News: Mikroteknologi och nanovetenskaphttp://www.chalmers.se/sv/nyheterNews related to Chalmers University of TechnologySun, 07 Mar 2021 12:20:42 +0100http://www.chalmers.se/sv/nyheterhttps://www.chalmers.se/en/departments/mc2/news/Pages/New-microcomb-could-help-discover-exoplanets-and-detect-diseases.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/New-microcomb-could-help-discover-exoplanets-and-detect-diseases.aspxNew microcomb could detect exoplanets and diseases<p><b>​Tiny photonic devices could be used to find new exoplanets, monitor our health, and make the internet more energy efficient. Researchers from Chalmers University of Technology, Sweden, now present a game changing microcomb that could bring advanced applications closer to reality. ​</b></p>​<span style="background-color:initial">A microcomb is a photonic device capable of generating a myriad of optical frequencies – colours – on a tiny cavity known as microresonator. These colours are uniformly distributed so the microcomb behaves like a ‘ruler made of light’. The device can be used to measure or generate frequencies with extreme precision.<br /><br /></span><div><span style="background-color:initial">In a recent article in the journal Nature Photonics, eight Chalmers researchers describe a</span><span style="background-color:initial"> new kind of microcomb on a chip, based on two microresonators. The new microcomb is a coherent, tunable and reproducible device with up to ten times higher net conversion efficiency than the current state of the art. <br /><br /></span><div><img src="/SiteCollectionImages/Institutioner/MC2/News/pr%20v%20torres%20mars%2021/Oskar_B_Helgason_pressbild.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:130px;height:130px" />&quot;The reason why the results are important is that they represent a unique combination of characteristics, in terms of efficiency, low-power operation, and control, that are unprecedented in the field,” says Óskar Bjarki Helgason, a PhD student at the Department of Microtechnology and Nanoscience at Chalmers, and first author of the new article.  <br /><br /></div> <div>The Chalmers researchers are not the first to demonstrate a microcomb on a chip, but they have developed a method that overcomes several well-known limitations in the field. The key factor is the use of two optical cavities – microresonators – instead of one. This arrangement results in the unique physical characteristics. </div> <div>Placed on a chip, the newly developed microcomb is so small that it would fit on the end of a human hair. The gaps between the teeth of the comb are very wide, which opens great opportunities for both researchers and engineers. <br /></div> <h2 class="chalmersElement-H2">A wide range of potential applications</h2> <div>Since almost any measurement can be linked to frequency, the microcombs offer a wide range of potential applications. They could, for example, radically decrease the power consumption in optical communication systems, with tens of lasers being replaced by a single chip-scale microcomb in data centre interconnects. They could also be used in lidar for autonomous driving vehicles, for measuring distances. <br /><br /></div> <div>Another exciting area where microcombs could be utilised is for the calibration of the spectrographs used in astronomical observatories devoted to the discovery of Earth-like exoplanets. <br /><br /></div> <div>Extremely accurate optical clocks and health-monitoring apps for our mobile phones are further possibilities. By analysing the composition of our exhaled air, one could potentially diagnose diseases at earlier stages.</div> <h2 class="chalmersElement-H2">Providing answers to questions not yet asked</h2> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/pr%20v%20torres%20mars%2021/Victor_Torres_Compay_press.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;width:130px;height:130px" />“For the technology to be practical and find its use outside the lab, we need to co-integrate additional elements with the microresonators, such as lasers, modulators and control electronics. This is a huge challenge, that requires maybe 5-10 years and an investment in engineering research. But I am convinced that it will happen,” says Victor Torres Company, who leads the research project at Chalmers. He continues: </div> <div>“The most interesting advances and applications are the ones that we have not even conceived of yet. This will likely be enabled by the possibility of having multiple microcombs on the same chip. What could we achieve with tens of microcombs that we cannot do with one?”</div> <div><br /></div> <div><strong>Text:</strong> Mia Halleröd Palmgren​<br />Photo of Óskar Bjarki Helgason: Mia Halleröd Palmgren /Chalmers<br />Photo of Victor Torres Company​: Michael Nystås /Chalmers</div> <div><br /></div> <div><br /></div> <div><div><span></span><a href="https://doi.org/10.1038/s41566-020-00757-9"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /></a> <a href="https://doi.org/10.1038/s41566-020-00757-9">Read the article Dissipative solitons in photonic molecules in Nature Photonics​</a></div> <div><br /></div> <div>The paper is written by Óskar B. Helgason, Francisco R. Arteaga-Sierra, Zhichao Ye, Krishna Twayana, Peter A. Andrekson, Magnus Karlsson, Jochen Schröder and Victor Torres Company at the Department of Microtechnology and Nanoscience at Chalmers. </div> <div>All the research, including modelling, theoretical and experimental work and nanofabrication, has been carried out at Chalmers University of Technology. The research has been funded by the European Research <br />Council, through Victor Torres Company’s ERC Consolidator Grant, and by the Swedish Research Council.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/pr%20v%20torres%20mars%2021/FrekvenskammarPaEttChip_210302_ENG_750x340px.jpg" alt="" style="margin:5px" /><br /><div><em style="background-color:initial">Researchers at Chalmers University of Technology, Sweden, present a microcomb on a chip – based on two microresonators instead of one. It is a coherent, tunable and reproducible device with up to ten times higher net conversion efficiency than the current state of the art. </em><br /></div> <div><em>Illustration: Yen Strandqvist /Chalmers​</em></div></div> <h2 class="chalmersElement-H2">More about: Frequency combs and microcombs</h2> <div>A frequency comb is a special laser where the emission frequencies are evenly spaced. It functions as a ruler made of light, where the markers set the frequency scale across a portion of the electromagnetic spectrum, from the ultraviolet to the mid infrared. The location of the markers can be linked to a known reference. This was achieved in the late 90s, and it signified a revolution in precision metrology – an achievement recognised by the Nobel Prize in Physics in 2005. </div> <div><br /></div> <div>A microcomb is a modern technology, alternative to mode-locked lasers, that can generate repetitive pulses of light at astonishing rates. They are generated by sending laser light to a tiny optical cavity called a microresonator. Thus, microcombs have two important attributes that make them extremely attractive for practical purposes: the frequency spacing between markers is very large (typically between 10 – 1,000 GHz), that is much higher than the spacing in mode-locked laser frequency combs, and they can be implemented with photonic integration technology. The compatibility with photonic integration brings benefits in terms of reduction of size, power consumption and the possibility to reach mass-market applications. The large spacing between teeth means that microcombs can be used for novel applications, such as light sources for fiber-optic communication systems or for the synthesis of pure microwave electromagnetic radiation.</div> <div><br /></div> <div>The key to the new enhanced microcomb from Chalmers is that the researchers have used two microresonators instead of one. The microresonators interact with each other, similar to how atoms bind together when forming a diatomic molecule. This arrangement is known as a photonic molecule and has unique physical characteristics.</div> <div><br /></div> <div>Video recording from the lab: How to generate the microcomb. PhD student Óskar Bjarki Helgason at Chalmers University of Technology, Sweden, demonstrates the experimental setup in the lab and explains how the new microcomb is generated. </div> <div><a target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /><span style="background-color:initial">https://chalmersuniversity.box.com/s/blyakzwtrz4sqrx45nd7108ao21z1idi</span> ​</a></div></div> <div>​<br /></div> <div><h2 class="chalmersElement-H2"><span>For </span><span>more information, contact: </span></h2></div> <div> <p class="MsoNormal"><b>Óskar Bjarki Helgason,</b><span lang="EN-US"> PhD student, Department of Microtechnology and Nanoscience, Chalmers University of Technology, </span><span lang="EN-GB"><a href="mailto:skarb@chalmers.se"><span lang="EN-US">skarb@chalmers.se<br /></span></a></span><b style="background-color:initial">Victor Torres Company,</b><span lang="EN-US" style="background-color:initial"> Associate Professor and research leader of the project, Department of Microtechnology and Nanoscience, Chalmers University of Technology, +46 31 772 19 04, </span><span lang="EN-GB" style="background-color:initial"><a href="mailto:torresv@chalmers.se"><span lang="EN-US">torresv@chalmers.se</span></a></span></p> <p class="MsoNormal"><span lang="EN-US"></span></p></div> <div><br /></div> </div>Thu, 04 Mar 2021 07:00:00 +0100https://www.chalmers.se/en/areas-of-advance/production/news/Pages/Planning-Grants-for-2021.aspxhttps://www.chalmers.se/en/areas-of-advance/production/news/Pages/Planning-Grants-for-2021.aspxApply for Production Area of Advance planning grants for 2021<p><b></b></p><div>​<span style="background-color:initial">The Production Area of Advance (AoA) management introduced the planning grants last year and will continue the distribution during 2021. The purpose is to give better opportunities to prepare for major research projects, or establish collaborations with other/various research disciplines, practice and users on international level. The grant is intended as support for creating larger projects that require additional efforts in preparation and not intended for normal project applications for national funding.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><b>The planning grant within Production AoA is maximum SEK 50.000/project. </b></div> <div> </div> <h3 class="chalmersElement-H3">Application dates</h3> <div><span style="background-color:initial">The application will be open throughout 2021 with 3 cut-offs.: </span><b>31 March, 30 June</b> and <b>30 September 2021</b>. Send your application to Lars Nyborg with cc to Michael Eriksson (see below).</div> <h3 class="chalmersElement-H3">Application </h3> <div>Max 1 page including:</div> <div> </div> <div><ul><li>Motivation how the intended project if would contribute to the overall vision, mission and challenges of Production AoA</li> <div> </div> <li>Tentative consortium</li> <div> </div> <li>Call identifier (Vinnova, Horizon 2020/Horizon Europe, EIT Manufacturing, Formas, VR, Swedish Energy Agency)</li> <div> </div> <li>Any co-ordinated more prominent project initiation with IKEA would be eligible</li> <div> </div> <li><div>Any initiation of international co-operation that can be sustainable (note how long-term funding can be secured should be indicated)</div></li> <div> </div> <li><div>Budg<span>et (travel, meetings, etc.</span></div></li></ul></div> <h3 class="chalmersElement-H3"> </h3> <h3 class="chalmersElement-H3">Contact</h3> <div><span style="background-color:initial">Director </span><a href="mailto:lars.nyborg@chalmers.se"><span style="background-color:initial">Lars Nybor</span><span style="background-color:initial">g</span></a><span style="background-color:initial"> and </span><span style="background-color:initial"><a href="mailto:michael.eriksson@chalmers.se">Michael Eriksson</a></span></div> <div><span style="background-color:initial"><a href="mailto:michael.eriksson@chalmers.se"></a> </span></div> <div> </div>Thu, 04 Mar 2021 00:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/new-director-of-2d-tech-and-graphene-centre.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/new-director-of-2d-tech-and-graphene-centre.aspxNew director of 2d-tech and graphene centre<p><b>​Entrepreneurship, pro-activity, and interaction with the industry – three crucial ingredients when making Chalmers the Swedish epicenter of atomically thin materials and quantum materials. At least if you ask Samuel Lara-Avila who now takes the lead as new director of 2D-TECH and Graphene centre at Chalmers University. ​​​</b></p><span style="background-color:initial"><img src="/SiteCollectionImages/Centrum/2D-TECH/Samuel%20Lara%20Avila_1.