This project aims at focusing on the development novel methods that accounts for non-traditional training objectives (other than mean square prediction error) and corrupted data sequence. This project is expected to result in faster and more accurate training solutions (classification, parameter estimation, short time prediction, tracking) than the currently available ones. The methods developed are application free and concentrates on the triplet of interpretability, robustness and network optimization via deeplearners (DNN).
Page manager Published: Wed 17 Jun 2020.
Please fill in a message
Send message
Thanks! We have received your message. If you have left your email address, you will receive a response from the editor-in-chief within 2-3 working days.