Cell membrane engineering as a novel target for the improvement of microbial strains for biofuels production: investigating the relationship between membrane constituents and membrane permeability

In the prospect of a bio-based economy, the use of biomass as source of hydrocarbons relies on the development of bio- processes for the production of fuels and chemicals. Regardless of the product, robust microorganisms are a prerequisite for the feasibility of lignocellulose bioconversion, where microorganisms are facing tremendous challenges including high concentrations of fermentation inhibiting molecules, such as organic acids and phenolic compounds. In the proposed project we will engineer the yeast cell membrane to reduce its permeability to lignocellulose-derived inhibitors, with acetic acid as case-study, with the final goal of obtaining more robust strains with reduced permeability to inhibitory compounds. Membrane simulations will be used to predict the effect on the physico chemical properties of S. cerevisiae membrane in which alternative lipids species, known to confer rigidity and reduce permeability are incorporated. These results will guide metabolic engineering strategies to engineer novel strains containing the most promising lipid species. The new strains will be characterised for their tolerance and membrane permeability to organic acids and possibly other inhibitors and this will be correlated to their novel membrane composition.

Partner organizations

  • University of Gothenburg (Academic, Sweden)
  • University of Gothenburg (Publisher, Sweden)
Start date 01/01/2017
End date The project is closed: 31/12/2020

Page manager Published: Thu 19 Jul 2018.