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:218px" />Samuel Lara-Avila, associate professor of physics, was appointed new director of 2D-TECH and Graphene Centre at the 2D-TECH assembly on 3 March. And with more than ten years’ experience working on graphene and an academic history at Chalmers that took off already in 2006, it’s safe to say he’s in familiar territories. </span><div><br /><span style="background-color:initial"></span><div>“I know for a fact that graphene can bring something to the table and solve real-world problems that other materials cannot. I see GCC and 2D-TECH as two tools to consolidate Chalmers as the Swedish epicenter of atomically thin materials and quantum materials”, says Samuel. </div> <div><br /></div> <div><strong>What made you want to take on the role as director? </strong></div> <div>“The conditions right now are very favorable: there is a large enthusiastic and highly competent community taking part in GCC and 2D-TECH. It has been a great achievement to kick-start a Vinnova competence centre and I’m here to do my best in trying to push it beyond. With the human resources and the infrastructure at Chalmers and partners, I believe this to be a feasible endeavor”.  </div> <div><br /></div> <div><strong>What challenges do you see and what are your thoughts on how to overcome them? </strong></div> <div>“One core challenge that needs to be addressed is that many of the graphene technologies worldwide are at risk of getting stuck in the technological “valley of death”. But when I look at the list of PIs and participants of 2D-TECH, I see many ingredients are in place in order to tackle that challenge. For the next couple of years, I see It will be crucial to ensure we are not a passive community. Accountability for deliverables should be in place, and the interactions between companies and PIs should be closely followed. We should not forget the entrepreneurial spirit, of which I see more and more at Chalmers, especially among younger PIs”. </div> <div><br /></div> <div>Samuel succeeds Ermin Malic who has been director of Graphene Centre since 2017 and of 2D-TECH since its birth in February 2020. And to Ermin stepping down doesn’t mean slowing down. New challenges await in the same country where he once got his PhD 13 years ago.  </div> <div><br /></div> <div><strong><img src="/SiteCollectionImages/Centrum/2D-TECH/ErminMalic_190415_05.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;width:200px;height:174px" />So, what will you be doing now? </strong></div> <div>“I’m building up a new research group &quot;Ultrafast Quantum Dynamics&quot; at the Philipps-Universität Marburg in Germany. The focus will be on microscopic understanding of moire exciton physics in atomically thin semiconductors”, says Ermin. </div> <div><br /></div> <div><strong>If you were to put the last few years into words, what would you say? </strong></div> <div>“Building up the 2D-TECH center at Chalmers was a very challenging, intense and rewarding time and it broadened my horizon in many different ways”. </div> <div><br /></div> <div><strong>Text:</strong> Lovisa Håkansson</div> </div>Wed, 03 Mar 2021 00:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/Recipients-of-the-annual-PhD-award.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Recipients-of-the-annual-PhD-award.aspxRecipients of the annual PhD award<p><b>​Molecular doping of epigraphene and excitons in two-dimensional materials – those are the topics of the day as Samuel Brem and Hans He receive the GCC/2D-tech PhD Award for best doctoral thesis on graphene and related materials at Chalmers in 2020.</b></p>​<span style="background-color:initial">The two award winners received their prizes – a diploma and 15 000 SEK - at a web seminar on 1 March. </span><div><br />&quot;I’m honored that Graphene Center has recognized my PhD work, and I am grateful to be the recipient of the 2D-Tech award. I am very happy that my research on applications of epigraphene has garnered some interest&quot;, says Hans He, former PhD student at the quantum device laboratory at MC2. <br /></div> <div>And his co-award-winner Samuel Brem, who carried out his PhD work at Condensed Matter and Materials Theory at the Physics department, joins in: </div> <div>&quot;This award means a lot to me and I am very proud of it. It motivates me to continue my path in the academic world and to keep working hard on myself.&quot;<br /><br /></div> <div><img src="/SiteCollectionImages/Centrum/2D-TECH/Samuel%20Brem%20300x400.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px" />Samuel’s  thesis titled Microscopic theory of exciton dynamics in two-dimensional materials focuses on the dynamics of excitons in transition metal dichalcogenides (TMD’s) and their heterostructures – a topic that is believed to further new physics and help open the route to new technological applications such as sensors or light emitters. His PhD work includes five peer-reviewed scientific articles with Samuel being the first author, and a scientific production of 31 articles, which so far have been cited 524 times – arguably the highest H-index in the history of newly graduated PhD:s from Chalmers. <br /><br /></div> <div>&quot;Samuel has developed a novel theoretical approach to describe moire exciton phenomena in technologically promising van der Waals heterostructures. He has been involved in over 30 scientific publications, including a cover article on Nature Materials&quot;, says Ermin Malic, director of the Graphene Centre and 2D-TECH. </div> <div><br /></div> <div><img src="/SiteCollectionImages/Centrum/2D-TECH/hans_he_300x400.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />In his thesis, Molecular doping of epitaxial graphene for device application, Hans He uses a doping method to solve a common challenge when working with graphene and 2D materials: to create practical devices that are stable in ambient conditions and that can last for many years. By comparing with conventional quantum resistance standards, it has been confirmed that doped epigraphene meets the stringent criteria for use in precision quantum resistance metrology. The product is now commercialized and is has been used by various National Metrology Institutes across the world. In his PhD work, Hans also developed sensitive Hall sensors for magnetic field detection and contributed to the fabrication of a proof-of-concept terahertz detector, which potentially could revolutionize sensors used in next-generation space telescopes.<br /><br /></div> <div>&quot;Hans has developed a novel molecular doping technique for 2D materials, which has resulted in a patent and a high-impact publication in Nature Communications&quot;, says Ermin. <br /></div> <div>The director of the Graphene Centre is also keen to emphasize what the two award winning theses mean to the university at large. <br /></div> <div>&quot;Chalmers is often just seen as the coordinator of the big Graphene Flagship, but Samuel and Hans demonstrate how strong the actual 2D material research is at Chalmers.&quot;<br /><br /></div> <div>After receiving their prizes Hans and Samuel presented their award-winning theses. And besides enjoying the honor of winning the awards, it turns out also the prize money will come in handy. <br /></div> <div>&quot;As for the money, I'll probably save it until this pandemic passes and go travel somewhere with my wife&quot;, says Hans. <br /></div> <div>&quot;I will buy myself a good tablet to keep all my notes in the cloud and the rest of it will probably contribute to the budget needed to finally get my driving license&quot;, concludes Samuel. <br /><br /></div> <div>Samuel is currently doing his PostDoc at the University of Marburg in Germany and Hans is working for RISE where he continues doing active research on graphene-based primary metrology. </div> <div><br /></div> <div><strong>Text</strong>: Lovisa Håkansson</div> Mon, 01 Mar 2021 16:00:00 +0100https://www.chalmers.se/en/areas-of-advance/ict/news/Pages/Call-for-ICT-seed-projects-2022.aspxhttps://www.chalmers.se/en/areas-of-advance/ict/news/Pages/Call-for-ICT-seed-projects-2022.aspxCall for ICT seed projects 2022<p><b>Call for proposals within ICT strategic areas and involving interdisciplinary approaches.​</b></p><h3 class="chalmersElement-H3">Important dates:</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li><b>Submission date: </b>April 29, 2021</li> <li><b>Notification:</b> mid-June, 2021</li> <li><b>Expected start of the project:</b> January 2022</li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Background</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The Information and Communication Technology (ICT) Area of Advance</b> (AoA) provides financial support for SEED projects, i.e., projects involving innovative ideas that can be a starting point for further collaborative research and joint funding applications. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>We will prioritize research projects that <strong>involve researchers from different research communities</strong> (for example across ICT departments or between ICT and other Areas of Advances) and who have not worked together before (i.e., have no joint projects/publications). </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>Research projects involving a <strong>gender-balanced team and younger researchers</strong>, e.g., assistant professors, will be prioritized. Additionally, proposals related to <strong>sustainability</strong> and the UN Sustainable Development Goals are encouraged.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b><em>Note: </em></b><em>Only researchers employed at Chalmers can apply and can be funded. PhD students cannot be supported by this call.  Applicants and co-applicants of research proposals funded in the 2020 and 2021 ICT SEED calls cannot apply. </em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><em><br /></em></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><b>The total budget of the call is 1 MSEK.</b> We expect to fund 3-5 projects</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">Details of the call</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li>The project should include at least two researchers from different divisions at Chalmers (preferably two different departments) and who should have complementary expertise, and no joint projects/publications.</li> <li>Proposals involving teams with good gender balance and involving assistant professors will be prioritized.</li> <li>The project should contribute to sustainable development. </li> <li>The budget must be between 100 kSEK and 300 kSEK, including indirect costs (OH). The budget is mainly to cover personnel costs for Chalmers employees (but not PhD students). The budget cannot cover costs for equipment or travel costs to conferences/research visits. </li> <li>The project must start in early 2022 and should last 3-6 months. </li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h3 class="chalmersElement-H3">What must the application contain?</h3> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The application should be at most 3 pages long, font Times–roman, size 11. In addition, max 1 page can be used for references. Finally, an additional one-page CV of each one of the applicants must be included (max 4 CVs). Proposals that do not comply with this format will be desk rejected (no review process).</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>The proposal should include:</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>a)<span style="white-space:pre"> </span>project title </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>b)<span style="white-space:pre"> </span>name, e-mail, and affiliation (department, division) of the applicants</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>c)<span style="white-space:pre"> </span>the research challenges addressed and the objective of the project; interdisciplinary aspects should be highlighted; also the applicant should discuss how the project contributes to sustainable development, preferably in relation to the <a href="https://www.un.org/sustainabledevelopment/sustainable-development-goals/" title="link to UN webpage">UN Sustainable Development Goals (SDG)</a>. Try to be specific and list the targets within each Goal that are addressed by your project.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>d)<span style="white-space:pre"> </span>the project description </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>e)<span style="white-space:pre"> </span>the expected outcome (including dissemination plan) and the plan for further research and funding acquisition</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>f)<span style="white-space:pre"> </span>the project participants and the planned efforts</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>g)<span style="white-space:pre"> </span>the project budget and activity timeline
</div> <div><div><br /></div> <h3 class="chalmersElement-H3">Evaluation Criteria</h3> <div><ul><li>Team composition</li> <li>Interdisciplinarity</li> <li>Novelty</li> <li>Relevance to AoA ICT and Chalmers research strategy as well as to SDG</li> <li>Dissemination plan</li> <li>Potential for further research and joint funding applications</li> <li>Budget and project feasibility​</li></ul></div></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">Submission</span></div> <div> </div> <div> </div> <div> </div> <div>The application should be submitted as one PDF document to</div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span><span lang="EN-GB"><a href="https://easychair.org/my/conference?conf=seed2022">https://easychair.org/conferences/?conf=seed2022</a></span></span></p> <p class="chalmersElement-P"><span><br /></span></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="background-color:initial">The proposals will be evaluated by the AoA ICT management group and selected Chalmers researchers.

