Multiscale modelling of reinforced concrete structures

The aim of this project is to develop a validated multiscale framework, capable of modelling crack growth in detail in large scale reinforced concrete structures like e.g. bridges. Modelling will be done on three scales: 1) reinforced concrete in mesoscale: a reinforcement bar with surrounding concrete consisting of aggregates, cement paste and weak interfacial transition zones; to be homogenized to a solid element capable of describing cracking of concrete, slip between reinforcement and concrete and wedging action thereof. 2) Macroscale: Reinforced slabs and shear walls; to be homogenized to effective shell elements capable of describing crack width and growth in detail. 3) Structural scale: applying the developed modelling methods to a bridge that will be tested (in another project) for combined bending and shear failure. The suggested project is of ground-breaking nature, being transdisciplinary across borders between Structural Engineering and Computational Mechanics. It has potential to create substantial break-through in numerical modelling of large reinforced concrete structures; enabling to study e.g. crack width growth in detail.

Start date 01/01/2015
End date The project is closed: 31/12/2018

Published: Thu 31 May 2018.