i rummet, beskriver \(R_n(l) \) och \(Y_{l,m}(\theta, \phi) \) sannolikheten att finna elektronen på ett visst avstånd från kärnan respektive vid en viss vinkel. Eftersom dessa funktioner ser olika ut för olika värden på \(n, l \) och \(m \) påverkar kvantalten sannolikhetstätheten i rummet. Exempel på hur dessa sannolikhetsfördelningar ser ut ges i Figur 3.
Figur 3. Överst: Den radiella fördelningen av laddnings-
tätetheten i väteatomen, $P(r)$, för $n = 1,2,3$ och 4. Nederst:
Laddningstätetheten i rummet för b) $n=2$, $l=0$ d) $n=2$, $l=1$ h) $n=3$, $l=2$.

Till varje lösning på vågfunktionen, d v s uppsättning (n,l,m), hör en energi $E_{n,l,m}$. I
fallet väteatomen beror potentialen endast på avståndet från kärnan, r, vilket får till
följd att energin endast blir beroende av huvudkvalitativa n. Faktum är att elektronens
totala energi med Schrödingerekvationen blir exakt samma som för den enklare
Bohrmodellen

$$E_n = -\frac{m_e^2 e^4}{8\varepsilon_0^2 h^2} \frac{1}{n^2}.$$
(9)
Enligt gammal tradition brukar \(l \)-kvantalet i experimentella sammanhang betecknas med bokstäver på följande sätt:

<table>
<thead>
<tr>
<th>(l)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>(p)</td>
<td>(d)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td></td>
</tr>
</tbody>
</table>

Väteliknande system – Natrium

Större atomer än väte har mer än en elektron. Enligt den s k Pauli-principen kan två elekroner inte samtidigt befina sig i samma tillstånd. Varje tillstånd är unikt identifierat av en uppsättning av fyra kvanttal för en atom (de tre kvanttal \(n \), \(l \) och \(m \) vi fick genom att lösa Schrödingerekvationen samt elektronens spinn \(m_s \)). Att befanna sig i olika tillstånd innebär alltså att minst ett av kvanttalen är olika. Pauli-principen innebär att alla elekroner inte kan befina sig i det energimässigt lägsta möjliga tillståndet \(\{n=0, l=0, m=0, m_s=\pm 1/2 \} \), utan vi får successivt fylla upp atomens energinivåer för att finna grundtillståndet.

Elektroner som har samma \(n \) och \(l \) sägs befina sig i samma skal. Ett fyllt sådant skal är sfäriskt symmetriskt och elektroner i ett fyllt skal är hårda bundna ån elektroner i ett icke-fyllt skal. En konsekvens av Pauli-principen är att ett skal innehåller som mest \(2(l+1) \) elektroner. Alla ädelgasernas elektroner befinner sig i slutna skal vilket gör dem väldigt icke-reactiva. Alla grundämnen i den vänstra spalten i det periodiska systemet, t ex natrium, har å andra sidan 11 elektroner, vilket innebär att vi kan fylla 1s och 2s skalen (tillsammans 10 elektroner), men får en elektron över som för en atom utan extra energi befinner sig i 3s-tillståndet.

Den yttersta elektronen är lössare bunden och i allmänhet den som lyfts upp till högre liggande tillstånd då atomen tillförs energi. Natrium kommer därmed att vara likt väte så till vida att de övergångar vi observerar alla kommer från när den yttersta elektronen byter tillstånd. Eftersom den i medeltal befinner sig utanför de andra elektronerna kan vi approximera natrium med väte eftersom de åtta elektronerna innanför tar ut, "screenar", laddningen från kärnan så att den yttre elektronen känner av en effektiv laddning hos kärnan på \(+e \) (Figuur 5).

![Figur 5. Den yttersta elektronen ser en effektiv laddning på +e.](image-url)
Den yttersta elektronen befinner sig med en viss sannolikhet även bland och innanför de andra elektroner (jfr Figur 3). När den gör det känner den av en starkare potential från kärnan och sannolikheten för att befira sig längre in varierar även med kvantalet \(l \). För natrium kommer energin alltså även att bero på \(l \) och den exakta positionen för energinivåerna går inte längre att beräkna analytiskt. Ett skalenligt energinivådiagram för de lägst liggande nivåerna som är tillgängliga för den yttersta elektronen visas i Figur 6.

![Energinivådiagram för natrium](image)

Figur 6. De lägst liggande energinivåerna för natriums av natriums yttersta elektron. Ett urval av de tillåtna övergångarna är inritade.

När elekronen byter tillstånd i natrium är alla övergångar inte lika sannolika. En del är så osannolika att de kallas förhudna övergångar eftersom de i princip inte sker. **Tillåtna** övergångar är de som uppfyller urvalsreglerna:

\[
\Delta l = \pm 1 \text{ och } \Delta m = 0, \pm 1.
\]

För huvudkvantalet, \(n \), finns inga urvalsregler.