</span></div> <div><span style="background-color:initial"><b><br /></b></span></div> <div><span style="background-color:initial"><b>Questions</b> can be addressed to <a href="mailto:erik.strom@chalmers.se">Erik Ström</a> or <a href="mailto:durisi@chalmers.se">Giuseppe Durisi​</a> </span></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">General information about the ICT Area of Advance can be found at <a href="/en/areas-of-advance/ict/Pages/default.aspx">www.chalmers.se/ict ​</a></span><br /></div> <div> </div> <div><span style="background-color:initial"><br /></span></div> <div> </div> <div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/About%20us/IKT_logo_600px.jpg" alt="" /><span style="background-color:initial">​​<br /></span></div>Mon, 01 Mar 2021 00:00:00 +0100https://www.chalmers.se/en/departments/bio/news/Pages/New-nano-weapon-against-resistant-bacteria.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/New-nano-weapon-against-resistant-bacteria.aspxNew nano-weapon against resistant bacteria<p><b>​Nanoparticles coated with graphene flakes and antibiotics. This antibacterial nano-weapon is the goal of a new Nordic research project co-ordinated by Professor Ivan Mijakovic at Chalmers. The project aims to deliver the next generation of treatments against antibiotic-resistant bacteria.</b></p><p class="chalmersElement-P">​<span><span>Bacterial infections that cannot be treated due to antibiotic resistance is a rising and acute global problem. More than 700,000 people worldwide die each year due to infections caused by antibiotic-resistant bacteria. </span></span></p> <p class="chalmersElement-P"><span><span>In a worst-case scenario presented in a UN report in 2018, we can, if no measures are taken, reach a situation by 2050 where the death toll due to these infections rises to 10 million per year. As it is a time-consuming process to develop new antibiotics, and today's antibiotics are rapidly becoming ineffective, innovations are needed quickly.</span></span></p> <div> </div> <div><h2 class="chalmersElement-H2">Treatment of antibiotic resistant <em>Staphylococcus aureus</em>​</h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><span style="background-color:initial"></span></span></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span><img src="/SiteCollectionImages/Institutioner/Bio/SysBio/IvanMijakovic_180327_340x400.jpg" alt="Ivan Mijakovic" class="chalmersPosition-FloatRight" style="width:240px;height:282px" />“This is the right time for scientists to mobilise and try to solve this problem, which will be a real threat to mankind in a decade or two. Traditionally we all tend to think that the solution is to find new antibiotics, but we could also try to find a disruptive new technology that is not based on antibiotic discovery,” says<strong> Ivan Mijakovic</strong>, Professor of Systems and Synthetic Biology at the Department of Biology and Biological Engineering at Chalmers, w​ho is the co-ordinator of the new Nordic project.  </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>The research </span><span>pro</span><span>ject will run </span><span>for three years, and in January 2021 it was awarded 15 MSEK by </span><a href="https://www.nordforsk.org/">Nordforsk</a><span>. The researchers will specifically be focusing on treatment of methicillin-resistant </span><em>Staphylococcus aureus</em><span> (MRSA), which, among other things, causes chronic skin infections and sepsis. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>MRSA can also infect tissues and organs inside the body, such as heart and lungs, and they can also grow on different kinds of implants used in health care. MRSA-infections are easily spread in hospitals and cause great suffering in affected patients. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"><span>Combine three techniques in a new way</span></h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>The idea of the project is to combine three already established techniques in a completely new way to create a new system for drug delivery. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>Metal nanoparticles, graphene flakes and antibiotics all have antibacterial properties. Combined they would be even more powerful, as these particles most likely can penetrate the bacterial biofilm formed at the area of infection and release the antibiotic there. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>Biofilm is the thick layer of bacteria and the mucus they produce when they attach to a surface and start to multiply, and it creates a protective barrier for the bacteria. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"><span>Graphene flakes cut and kill bacteria</span></h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><p class="chalmersElement-P"><span><img src="/SiteCollectionImages/Institutioner/Bio/SysBio/A%20Yurgens%201_340x400.jpg" alt="August Yurgens" class="chalmersPosition-FloatRight" style="width:240px;height:282px" />Ch</span><span>almers is one of the world leading universities in the research field of graphene. The idea of using graphene for medical treatments is relatively young but has great potential.  <strong>August Yurgens</strong> is Professor at the Department of Microtechnology and Nanoscience at Chalmers. His research group is developing the process where the nanoparticles are coated axially with graphene flakes. </span></p></div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>“Sharp edges of graphene flakes placed vertically on a surface cut through the membrane of cells of a certain size, which <a href="/en/departments/bio/news/Pages/Spikes-of-graphene-can-kill-bacteria-on-implants.aspx">research from Ivan and other scientists at Chalmers already has shown</a>.  Small bacterial cells are killed when they are cut by the sharp graphene edges, but human cells, which are bigger, are not harmed. The graphene flakes will be coated with the drug for transporting it deeper into the infected tissue. The antibiotics will then be released in the infected tissue gradually, &quot;says August Yurgens and continues: </span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>&quot;Since some chemicals used as drugs are non-soluble in water, the main constituent of our bodies, we must find other ways of transporting the drugs within the body. The graphene coated nanoparticles could be a solution to this problem.” </span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>His research group has made trials where they tried to grow graphene on silicon nanoparticles </span><span>−</span><span> </span><span> with promising results. </span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>“Of course, we are facing some challenges since the nanoparticles are spherical and for most efficient result, they need to be covered evenly with graphene flakes. We have several ideas on how we can solve that,” he says. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"><span>Green nanoparticles and novel drugs​</span></h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>The other Nordic partners are <a href="https://www.biosustain.dtu.dk/">DTU</a> in Denmark, and the research institute <a href="https://www.sintef.no/en/">SINTEF​</a> in Norway.  DTU will deliver the so-called green nanoparticles, which produced from plant or bacterial extracts, for an environmentally friendly production. </span></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span>Researchers at SINTEF are developing new drugs with antibacterial properties, which will be loaded on the graphene coated nanoparticles. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">&quot;Mechanism that effectively can be used against MRSA&quot;</h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">I<span>van Mijakovic’s research group will test the new nano-weapons for killing of bacterial biofilms. Ivan Mijakovic says that even if their study is successful, further obstacles must be overcome before this system can be used in patients. </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span>Graphene-based nanotechnology is not yet allowed in medical treatments within the EU. But, since this area has such potential, there are ongoing clinical trials to ensure safe treatments. </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span> “It usually takes decades to develop treatments like this. But we are at the forefront of developing a mechanism that we think can be effectively used against MRSA and other dangerous pathogens, and it is important that we test it and act now,” says Ivan Mijakovic.  </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span><strong>Text: </strong>Susanne Nilsson Lindh</span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><br /></span></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><strong>Read more: </strong></span></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><a href="/sv/institutioner/bio/nyheter/Sidor/Ny-teori-om-snabb-spridning-av-antibiotikaresistens.aspx" style="font-weight:300"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" /></a><a href="/en/departments/bio/news/Pages/Spikes-of-graphene-can-kill-bacteria-on-implants.aspx">Spikes of graphene can kill bacteria on implants</a></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><a href="/sv/institutioner/bio/nyheter/Sidor/Ny-teori-om-snabb-spridning-av-antibiotikaresistens.aspx" style="font-weight:300"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />​</a><a href="/en/departments/bio/news/Pages/Graphite-nanoplatelets-on-medical-devices-prevent-infections-.aspx">Graphite nanoplatelets prevent infections​</a></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><br /></span></div></div>Tue, 02 Feb 2021 10:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/shedding-light-on-the-strange-metal-regime-of-the-cuprate-superconductors.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/shedding-light-on-the-strange-metal-regime-of-the-cuprate-superconductors.aspxShedding light on the strange metal regime of the cuprate superconductors<p><b>​Chalmers researcher Riccardo Arpaia, Department of Microtechnology and Nanoscience, is one of the authors of a recently published article in Communications Physics – a new open access journal from Nature Research. The paper Strange metal behaviour from charge density fluctuations in cuprates is a result of a collaboration between Chalmers, Politecnico di Milano, Brandenburg University of Technology and a group of theoreticians at La Sapienza University in Rome. The new findings are based on Riccardo Arpaia’s research published in Science in 2019, within the framework of the &quot;VR International Postdoc&quot; carried out in Milan, Italy. ​</b></p><img src="/SiteCollectionImages/Institutioner/MC2/News/Shedding%20light%20on%20the.png" class="chalmersPosition-FloatRight" alt="" style="width:350px;height:343px" /><div><div><p class="chalmersElement-P"><span lang="EN-GB">This is the natural ‘sequel’ of the pioneering work published in 2019. There, the researchers experimentally showed, by X-ray scattering, a new property of cuprate superconductors - dynamic charge density fluctuations. </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span lang="EN-GB">“The electrons in cuprate superconductors are strongly correlated. A fraction of them tend to self-organize, forming waves, and causing the electronic charge density to become spatially modulated.  Differently from other, previously discovered, electronic waves, ‘our’ charge density fluctuations have an extremely short correlation length, they do not seem to interfere with superconductivity and are present in a very broad range of doping and temperature, surviving at least up to room temperature. Among the others, this latter characteristic was extremely intriguing: being so pervasive, it was natural to ask ourselves if they could significantly affect the physics of this still mysterious class of compounds”, says Riccardo Arpaia, researcher at the Quantum Device Physics Laboratory at Chalmers. </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span lang="EN-GB">In the work just published in Communication Physics, the researchers have presented a theoretical proposal, which has been developed by a group of theoreticians at La Sapienza University in Rome and at Brandenburg University of Technology. They have investigated the consequences of charge density fluctuations on the electron and transport properties of cuprates. The unforeseen discovery is that the charge density fluctuations allow them to explain one of the ‘strange’ (the use of such adjective is no coincidence!) characteristics of cuprates: the fact that, above the superconducting critical temperature, they have such a different behavior of the electrical resistance with respect to conventional metals. Which is indeed named ‘strange metal behavior’, and whose most evident benchmark is represented by the linear behaviour of the electrical resistivity as a function of the temperature T up to the highest attained temperatures.