Photochemical Energy Systems

In our modern society, about 50% of the total energy consumption is used for heating and cooling. Growing demands for thermal management in different sectors, from electronics to housing, inevitably mean increased energy consumption. The primary source of heat is coming from the combustion of fossil, bio or waste-based feedstocks, all contributing to carbon emissions.This project seeks to fundamentally change how we generate heating and cooling by developing a new class of materials that capture, store, and release both solar and ambient heat. These solar thermal management materials are a unique combination of molecular photo-switches that capture and store solar energy, so-called MOST systems, that together with phase change materials (PCM) can contribute to thermal management. The two classes of materials operate at fundamentally different principles. The input of MOST system is photons, and the output is heat whereas PCM can absorb heat from the environment. By combining the two materials into one, we can harness and upgrade two of the most abundant renewable sources of energy on the planet: ambient heat and sunlight. Additionally, we will explore if it is possible to modify the materials so that they can contribute to cooling.The materials developed in this project have the potential to radically change thermal comfort and energy consumption and give new design opportunities for thermal management systems from the nanometer to the meter length scale.

Start date 01/12/2020
End date 31/12/2026

Page manager Published: Fri 22 Jan 2021.