För att kunna observera emission från ett ämne så exciterar man atomerna och observerar det emitterade ljuset då atomerna relaxerar (faller tillbaka till den ursprungliga energinivån). Detta sker i labben i en s k urladdningslampa. Intensiteten hos en spektrallinje beror till stor del på hur många atomer som exciterats till den övre energinivån. I en urladdningslampa kan man anta en termisk fördelning genom kollisioner mellan atomerna, d v s en så kallad Boltzmannfördelning:

\[
N = N_0 e^{-\Delta E/k_B T},
\]

(10)
där \(N \) är antalet atomer med en elektron i ett tillstånd med energin \(\Delta E \) över grundtillståndet, \(N_0 \) är det totala antalet atomer, \(k_B \) Boltzmanns konstant och \(T \) temperaturen på gasen. En övergång från ett lågt liggande tillstånd ger därför en starkare linje än en övergång från ett högt liggande excited tillstånd. Dessutom är det en högre sannolikhet för elektronen att efter excitationen befinna sig i ett tillstånd med ett högt värde på \(l \)-kvantalet, så övergångar från ett tillstånd med högre \(l \) är starkare än övergångar från tillstånd med lägre \(l \) om deras energi är lika stor.
Utförande
Vätets spektrum produceras genom en elektrisk urladdning i ett s k Geisslerrör. Väte förekommer i naturen främst som molekyler – två väteatomer är kovalent bundna till varandra i en vätemolekyl – och Geisslerröret är speciellt utformat för att dela (dissociera) molekylerna i sina ursprungsatomer, så att det blir möjligt att iaktta väteatomernas linjer.

Våglängderna för de linjer i vätets spektrum som ligger i det synliga området bestäms med hjälp av en prismaspektrometer. Strålgången genom prismaspektrometern visas i Figur 7. Spaltöppningen placeras nära ljudkällan. Spektrometerspalten bör ställas så att så smala, synliga, spektrallinjer som möjligt erhålls. Fokus justeras med hjälp av ratten ovanpå kikaren och i änden på kikaren finns en lins med hjälp av vilken härkorset regleras. Våglängden läses av genom att vrida på prismat med våglängsdetten så att den spektrallinje vars våglängd önskas är mitt för härkorset och sedan studera pilens läge på våglängsdetten. Skalan på ratten är graderad i nanometer, där siffrorna ger tiotalet nanometer och strecken ental.

För att undvika mötet p.g.a glapp i mekanismen bör våglängsdetten alltid vridas åt samma håll under mätningarna. Samma procedur upprepas för att bestämma våglängderna för natriums spektrallinjer, men med den gula natriumlampa placerad framför spalten.

Figur 7. Experimentuppställning
Instuderingsfrågor

1. Redogör för Bohrs postulat.
2. Vilka av Bohrs postulat strider mot den klassiska fysiken?
3. Redogör för Pauliprinципen.
4. Beskriv i stora drag principerna för och uppbyggnaden av en prismaspektrometer.
5. Vid laborationen fungerar ögat som detektor av det ljus som passerar spektrometern. Hur varierar ögats känslighet med våglängden?
6. Förklara varför natriums spektrum kan studeras i en laboration som heter "Enelektrobspektrom".
7. Varför splittras energinivåerna upp med avseende på l-kvanttalet för natrium?
8. Hur lyder de två regler som i huvudsak bestämmer intensiteten för en elektronövergång i natriums spektrum?
Uppgifter

Väte

1. Identifiera vilken serie övergångar de observerade linjerna tillhör Beräkna Rydbergskonstanten, R_n, genom att använda de uppmätta våglängderna för vätsens spektrallinjer och.

2. Rita ett energinivåschema för de sex första energinivåerna i väteatomen med hjälp av den uppmätta Rydbergskonstanten och formeln

$$E_n = -\frac{\hbar c R}{n^2},$$

där n varieras för att få de olika energinivåerna i väteatomen. Rita in de övergångar mellan nivåer som motsvarar spektrallinjerna ni har sett som pilar.

Natrium

4. Måt upp våglängderna för natriums synliga övergångar och fyll i Tabell 1 på nästa sida ($E_{\text{eV}} = 1239.83/\lambda [\text{nm}]$).

5. Identifiera med ledning av det skalenliga energinivådiagrammet för Na i Figur 6 de saknade övergångarna.

6. Beräkna utifrån Tabell 1 natriums energinivåer, givet att natriums jonisationspotential är 5.139 eV och fyll i Tabell 2.

7. Rita ett energinivådiagram med nivåerna från Tabell 2 och marker de tillåtna övergångarna mellan dessa nivåer och 3s-, 3p- och 3d-nivåerna med pilar.