</span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span lang="EN-GB">“Charge density fluctuations are therefore likely the long-sought microscopic mechanism underlying the peculiarities of the metallic state of cuprates. This might represent a decisive step toward the understanding of this class of materials. Ultimately, indeed, the great interest in the scientific community is to grasp the secrets of high critical temperature superconductors, which might allow to build new superconductors, functioning close to room temperature and atmospheric pressure”</span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span lang="EN-GB">Read the paper in Communications Physics: </span><span lang="EN-US"><a href="https://www.nature.com/articles/s42005-020-00505-z" target="_blank"><span lang="EN-GB">https://www.nature.com/articles/s42005-020-00505-z</span></a></span><span lang="EN-US"></span></p></div> <div><br /></div> <div><br /></div> </div>Tue, 26 Jan 2021 00:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/kvantfysiker-i-kva.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/kvantfysiker-i-kva.aspxQuantum physicist elected member of the Royal Swedish Academy of Sciences<p><b>Göran Johansson, professor at the Department of Microtechnology and Nanoscience, has been elected member of the Royal Swedish Academy of Sciences. He thus becomes the seventh Chalmers professor in the class of physics, and the third from our department.</b></p>​<img src="/SiteCollectionImages/Institutioner/MC2/News/Göran%20Johansson%20600_900.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:375px" /><span style="background-color:initial">G</span><span style="background-color:initial">öran</span><span style="background-color:initial"></span><span style="background-color:initial"></span><span style="background-color:initial"></span><span style="background-color:initial"> Johansson is head of Applied Quantum Physics Laboratory and was elected at the Academy's meeting on 13 January as a member of the Class for physics.</span><div><br /></div> <div>&quot;I feel honored and actually I’m a bit shocked. I hope that I will be able to contribute with my expertise in quantum technology and my curiosity in other research areas. The Royal Swedish Academy of Sciences is a heavy referral body in the Swedish research community and, among other things, does a very important work with the Nobel Prizes.” </div> <div><br /></div> <div>According to the website, the Royal Swedish Academy of Sciences is an independent organisation that aims to promote the sciences and strengthen their influence in society. The Academy also rewards outstanding research achievements through numerous prizes – the most famous are, of course, the Nobel Prizes in Chemistry and Physics. Being elected as a member of the Academy is seen as an exclusive recognition for efforts in research.</div> <div> </div> <div>An overall goal of Göran's research is to understand how quantum physics works in nature and how to take advantage of quantum physical effects in practical applications. Among other things, he studies the dynamic Casimir effect, which describes how photons are created out of vacuum when a mirror accelerates and moves close to the speed of light.</div> <div><br /></div> <div>A more applied question is how to best build a quantum computer. The Quantum bit, the smallest information carrier in a quantum computer, can have both the value 0 and 1 at the same time and can therefore provide a computational capacity much larger than today's fastest supercomputers. For example, a quantum computer could study complex molecular structures in medical research and provide new drugs. It could also give us completely new opportunities to see structures in large data sets in order to find better solutions to difficult optimization problems, such as traffic planning.</div> <div><br /></div> <div><div><a href="http://www.kva.se/" style="background-color:rgb(255, 255, 255)"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /></a>Read more about the Royal Swedish Academy of Sciences on <a href="http://www.kva.se/">the Academy's website</a>. </div> <div><a href="http://www.kva.se/" style="background-color:rgb(255, 255, 255)"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /></a>Read more about Göran in the article  <a href="/en/centres/gpc/news/Pages/Goran-wants-to-build-Swedens-first-quantum-computer.aspx">&quot;Göran wants to build Sweden's first quantum computer&quot;​</a></div></div> <div><br /></div> <div>Text: Susannah Carlsson<br />Photo: Kerstin Jönsson</div> <div><div></div> <div><br /></div> </div>Wed, 20 Jan 2021 17:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/Tiny-quantum-computer-solves-real-optimisation-problem.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Tiny-quantum-computer-solves-real-optimisation-problem.aspxTiny quantum computer solves real optimisation problem<p><b>Quantum computers have already managed to surpass ordinary computers in solving certain tasks – unfortunately, totally useless ones. The next milestone is to get them to do useful things. Researchers at Chalmers University of Technology, Sweden, have now shown that they can solve a small part of a real logistics problem with their small, but well-functioning quantum computer.​</b></p><div><div><span style="font-size:14px">Interest in building quantum computers has gained considerable momentum in recent years, and feverish work is underway in many parts of the world. In 2019, Google's research team made a major breakthrough when their quantum computer managed to solve a task far more quickly than the world's best supercomputer. The downside is that the solved task had no practical use whatsoever – it was chosen because it was judged to be easy to solve for a quantum computer, yet very difficult for a conventional computer.<br /></span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="background-color:initial">T</span><span style="background-color:initial">herefore, an important task is now to find useful, relevant problems that are beyond the reach of ordinary computers, but which a relatively small quantum computer could </span><span style="background-color:initial">solve.</span><br /></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px"><img src="/SiteCollectionImages/Centrum/WACQT/PIs/GiuliaFerrini_180109_02%20kvadrat.jpg" class="chalmersPosition-FloatRight" alt="Giulia Ferrini" style="margin:5px;width:180px;height:180px" />“We want to be sure that the quantum com​puter we are developing can help solve relevant problems early on. Therefore, we work in close collaboration with industrial companies”, says theoretical physicist Giulia Ferrini, one of the leaders of Chalmers University of Technology’s quantum computer project, which began in 2018.</span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px">Together with Göran Johansson, Giulia Ferrini led the theoretical work when a team of researchers at Chalmers, including an industrial doctoral student from the aviation logistics company Jeppesen, recently showed that a quantum computer can solve an instance of a real problem in the aviation industry.</span></div> <h2 class="chalmersElement-H2"><span>The algorithm proven on two qubits</span></h2> <div><span style="font-size:14px">All airlines are faced with scheduling problems. For example, assigning individual aircraft to different routes represents an optimisation problem, one that grows very rapidly in size and complexity as the number of routes and aircraft increases.</span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px">Researchers hope that quantum computers will eventually be better at handling such problems than today's computers. The basic building block of the quantum computer – the qubit – is based on completely different principles than the building blocks of today's computers, allowing them to handle enormous amounts of information with relatively few qubits. </span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px">However, due to their different structure and function, quantum computers must be programmed in other ways than conventional computers. One proposed algorithm that is believed to be useful on early quantum computers is the so-called Quantum Approximate Optimization Algorithm (QAOA).</span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px">The Chalmers research team has now successfully executed said algorithm on their quantum computer – a processor with two qubits – and they showed that it can successfully solve the problem of assigning aircraft to routes. In this first demonstration, the result could be easily verified as the scale was very small – it involved only two airplanes.</span></div> <h2 class="chalmersElement-H2"><span>Potential to handle many aircraft</span></h2> <div><span style="font-size:14px">With this feat, the researchers were first to show that the QAOA algorithm can solve the problem of assigning aircraft to routes in practice. They also managed to run the algorithm one level further than anyone before, an achievement that requires very good hardware and accurate control.</span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px"><img src="/SiteCollectionImages/Centrum/WACQT/PIs/JonasBylander_171101_kvadrat.jpg" class="chalmersPosition-FloatLeft" alt="Jonas Bylander" style="margin:5px;width:180px;height:180px" /></span></div> <div><span style="font-size:14px">​“We have shown that we have the ability to map relevant problems onto our quantum processor. We still have a small number of qubits, but they work well. Our plan has been to first make everything work very well on a small scale, before scaling up,” says Jonas Bylander, senior researcher responsible for the experimental design, and one of the leaders of the project of building a quantum computer at Chalmers. </span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px">The theorists in the research team also simulated solving the same optimisation problem for up to 278 aircraft, which would require a quantum computer with 25 qubits.</span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px">“The results remained good as we scaled up. This suggests that the QAOA algorithm has the potential to solve this type of problem at even larger scales,” says Giulia Ferrini.</span></div> <div><span style="font-size:14px"><br /></span></div> <div><span style="font-size:14px">Surpassing today’s best computers would, however, require much larger devices. The researchers at Chalmers have now begun scaling up and are currently working with five quantum bits. The plan is to reach at least 20 qubits by 2021 while maintaining the high quality. </span></div></div> <div><span style="font-size:14px"><br /></span></div> <strong>Text:</strong> Ingela Roos<br /><strong>Portrait pictures: </strong>Johan Bodell<br /><p></p> <p class="MsoNormal"><span style="background-color:initial"><br /></span></p> <p class="MsoNormal"><span lang="EN-GB">The research results have been published in two articles in <em>Physical Review Applied</em>:</span></p> <p class="MsoNormal"><span lang="sv"><span lang="EN-GB"><a href="https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.034010"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm</a><br /></span></span><a href="https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.034009"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" /><span lang="EN-GB">Applying the Quantum Approximate Optimization Algorithm to the Tail-Assignment Problem</span></a><span style="background-color:initial"> </span></p> <h2 class="chalmersElement-H2"><span>More about: The Swedish quest for a quantum computer</span></h2> <p class="MsoNormal"><span style="font-size:14px">The research is part of the Wallenberg Centre for Quantum Technology (WACQT), a twelve-year, billion-dollar investment with two main purposes: to develop Swedish expertise in quantum technology, and to build a useful quantum computer with at least one hundred quantum bits. The research centre is mainly funded by the Knut and Alice Wallenberg Foundation.</span><br /><span style="background-color:initial"></span></p> <h2 class="chalmersElement-H2"><span lang="EN-GB">Read more:</span></h2> <p class="MsoNormal"><span lang="sv"><a href="/en/news/Pages/Engineering-of-a-Swedish-quantum-computer-set-to-start.aspx"><span lang="EN-GB">Engineering of a Swedish quantum computer set to start</span></a></span><span lang="EN-GB"> (initial press release from 2017)</span><span lang="EN-GB"><br /></span><span lang="sv" style="background-color:initial"><a href="/en/centres/wacqt/discover/Pages/default.aspx"><span lang="EN-GB">Discover quantum technology</span></a></span><span lang="EN-GB" style="background-color:initial"> (introduction to quantum technology)<br /></span><span lang="sv" style="background-color:initial"><a href="/en/centres/wacqt/discover/Pages/Quantum-computing.aspx"><span lang="EN-GB">Quantum computing</span></a></span><span lang="EN-GB" style="background-color:initial"> (introduction to quantum computing)<br /></span><span lang="EN-GB"><a href="/en/centres/wacqt/Pages/default.aspx">Wallenberg Centre for Quantum Technology (WACQT)</a><br /></span><span lang="sv" style="background-color:initial"><a href="/en/centres/wacqt/research/Pages/Research-in-quantum-computing-and-simulation.aspx"><span lang="EN-GB">Research in quantum computing and simulation</span></a></span><span lang="EN-GB" style="background-color:initial"> (about quantum computing research within WACQT)</span><span style="background-color:initial"> </span></p> <h2 class="chalmersElement-H2"><span lang="EN-GB">For more information, please contact:</span></h2> <p class="MsoNormal"><span style="background-color:initial;font-size:14px">Giulia Ferrini, Assistant Professor in Applied Quantum Physics, Chalmers University of Technology, <a href="mailto:ferrini@chalmers.se">ferrini@chalmers.se</a>, +46 31 772 6417<br />Jonas Bylander, Associate Professor in Quantum Technology, Chalmers University of Technology, <a href="mailto:jonas.bylander@chalmers.se">jonas.bylander@chalmers.se​</a>, +46 31 772 5132</span><span style="background-color:initial">​​​</span>​ ​</p>Thu, 17 Dec 2020 09:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/The-world’s-shortest-wavelength-for-a-vertical-cavity-surface-emitting-laser-demonstrated.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/The-world%E2%80%99s-shortest-wavelength-for-a-vertical-cavity-surface-emitting-laser-demonstrated.aspxCreating compact lasers at record-short wavelengths<p><b>​Researchers at Chalmers University of Technology, with collaborators at Technische Universität Berlin, have demonstrated the shortest wavelength ever reported of a vertical-cavity surface-emitting laser (VCSEL). This can pave the way for future use in, for example, disinfection and medical treatment. The results were recently published in the scientific journal ACS Photonics.</b></p><div>“Although there is still much work to be done, especially to enable electrically driven devices, this demonstration provides an important building block for the realization of practical VCSELs covering the major part of the UV spectral range”, says Filip Hjort, PhD student at the Photonics Laboratory at MC2 and first author of the article.</div> <div> </div> <div>A vertical-cavity surface-emitting lasers (VCSEL) is a compact semiconductor laser and has seen widespread application in, for example, facial recognition in smartphones and for optical communication in data centers. So far, these lasers are only available commercially with red and infrared wavelengths, but also other visible-emitting VCSELs, that could find applications in adaptive headlamps for cars or projection displays, will soon be commercialized. </div> <div>“If the wavelength range could be pushed further, into the ultraviolet (UV), VCSELs could find any even broader use. UV light can be used for disinfection, material curing, fluorescence excitation, and medical treatment, and UV-emitting VCSEL could, for example, be used in compact water, air and surface disinfection systems as well as for treatment of skin diseases”, says Filip Hjort.</div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/vcsel-laser_gruppfoto_20-12-14_665x330.jpg" alt="Research Group." style="margin:5px" /><br /><span><em>Four of the researchers behind the results, from the left Johannes Enslin, Technische Universität Berlin, Michael Bergmann, Chalmers, Åsa Haglund, Chalmers, and Filip Hjort, Chalmers. Photo: Henrik Sandsjö</em></span><br /><br /></div> <div>To realize UV emission wavelengths in the ultraviolet B (280-320 nm) and ultraviolet C (200-280 nm), which is needed for most of these applications, the laser medium must be made of AlGaN. The research group of Åsa Haglund, Professor at the Photonics Laboratory at MC2, have previously, together with their collaborators at Technische Universität Berlin, demonstrated an electrochemical etching method that can be used to selectively etch specific AlGaN layers. In their current work, the two research groups use this method to create the world first optically pumped UVB-emitting VCSEL. </div> <div> </div> <div>“By using the electrochemical etching technique to remove the substrate and create smooth AlGaN membranes, we solved a long-standing problem for UV VCSELs. VCSELs need two mirrors with over 99% reflectivity and these can either be made using epitaxial growth or dielectric materials. However, reflectivities that high in the UVB or UVC have not been achieved using epitaxial growth, and the typical substrate removal methods used to enable the deposition of the second dielectric mirror in blue-emitting VCSELs are not suitable for AlGaN”, explains Filip Hjort. </div> <div> </div> <div>He continues:</div> <div>“By employing electrochemical etching, we were able to create AlGaN membranes that we could sandwich between two highly reflective dielectric mirrors. In this way, we formed a vertical cavity that lases under optical pumping”.</div> <div> </div> <div>The new demonstration is the shortest wavelength VCSEL ever reported and the electrochemical etch technique is also extendable to UVC wavelengths which are needed for sterilization applications to, for example, combat future pandemics and provide clean drinking water. </div> <div> </div> <h3 class="chalmersElement-H3">Contacts</h3> <div> <a href="mailto:filip.hjort@chalmers.se">fil</a><span>ip.hjort@chalmers.se</span></div> <div><br /></div> <div>Åsa Haglund, Professor, Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Sweden, <a href="mailto:asa.haglund@chalmers.se">asa.haglund@chalmers.se</a> </div> <div><strong><br /></strong></div> <div><strong>Read the article in ACS Photonics &gt;&gt;&gt;</strong></div> <div><a href="http://dx.doi.org/10.1021/acsphotonics.0c01382">dx.doi.org/10.1021/acsphotonics.0c01382</a></div>Thu, 17 Dec 2020 09:00:00 +0100https://www.chalmers.se/en/centres/gpc/news/Pages/Research-is-not-everything-for-Peter-Andrekson.aspxhttps://www.chalmers.se/en/centres/gpc/news/Pages/Research-is-not-everything-for-Peter-Andrekson.aspxResearch is not everything for Peter Andrekson<p><b>​He has lived with fibre optics for 35 years. There have been many research breakthroughs and prestigious grants. But world citizen and Chalmers professor Peter Andrekson also values many other things in life. “In recent years I’ve learnt that you need to be able to do two things: delegate to people you can rely on, and be able to say ‘no’ to things you don’t think are that important,” he says.</b></p><div>It is a Thursday afternoon at Wijkanders’ restaurant in the Vasa area – a stone’s throw from the statue of the first female Chalmers’ graduate, Vera Sandberg. In an adjacent room a small group are lingering. Otherwise the place is basically deserted. It is an hour to closing time and staff are trundling past with their rattling washing-up trolleys. A piano starts playing in the room next door.</div> <div> </div> <div>Andrekson sends off his last email and straightens himself in the sofa he is sitting in. He has chosen the meeting place for our interview for purely practical reasons.</div> <div>“I don’t have any special relationship with Wijkanders but didn’t want to meet in the office. It feels a little too work-specific,” he says.</div> <div> </div> <div>Andrekson was born and grew up in Gothenburg. He reached the age of 60 in May 2020, but for completely understandable reasons, the party was postponed indefinitely.</div> <div>“Yes, it was cancelled just like the Olympic Games in Tokyo,” he says with a crooked smile. </div> <div>His sights are now set on celebrating in summer 2021 instead.</div> <div> </div> <div>His roots are in Estonia, something that Andrekson cherishes. His background includes a very dramatic family history. His father came to Sweden escaping from Estonia by boat in 1944. He was only 13 years old at the time and fled together with his sister who was a few years older than him. Their father died before the war and their mother, Andrekson’s grandmother, was deported to Siberia, where she was imprisoned for almost 30 years. She was only released in 1970 and was then reunited with her family in Sweden.</div> <div>“Of course, it affected me a great deal. It has given me great respect for the ability to build up something new, which Dad had to do. But he didn’t talk much about his escape,” says Andrekson.</div> <div> </div> <div>His father was very single-minded and managed to create a new life in Sweden, against all the odds. He studied and eventually managed to obtain an MSc in engineering at Chalmers.</div> <div>“He arrived empty-handed; he had no money, no parents, nothing. But he still managed to work at night and study at Chalmers during the day. I’ve a great deal of respect for that,” Andrekson says.</div> <div> </div> <div>He is a Chalmers graduate himself and graduated in Electrical Engineering in 1984.</div> <div><strong>Did your dad inspire you to apply to Chalmers?</strong></div> <div>“Not particularly. I was given a free hand as a child and considered several different courses, but it wasn’t so important that Dad had gone to Chalmers. I’d long been interested in technology. In my teens I tinkered about a lot with electronics – for electric guitars, for example.”</div> <div>Instead, Andrekson mentions his teachers as being more crucial to his choice of education:</div> <div>“Yes, I had a really good physics teacher at secondary school and at Burgårdens Gymnasium, where I went. They were more of an inspiration than Dad when it came to what to choose. That and the fact that I just thought physics was interesting. It’s quite common for teachers to turn out to be important for your choice of career,” he says.</div> <div> </div> <div>He describes his childhood as good, calm and safe. Andrekson and his younger brother grew up in Kallebäck, but moved to a house in Örgryte later on.  He spent his primary and secondary school years at the Estonian School in Johanneberg.</div> <div>“I felt more independent than the children of today, and even as a seven-year-old travelled alone by tram.” </div> <div>Peter is married to Marianne, and has a 23-year-old son and a 26-year old daughter, who are studying cognitive science and psychology respectively at the University of Gothenburg. Marianne comes from Estonia, where the couple also have an apartment that they travel to regularly. ‘Headquarters’ is, however, the apartment on the main boulevard, ‘Avenyn’, in Gothenburg.</div> <div> </div> <div>It was mainly by coincidence that he ended up specialising in electrical engineering:</div> <div>“First, I enrolled in Physics, but I thought those on the course were a bit too nerdy for me, so I switched to Electrical Engineering after a month. Their student social committee – the Donald Duck Committee – seemed to be much more fun, with much more enjoyable parties! But I still chose to take a number of Physics modules. My electrical engineering course was a hybrid between Physics and Electronics, just like MC2 is,” Andrekson says.</div> <div> </div> <div>After he obtained his MSc in July 1984, the future was as yet unwritten and Andrekson did not really know what to do then. He had done his thesis in the then Department of Electrical Measurement Technology, where they were working on laser physics. Professor Sverre Eng, who started optoelectronics activities at Chalmers in the 1970s, was also there. One day when the rain was pouring down, they met by chance outside the ‘Kopparbunken’, a building that is a well-known landmark at Chalmers and was previously used as a Faraday cage. Andrekson talks vividly about the occasion that set the direction of the rest of his career.</div> <div>“He stood under his umbrella and I stood beside him – without an umbrella! The rain was pelting down, but Sverre didn’t think about that. ‘You should start doing your PhD with me,’ he said. ‘I know exactly what you should do.’ I was desperate to get away and thought it was raining far too heavily, so I said ‘OK’. That’s what happened at the time; Sverre took me by the scruff of the neck and said, ‘you’ll fit in well as a doctoral student with me, this is what I think you should do’. And it worked out pretty well!”</div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/pandrekson_300x450_artikelbild.jpg" alt="Picture of Peter Andrekson." class="chalmersPosition-FloatRight" style="margin:5px" />Since then Andrekson has ‘lived with fibre’ as he expresses it. Fibre optics have pervaded his working life for 35 years, and in 1992 it was he who started fibre optic activities at Chalmers.</div> <div>Consequently, it is an optical fibre he is holding in the photo taken in Henrik Sandsjö’s studio at Röda Sten.</div> <div> </div> <div>Andrekson publicly defended his doctoral thesis in less than four years, much faster than normal. After that he wanted to travel abroad on a postdoc, but Professor Eng wanted him to be involved in arranging the European Conference on Optical Communication (ECOC), a major international conference, in 1989. With 800 participants, it was regarded as a highly successful conference. It was the first time that the ECOC had been arranged in Gothenburg, but it has since been held here on a further two occasions. The last time was in 2017, when he was joint Chair of the Technical Programme Committee. ECOC had by then really come of age and become Europe’s largest conference in optical communications, and one of the world’s largest and most prestigious conferences in the field.