Viktiga konstanter

$h = 4.14 \times 10^{-15}$ eV s (Plancks konstant)

$c = 3.00 \times 10^8$ m/s (Ljusets hastighet i vaccuum)

$e = 1.60 \times 10^{-19}$ C (Elementarpartikelladdningen)

$\varepsilon_0 = 8.85 \times 10^{-12}$ As/Vm (Dielektricitetskonstanten)

$m_e = 9.11 \times 10^{-31}$ kg (Elektronens massa)
Tabell 1. Natriums spektrallinjer.

<table>
<thead>
<tr>
<th>Färg</th>
<th>Intensitet</th>
<th>λ (nm)</th>
<th>ΔE (eV)</th>
<th>Övergång</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>3000</td>
<td>1139.0</td>
<td></td>
<td>4s→3p</td>
</tr>
<tr>
<td>IR</td>
<td>3000</td>
<td>819</td>
<td></td>
<td>3d→3p</td>
</tr>
<tr>
<td>Röd</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gul</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grön</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grön</td>
<td>200</td>
<td></td>
<td></td>
<td>6s→3p</td>
</tr>
<tr>
<td>Blå-grön</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blå</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>1500</td>
<td>330.2</td>
<td></td>
<td>4p→3s</td>
</tr>
<tr>
<td>UV</td>
<td>500</td>
<td>285.3</td>
<td></td>
<td>5p→3s</td>
</tr>
<tr>
<td>UV</td>
<td>200</td>
<td>268</td>
<td></td>
<td>6p→3s</td>
</tr>
</tbody>
</table>

Tabell 2. Natriums energinivåer.

<table>
<thead>
<tr>
<th>Energinivå</th>
<th>E (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3s</td>
<td></td>
</tr>
<tr>
<td>4s</td>
<td></td>
</tr>
<tr>
<td>5s</td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td></td>
</tr>
<tr>
<td>3p</td>
<td></td>
</tr>
<tr>
<td>4p</td>
<td></td>
</tr>
<tr>
<td>5p</td>
<td></td>
</tr>
<tr>
<td>6p</td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td></td>
</tr>
<tr>
<td>6d</td>
<td></td>
</tr>
</tbody>
</table>
Appendix I

Betrakta en modell för väteatomen i analogi med planetssystemet (Figuur 1). Elektronen har massan \(m_e \) och laddningen \(-e\) och hålls på plats i sin bana av den elektrostatiska attraktionskraften till kärnan med massan \(M \) och laddningen \(+e \). Då kärnans massa är mycket större än elektronens massa \((M/m_e \approx 1800)\) kan vi betrakta atomkärnan som orörlig. Från klassisk mekanik vet vi att cirkulära banor fås när den attraherande elektrostatiska kraften är lika med centripetalkraften,

\[
\frac{e^2}{4\pi\varepsilon_0 r^2} = \frac{m_e v^2}{r}.
\]

(I-1)

Ur ekvationerna (3) och (I-1) kan vi finna radierna för elektronens tillåtna banor

\[
r = \frac{\varepsilon_0 h^2 n^2}{m_e e^2}.
\]

(I-2)

Radien är alltså en funktion av \(n \), som är ett diskret heltal och endast ett diskret antal radiärer är tillåtna. Radien för den lägsta möjliga banan i väteatomen \((n=1)\) kallas för Bohrradien, betecknas med \(a_0 \), och är en ofta använd längdenhet i atomfysiken, dvs

\[
a_0 = \frac{\varepsilon_0 h^2}{m_e e^2}.
\]

(I-3)

Eftersom vi inte direkt mäter radien för elektronbanan vill vi snarare ha ett uttryck för energin som elektronen har i de olika banorna. Den totala energin är summan av elektronens potentiella (läges) och kinetiska (rörelse) energi. Den potentiella energin hårder från kärnans elektrostatiska potential. Genom att enligt konvention sätta energi lika med noll på oändligt avstånd från atomkärnan fås

\[
E_p = -\frac{e^2}{4\pi\varepsilon_0 r}.
\]

(I-4)

Den kinetiska energin fås också med vanlig klassisk mekanik och ekvation (I-1) som

\[
E_k = \frac{m_e v^2}{2} = \frac{e^2}{8\pi\varepsilon_0 r}.
\]

(I-5)

Det ger den totala energin för atomen

\[
E_{tot} = E_p + E_k = -\frac{e^2}{4\pi\varepsilon_0 r} + \frac{e^2}{8\pi\varepsilon_0 r} = -\frac{e^2}{8\pi\varepsilon_0 r}.
\]

(I-6)

Genom att sätta in ekvation (I-2) för \(r \) i (I-6) kan vi skriva energin som ett slutet uttryck som endast innehåller kända naturkonstanter, samt heltala \(n \).

\[
E_{tot} = E_n = -\frac{m_e e^4}{8\varepsilon_0^2 h^2 n^2} \quad n = 1, 2, 3, \ldots
\]

(I-7)