</div> <div>“It was a great job that was really enjoyable for a period of 3–4 years. It was a great success with 5,000 delegates from all around the world,” Andrekson says.</div> <div> </div> <div>His first conference abroad is an enjoyable memory. In 1985, one year into his PhD studies, Andrekson had the chance to take part in the ECOC Conference, which had been arranged in Venice that year. He travelled there by car through Europe together with two older colleagues. </div> <div>“At that time, you had time to drive to conferences, and that meant that you got to know colleagues in a different way. Nowadays, it’s just rush, rush, rush... We drove all the way to Italy and had a fantastic conference in an old monastery that dated from the 1600s. On the way there, we stopped off in Salzburg, Austria and did some skiing at Kaprun, an old glacier. You could ski there in the middle of September! Afterwards I took the train to a PhD competition in Madrid, which I won! Then I travelled home to Gothenburg by train via Paris. It was a fantastic trip which will always stay in my memory,” says Andrekson. </div> <div> </div> <div>He explains that he always tries to combine work with pleasure when going to a conference. </div> <div>“Sometimes I take along a member of the family and take the opportunity to visit friends and colleagues.” </div> <div> </div> <div>He spent the period from 1989 to 1992 at the American research company Bell Labs, which was world-renowned for its research into telecommunications. </div> <div>“It’s the most important and perhaps the best period in my career, and it sowed the seeds of what we are doing at Chalmers today. They have a world-class research lab and there are several Nobel laureates among the researchers. Thousands of top-notch researchers worked there. If you had a query in the world of physics, you could be quite sure that the answer could be found in the building. It was a fantastic period in all ways, it was incredibly instructive and inspiring to work there,” he says. </div> <div> </div> <div>After his return to Chalmers in 1992, his academic journey really took off. Andrekson started as an Assistant Professor, became an Associate Professor in 1994, a Professor in 1995 and a Full Professor of Photonics at the age of 40 in 2001.</div> <div> </div> <div>Andrekson has been the Director of the Fibre Optic Communications Research Centre (FORCE) since its creation in 2010. In 2019, he also became Head of the Photonics Laboratory at MC2. He conducts research and supervises doctoral students. He is currently an examiner and principal supervisor for ten doctoral students.</div> <div> </div> <div>Despite his many tasks and commitments, Andrekson makes a point of emphasising how important it is to have a good work-life balance with time for time for relaxation, and that as a manager you have to have the courage to delegate and ask for help.</div> <div>“In recent years I’ve learnt that you need to be able to do two things: delegate to people you can rely on, and be able to say ‘no’ to things you don’t think are that important. If you can’t do that you won’t survive. You need to be able to prioritise and must be able to say ‘no’. We are not all Superman, we can’t do everything all the time,” Andrekson says.</div> <div>He talks about a colleague who had a deadline for a grant application when operational planning work was at its height at Chalmers, and was faced with a choice: should they finish writing their application or take part in the operational planning work?</div> <div>“My colleague decided to prioritise their application. That’s what you have to do sometimes. There are plenty of administrative processes that have a life of their own at Chalmers, but unfortunately the result is often just a sheaf of papers.” </div> <div> </div> <div>Over the years a number of prestigious prizes and appointments have been bestowed upon Andrekson: these include becoming a Wallenberg Scholar (2012–2024), being awarded a Distinguished Professor grant by the Swedish Research Council and becoming a member of the Royal Swedish Academy of Engineering Sciences (IVA). One research grant he values highly is the ERC Advanced Grant from the European Research Council (ERC) for 2012–2017.</div> <div>“It’s some of the best research funding you can get throughout Europe and it’s hard to top,” he says.</div> <div> </div> <div>But he thinks that a Distinguished Professor grant counts for even more.</div> <div>“Yes, especially since it’s a 10-year project. I don’t know any other projects that extend over such a long period, it’s absolutely amazing. It allows you to work undisturbed over the longer term so that you can aim higher.” </div> <div> </div> <div>Andrekson is also proud of having served on Chalmers board for seven years, from 2009 to 2016. It gave him the opportunity to influence the direction taken by the university at a senior level.</div> <div>“It was a useful experience. I was involved in ensuring that we now have a new faculty model in place. I was a strong advocate of this and pushed to bring it about.”</div> <div> </div> <div>He has twice been an Expert Evaluator for the Nobel Prize in Physics. Andrekson has to be secretive and terse when talking about it because of the 50-year long confidentiality requirement. He cannot even mention the years in which he was involved. But he ‘worked on various evaluations’, as he says.</div> <div> </div> <div>Andrekson explains early on in the interview and in this text that fibre optics have pervaded his entire research career. But how would he describe his subject area?</div> <div>“Fibre optic systems are what keep the internet going. We can’t use our mobile phones and all their services if we don’t have a backbone network which is supported by fibre optic systems. For example, Facebook’s data centre is full of fibre-optic links – thousands of connections using fibre and technology that we worked on in a project with the Knut and Alice Wallenberg Foundation which ended last year and was aimed at enhancing the energy efficiency of such systems,” he says.</div> <div>Andrekson is currently involved in a workshop on the subject in collaboration with IVA.</div> <div>“We are talking about data centres through metropolitan networks and on to transoceanic fibre systems. I was involved and took part in the work on developing the first transoceanic fibre link with optical amplifiers. Prior to that you could not transmit data on several wavelengths, it was really expensive – it was necessary to detect and retransmit every 30 km for each wavelength,” he explains.</div> <div> </div> <div>Instead, optical amplifiers could amplify all wavelengths simultaneously. Using this technology, you could increase the capacity significantly in a cost-effective way. </div> <div>“It was a real breakthrough that we were working on back at Bell Labs in the early 1990s. We were ordered to keep it secret until it came out in a press release. When our competitors at British Telecom and France Telecom got to see what we had done, they completely abandoned their activities and realised that what we were working on was the right way to go. Our work has made a significant difference to transoceanic systems.”</div> <div> </div> <div>His current work involves free space communication among other things. A press release announcing that Andrekson’s research team had built the most sensitive receiver ever in all categories received a lot of media attention.</div> <div>“It’s a hot topic now. We would maintain that it is the best solution for transmitting information from and to Mars or even further. We’ve analysed other conceivable solutions but have still come to the conclusion that our method is the best. It should be interesting to see how the world accepts this eventually. Of course, there are a plenty of challenges left – I wouldn’t say that sensitivity is the only thing that counts, but many other things are needed too. We’re currently working on miniaturising this solution, making it really compact, and have a project that aims to make the receivers really small,” he says.</div> <div> </div> <div>Andrekson has also found the time to run a company. A scientific publication at Bell Labs in 1991 led, 13 years later, to him founding the company Picosolve together with a colleague in the USA and a doctoral student who had just successfully defended their doctoral thesis at Chalmers. </div> <div>“We built special systems with highly advanced software and hardware in, something that nobody else could build but that people needed. It was a ‘Rolls Royce’ system that you could sell to various research labs around the world – we had customers in South Africa, Russia, Japan, the USA and throughout Europe, so that box can be found in many labs today.”</div> <div>Demand started to fall around 2010. In 2009, Picosolve was sold to the Canadian company EXFO, which set up an office with four employees in the Imego building in the Chalmers area. </div> <div>“It was closed in 2014 and our technology is now available in Canada. It was a high point that a scientific paper could result in a company that existed from 2004 to 2014,” Andrekson thinks.</div> <div> </div> <div>In the last decade the focus has mainly been on noiseless amplifiers. In 2010, his research team had a breakthrough when it succeeded in demonstrating that amplifiers could actually work with a low noise factor.</div> <div> </div> <div><strong>What do you enjoy most out of all the activities you divide your time between?</strong></div> <div>“Being able to work with smart young people! I also think it’s great writing applications and scientific articles. I think I’m quite unique in that respect, but perhaps it’s because I write applications so rarely. Many people complain that it takes a lot of time, but I see it as an opportunity to clear my mind. Regardless of whether you get the money or not, you have in any case visualised and described for yourself how you view the future. That’s useful and I think that has a value in itself,” Andrekson says.</div> <div> </div> <div>He regards himself as something of a citizen of the world, and is a great advocate of the need for researchers to look around and have a change of environment now and then.</div> <div>“It’s partly due to my having lived abroad a great deal, especially in the USA, but also in Estonia and Japan. I also made a sabbatical visit to South Africa, and have a third home in Portugal where we try to spend as much time as possible. Mobility is included in Chalmers’ new faculty model. I would prefer new PhDs not to stay here but to go off and try out their wings somewhere else. A change of environment is incredibly important for your career. We have too much of a tunnel vision mentality in Sweden on the whole – you could call it slow and steady,” says Andrekson with a laugh.</div> <div> </div> <div>That Andrekson practices what he preaches is shown emphatically by the fact that he has spent periods abroad, and been a visiting researcher in the USA and Japan successively. He has also been a visiting professor at Tallinn University of Technology, with which he has formed strong ties. </div> <div>“We have good relations. Recently I met the new University President, who expressed in an interest in visiting Chalmers,” Andrekson notes.</div> <div> </div> <div>For the past five years Andrekson has been chair of the Alfred Ots Scholarship Fund, which gives a number of young Estonians the opportunity to take a Master’s Degree at Chalmers every year.</div> <div>“The fund was founded in 1995 and since then has awarded more than SEK 10 million to more than a hundred young people. New students are arriving all the time. We promote the fund during the autumn and receive applications and carry out interviews with applicants during the spring. Then, in May or June there is an award ceremony in Estonia. The grants are equivalent to the Swedish student loan.”</div> <div> </div> <div>He is generally keen to maintain relations with Estonia, and has acted as host for several ambassadorial visits. Andrekson was also involved when the President of Estonia, Kersti Kaljulaid, visited Gothenburg and Chalmers in 2018.</div> <div> </div> <div>Text: Michael Nystås</div> <div>Photo: Henrik Sandsjö</div> <div>Photo of Peter at Wijkanders: Michael Nystås</div> <div> </div> <h3 class="chalmersElement-H3">MORE ABOUT PETER ANDREKSON</h3> <div><strong>Born:</strong> In 1960 in Gothenburg.</div> <div><strong>Lives:</strong> Has homes in Estonia and Portugal, but his main home is his apartment on the main boulevard, ‘Avenyn’, in Gothenburg. “It’s the best investment I ever made.”</div> <div><strong>Family: </strong>Married to Marianne, with a 23-year-old son and a 26-year old daughter.</div> <div><strong>Job:</strong> Professor of Photonics at Chalmers.</div> <div><strong>Career in brief: </strong>MSc in 1984, PhD in 1988, Assistant Professor in 1992, Associate Professor in 1994, Professor in 1995, Full Professor of Photonics in 2001.</div> <div><strong>Leisure interests:</strong> “The sea, the natural world and art are important to me; golf, boating, travel. I have been an active golfer since 2004. My son started early and is now an excellent golfer. It’s great to see how he’s grown. I’m toiling away with a handicap of 20 plus, but I think it’s really great and relaxing. You can clear your mind, a bit like when you play guitar. We’ve also got a boat – we have a lot of boat trips in the archipelago. Walks, travel. I love looking at art and have a lot of favourite artists. For instance, we went to the Czartoryski Museum in Krakow and saw Da Vinci’s ‘Lady with an Ermine’. It was fantastic. The picture is displayed in a dimly lit room where it’s the only picture. It’s impressive to be alone with a picture like that, actually much more impressive than the ‘Mona Lisa’. I also love photographic museums, there’s one in both Stockholm and Tallinn. I used to play guitar but I don’t play so much these days. Musical omnivore. I mostly read non-fiction, most recently a really good book about the history of Bell Labs, ‘The Idea Factory’ by Jon Gertner. I’ve always got six or seven different books on the go at the same time.”</div> <div><strong>Favourite place for inspiration:</strong> “The sea, being out in the boat when it’s absolutely calm, the sea with the wide-open spaces. My wife and my family of course. The staffroom at work used to be really central, but it completely disappeared when the coffee machines arrived about twenty years ago. Before that there was someone who set the coffee maker off and everyone gathered together. It was sometimes really inspiring to sit there and discuss various subjects.” </div> <div><strong>Most proud about:</strong> “My family of course, but also that I’ve been able to help a great many people at Chalmers with their careers. I’ve supervised just over 25 doctoral students and a number of postdocs over the years, and it gives me both pride and inspiration.”</div> <div><strong>Main motivation: </strong> “Curiosity. It’s like being a child – you want to try out ideas and see whether they work; sometimes they can be a bit crazy, sometimes they turn out to be brilliant, but that doesn’t happen that often... In my group we always try to be explorative. We don’t always know the answer but try out different ideas and see whether they lead to anything. In some cases it turns out to be really interesting, in others it comes to nothing. Other researchers can be really targeted and know what they’re after and what they want to achieve. In my case it’s not really like that.”</div> <div><strong>First memory of physics:</strong> “What I think was important were my teachers in secondary school and at high school. We conducted some really great experiments there, which made me want to continue doing this work.” </div> <div><strong>Best thing about being a researcher:</strong> “With hindsight, I have found that I really appreciate the immense freedom. Many of us would certainly have had much higher salaries in industry, but with age you realise that it’s not the most essential thing in life and that you should work on things you enjoy. At a university you get that freedom and have a lot of control over your own time. The freedom and being able to work with creative young people are the best things about being a researcher.”</div> <div><strong>Challenges of the job:</strong> “The price of freedom is that you set your own ambitions. The challenge is to focus on something that can really make a difference in the long term, and to find the right balance in everything you do, not let administrative burdens weigh you down, and instead focus on research and teaching. Being able to prioritise and delegate. If you have the freedom, you must also be able to say ‘no’. I’ve been trying to influence some of Chalmers’ processes without great success. Perhaps we shouldn’t have a dialogue on the Operational Plan every year, for example. It may be enough to focus on it in one year and then on something else the next. A lot of the central operations could be streamlined. I think that the core activities, research and teaching, should dominate.”</div> <div><strong>Dream for the future:</strong> “That what you do in your research should be of use to society, to industry and commerce and to the members of society. It should ideally lead to new companies – Picosolve was really great, it created jobs and more besides. It’s particularly great to see how your own research can lead to new products and new companies. That’s a motivation, the fact that I hope the research will lead to something useful in society.”</div>Thu, 03 Dec 2020 09:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/Cooling-electronics-efficiently-with-graphene-enhanced-heat-pipes.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Cooling-electronics-efficiently-with-graphene-enhanced-heat-pipes.aspxCooling electronics efficiently with graphene-enhanced heat pipes<p><b>​Researchers at Chalmers University of Technology, Sweden, have found that graphene-based heat pipes can help solve the problems of cooling electronics and power systems used in avionics, data centres, and other power electronics. &quot;Heat pipes are one of the most efficient tools for this because of their high efficiency and unique ability to transfer heat over a large distance,&quot; says Johan Liu, Professor of Electronics Production, at the Department of Microtechnology and Nanoscience – MC2, at Chalmers. The results, which also involved researchers in China and Italy, were recently published in the scientific Open Access journal Nano Select.</b></p><div><img src="/SiteCollectionImages/Institutioner/MC2/News/jliu_2016_350x305.jpg" alt="Picture of Johan Liu." class="chalmersPosition-FloatRight" style="margin:5px" />Electronics and data centres need to be efficiently cooled in order to work properly. Graphene enhanced heat pipes can solve these issues. Currently, heat pipes are usually made of copper, aluminium or their alloys. Due to the relatively high density and limited heat transmission capacity of these materials, heat pipes are facing severe challenges in future power devices and data centres.</div> <div><br /></div> <div><em>(Picture to the right: Prof. Johan Liu)</em><br /> </div> <div> </div> <div>Large data centres that deliver, for example, digital banking services and video streaming websites are extremely energy-intensive, and an environmental culprit that emits more than the aviation industry. Reducing the climate footprint of this industry is therefore vital. The researchers’ discoveries here could make a significant energy efficiency contribution to these data centres, and in other applications too.</div> <div> </div> <div>The graphene-enhanced heat pipe exhibits a specific thermal transfer coefficient which is about 3.5 times better than that of copper-based heat pipe. The new findings pave the way for using graphene enhanced heat pipes in lightweight and large capacity cooling applications, as required in many applications such as avionics, automotive electronics, laptop computers, handsets, data centres as well as space electronics.</div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/ya_liu_350x305.jpg" alt="Picture of Ya Liu." class="chalmersPosition-FloatRight" style="margin:5px" />The graphene-enhanced heat pipes are made of high thermal conductivity graphene assembled films assisted with carbon fibre wicker enhanced inner surfaces. The researchers tested pipes of 6mm outer diameter and 150mm length. They show great advantages and potential in cooling of a variety of electronics and power systems, especially where low weight and high corrosion resistance are required. </div> <div>&quot;The cold part of the graphene enhance heat pipe can be substituted by a heat sink or a fan to make the cooling even more efficient when applied in a real case,&quot; explains Ya Liu <em>(picture to the right)</em>, PhD Student at the Electronics Materials and Systems Laboratory at Chalmers. </div> <div> </div> <div>The new study is based on a collaboration between researchers from Chalmers University of Technology, Fudan University, Shanghai University, China, SHT Smart High-Tech AB, Sweden and Marche Polytechnic University, Italy. <br /></div> <h3 class="chalmersElement-H3">For further information &gt;&gt;&gt;</h3> <div>Ya Liu, PhD Student, Electronics Materials and Systems Laboratory (EMSL), Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden, yaliu@chalmers.se </div> <div> </div> <div>Johan Liu, Professor, Electronics Materials and Systems Laboratory (EMSL), Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden, johan.liu@chalmers.se </div> <div> </div> <div>Illustration: Ya Liu and Johan Liu</div> <div>Photo of Johan Liu: Michael Nystås</div> <div>Photo of Ya Liu: Bo Hu</div> <div><br /></div> <div> </div> <div><strong>Read the full paper in Nano Select &gt;&gt;&gt;</strong></div> <div><a href="http://dx.doi.org/10.1002/nano.202000195"><span>http://dx.doi.org/10.1002/nano.202000195<span style="display:inline-block"></span></span></a></div>Thu, 03 Dec 2020 08:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/Prestigious-funding-for-photonic-research-from-The-Swedish-Research-Council.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Prestigious-funding-for-photonic-research-from-The-Swedish-Research-Council.aspxPrestigious funding for photonic research from The Swedish Research Council<p><b>​Victor Torres Company, Associate Professor at the Photonics Laboratory at MC2, has been awarded a consolidator grant from The Swedish Research Council (VR). He is funded with 12 million SEK for the years 2020-2026. &quot;It feels awesome&quot;, he says.</b></p>The grant is funding his project &quot;Multidimensional coherent communications with microcombs&quot; and will strengthen Victor Torres Company's group and help them establish a creative research environment. <br /><br />&quot;The great thing about this grant is that it covers a 6-year period. The grant will be used to ensure a smooth transition to the next generation of researchers of the knowledge that my team and I have created and take a bit of risks with a longer perspective in mind&quot;, he says.<br /><br /><img src="/SiteCollectionImages/Institutioner/MC2/News/victgor_torres_IMG_0316_300px.jpg" alt="Picture of V Torres." class="chalmersPosition-FloatRight" style="margin:5px" />Victor Torres Company is one of the most talented and successful young researchers at MC2. He was recruited to Chalmers in late 2012 after a couple of postdoc stints in the US and Canada. Victor’s expertise is on laser frequency comb science and technology, nonlinear integrated optics and fiber-optic communications.<br /><br />In 2017 he was awarded a prestigious Consolidator Grant by the European Research Council, as one of only 14 Swedish researchers and the only one at Chalmers to receive the grant. <br /><br />The purpose of the consolidator grant is to give the most prominent junior researchers the opportunity to consolidate their research and broaden their activities as independent researchers. Two researchers at Chalmers received funding in this round. Beside Victor Torres Company, also Kasper Moth-Poulsen at the Department of Chemistry and Chemical Engineering was awarded. <br /><br />The total grant amount for 2020-2026 is almost 217 million SEK. Chalmers gets 24 million SEK. 288 researchers from all over Sweden applied for a grant. Only 20 were successful; seven women and 13 men.<br /><br /><div>Text and photo: Michael Nystås</div> <div><br /></div> <div>Read more about the consolidator grant for Kasper Moth-Poulsen &gt;&gt;&gt;<br /><a href="/en/departments/chem/news/Pages/Chemistry_researcher_receive_consolidation_grant.aspx" target="_blank">He wants to capture and store energy in new material</a><br /></div> <a href="https://www.vr.se/english/applying-for-funding/decisions/2020-09-08-consolidator-grant.html"><br />Read more about the consolidator grants</a> &gt;&gt;&gt;Wed, 02 Dec 2020 09:00:00 +0100https://www.chalmers.se/en/centres/gpc/news/Pages/Per-Delsing-It-is-easier-to-rule-an-electron-than-raise-four-daughters.aspxhttps://www.chalmers.se/en/centres/gpc/news/Pages/Per-Delsing-It-is-easier-to-rule-an-electron-than-raise-four-daughters.aspxPer Delsing: It is easier to rule an electron than raise four daughters<p><b>​A doctorate in 1990, Assistant Professor in 1991, Senior Lecturer in 1994, Professor in 1997, all by the age of 37. Per Delsing’s academic journey has moved swiftly. Now he’s heading up the billion SEK project the Wallenberg Centre for Quantum Technology (WACQT), the aim of which is to build a functioning quantum computer within twelve years. “I have worked on fundamental research for a great many years, but it’s actually only now with WACQT that applications are starting to come from it, and that industry is interested”, he says.</b></p><div><span style="background-color:initial">Like many others, Delsing works mainly from home in these times. He receives me at his home in Landvetter. We sit down in front of the stove, which is not currently lit – it is the height of summer after all.</span><br /></div> <div>“I usually sit here in front of the fire in my favourite armchair when I’m reading and writing, when I’m working at home or have some free time and am taking it easy,” he says about the place he has chosen for our meeting. </div> <div><br /></div> <div>Per lives here with his wife Désirée, a language teacher. His four daughters have moved out and in the past few years Per and Désirée have had the pleasure of becoming grandparents to three grandchildren.</div> <div><br /></div> <div>There is a quotation hanging in his office at Chalmers from the former US president Lyndon B Johnson: “It is easier to rule a nation than raise two daughters”.</div> <div>“I can certainly sign up to that! But I’ve changed the quotation from two to four daughters and replaced “nation” by “electron”. So on my wall it states “It is easier to rule an electron than raise four daughters”. Over time I’ve added “photon” and “phonon” too, he laughs.</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/pdelsing_300x450__artikelbild.jpg" alt="Picture of Per Delsing." class="chalmersPosition-FloatLeft" style="margin:5px" />He is Professor of Experimental Physics and Head of the Quantum Technology Laboratory (QT) at the Department of Microtechnology and Nanoscience, MC2, at Chalmers. His research area is quantum physics with nanocomponents. <span style="background-color:initial">It started with single-electron tunnelling.</span></div> <div>“This research area has developed but still has many ‘golden threads’. As a doctoral student I worked on individual electrons. Early on things didn’t go well. I persevered for four years without getting anything to work and was almost ready to give up. But when we changed the material from tin and lead to aluminium, everything worked properly. The measuring equipment and everything else had already been prepared so a great many results came all at once. It was a ‘ketchup effect’!”</div> <div><br /></div> <div>Per took a framed photograph of his father along with him to the photo shoot in Henrik Sandsjö’s studio at Röda Sten. Tore Delsing passed away in 2001 and was the person who opened Per’s eyes to technology and the natural sciences.</div> <div>“Dad was a timber logger until one of his fingers was sawn off in an accident and he received an insurance payout as a result. Thanks to that, he was able to study and become an engineer at Stockholm Technical Institute in Stockholm. It was in the 1940s and 1950s and studying wasn’t all that common at the time,” he says.</div> <div><br /></div> <div>We backtrack a few decades. Västerbotten. Way up in the countryside. A different Sweden. The firstborn son became a big brother when Per Delsing and his twin brother were born at the hospital in Umeå on 14 August 1959. </div> <div>“But I’ve actually never lived in Umeå. When Dad came and picked us up from the maternity ward, he took us to a new apartment in Lycksele. And after two and half years we moved to Malmö where I grew up,” he explains.</div> <div><br /></div> <div>As a qualified engineer Tore got a job at the hydroelectric power station on the banks of the Norrland rivers. After a couple of years he gained employment at the construction company Armerad Betong (later NCC) in Malmö and took his family there. They lived in the Kronprinsen district which had long housed Malmö’s highest building.</div> <div>“Yes, we had quite a long journey, but we maintained contact with our home district and spent four weeks there every summer in our holiday home, 1,500 km north. You couldn’t just nip back over a weekend,” he smiles.</div> <div><br /></div> <div>When he was five the furniture van was on the go again. The family then settled down in a residential district near Bulltofta airport. Mum Ann-Marie stayed at home when the children were small, but she was a trained tailor and gradually started working as a needlework teacher. She passed away a few years ago.</div> <div><strong>How would you describe your childhood?</strong></div> <div>“I was a bit of a street fighter when I was small. And I was interested in sport, and was involved in football and swimming. Competitive swimming too for a while,” explains Per.</div> <div>It was Dad Tore who inspired Per and his two brothers to understand that knowledge was both important and fun.  </div> <div>“Before we went to bed in the evening when we were small, he would come in to us and we’d have a quiz. All three of us thought this was great fun. It was important to take that with you into school. I remember us watching the moon landing together. I was nine years’ old. It was one of those moments, when I knew that ‘wow, I want to work on that’!” </div> <div><br /></div> <div>At secondary school Per created a chemistry box which he supplemented with ‘more advanced things’, as he expresses it with a smile. He used these to carry out various chemical experiments.</div> <div>“It was like having your own chemistry lab out in the garage. I produced gunpowder, did distillations and things like that.”</div> <div><strong>Did the garage survive?</strong></div> <div>“Yes,” laughs Per.</div> <div><br /></div> <div>Per and his brother, who was two years’ older, followed one another. Both studied engineering physics at the Lund University Faculty of Engineering, and his brother even became a student guidance counsellor.</div> <div>“Two years into the course he came to me and told me about an exchange with ETH in Zürich. He said: ‘Nobody has applied, wouldn’t this be something for you?’” Per explains. </div> <div>He spontaneously answered no, he was enjoying it so much in Lund, but after a while he changed his mind and submitted an application after all. This was how Per Delsing ended up moving to Zürich after almost three years in Lund, and spent the rest of his engineering studies there.</div> <div>“I have never regretted it. ETH is a really good university.”</div> <div><br /></div> <div>Per’s realisation that he wanted to pursue research came early on, and after the years in Zürich he wanted to continue and take a PhD. So in 1984 he sat down and wrote three letters, one to Helsingfors, one to Copenhagen and one to Tord Claeson at Chalmers. They were the three universities where research was being undertaken into superconductivity at the time.</div> <div>“Tord called me as soon as he got the letter and thought I should come and meet him. I didn’t get much of a response from the others. I was offered a PhD student position at Chalmers.”</div> <div><br /></div> <div>During his period of study in Lund, Per had met his future life partner Désirée. In 1984 Per moved to Gothenburg. Désirée followed one year later, and in 1987 the arrival of twins expanded the family.</div> <div>“Désirée actually grew up in the Kronprinsen district in Malmö where I also lived from the age of two and a half until I was five. Without knowing it, we had lived on the same estate!”</div> <div>Delsing publicly defended his doctoral thesis in 1990 with a thesis on ‘Single electron tunnelling in ultrasmall tunnel junctions’. Shortly afterwards he obtained a position as an assistant professor in the Department of Physics at the University of Gothenburg. Per stayed there for seven years before he applied to go back to Chalmers.</div> <div><br /></div> <div>In 2017 it was twenty years since he had become a professor of experimental physics at Chalmers, ‘specialising in tunnelling and single electronics’ as it was described at the time.</div> <div>Over the years many prizes, appointments and research grants have been bestowed upon Delsing: Wallenberg Scholar, the Swedish Research Council’s Distinguished Professor grant, the Göran Gustafsson Prize and the Gustaf Dalén Medal to name but a few. </div> <div>He is a member of the Royal Swedish Academy of Engineering Sciences (IVA), as well as the Royal Swedish Academy of Sciences (KVA) and the Royal Society of Arts and Sciences in Gothenburg (KVVS). Between 2007 and 2015 he was a member of the Nobel Committee for Physics. In 2014 he was also chair of the committee with all that it entails.</div> <div>“I am of course highly delighted with all these honours. But being elected to the Nobel Committee still stands out. It was a really great job, one that I’m really proud of and pleased with.</div> <div>A lot of the work on the committee is confidential, but Per explains that he was involved in and presented three Nobel prizes for Physics: Andre Geim and Konstantin Novoselov “for groundbreaking experiments regarding the two-dimensional material graphene” (2010), David Wineland and Serge Haroche “for groundbreaking experimental methods that enable measuring and manipulation of individual quantum systems” (2012) and Isamu Akasaki, Haroshi Amano and Shuji Nakamura “for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources” (2014).</div> <div>“The committee normally consists of eight people who are experts in different areas so that the committee covers the entire field of physics. It is a considerable amount of work that has to be divided up between the members. As chair you also present the prize at the award ceremony,” Per explains.</div> <div><br /></div> <div>As a Distinguished Professor at the VR Per Delsing has been awarded ten years’ research funding up until 2025.</div> <div>“It is extremely important that you have the courage to pursue difficult subjects that may not work at all, and that wouldn’t be possible with three years’ funding.”</div> <div>Being awarded an ERC Advanced Grant from the European Research Council against fierce competition also meant a lot:</div> <div>“It was a major grant which was also international recognition.”</div> <div><br /></div> <div>The Wallenberg-funded quantum computer investment WACQT is, of course, one of those things that Delsing is most proud about. Chalmers had the honour of hosting the centre. WACQT has two missions: to raise the level of expertise in quantum technology and to build a quantum computer. The team are working in parallel on both assignments. Since its inception in 2018, a lot has happened:</div> <div>“I would like to emphasise that there are a lot of us working in the centre in different roles. We have put a great deal of effort into building up the operation. We have now employed 58 people and have entered a different phase. We have established a structure for our way of working and have got industry on board in various collaborations. It feels really good, I definitely think that progress is being made,” explains Per.</div> <div>“I have worked on fundamental research for a great many years, but it’s actually only now with WACQT that applications are starting to come from it, and that industry is interested. After having worked on research which is of more academic interest, it’s really great that it’s actually turning into something that is of interest to industry and the general public.”</div> <div>He also thinks that the construction of a quantum computer is going well:</div> <div>“We can run certain algorithms on small processors now. It’s looking good, and we have been able to proceed with building larger processors.”</div> <div><br /></div> <div>Per seems to divide his time between many different activities. Apart from being a head of division and head of the WACQT unit, he supervises eight doctoral students.</div> <div><strong>How do you manage everything?</strong></div> <div>“The simple truth is that I don’t. Nor can you run as fast when you are 60 as you did when you were 40. I’m trying to get rid of some assignments. For instance, I’m not taking on any more doctoral students.”</div> <div><strong>What do you enjoy most?</strong></div> <div>“There’s a lot that is enjoyable. I think it’s extremely enjoyable to work with really intelligent people who you can have high-level discussions with. But those eureka moments when you realise that ‘that’s how it must be’ or that we’ve found what we had sought for two years is also a wonderful feeling.”</div> <div><br /></div> <div>At some points in his career Per has been involved in groundbreaking scientific breakthroughs. The first one came during his time as a doctoral student.</div> <div>“I discovered single electron tunnelling oscillations. There were many others who tried to observe it, but I succeeding in being the first to do so in 1989,” he explains.</div> <div>In collaboration with Yale, an experiment was carried out in which they successfully developed an ultra-fast single electron transistor. </div> <div>“We built the circuit at Chalmers and then one of my doctoral students went to Yale and carried out the experiment. It was a very important step. A great deal of my research over the next ten years was based on this transistor. We performed many interesting experiments on it, which were also published in Science and Nature.</div> <div><br /></div> <div>A research breakthrough that attracted a great deal of attention was what is popularly called creating light out of a vacuum: the Dynamical Casimir Effect.</div> <div>“It was an important discovery that we were the first to achieve at Chalmers,” says Per.</div> <div>The results, which were published in Nature, were called a ‘milestone for which researchers have waited 40 years’, and it was ranked as the fifth greatest scientific breakthrough in the world in 2011 by the journal Physics World.</div> <div><br /></div> <div>Three years later Delsing’s experimental research team succeeded, in collaboration with his colleague Göran Johansson’s theoretical group, in capturing sound from an atom, and showing that this sound can communicate with an artificial atom. This made it possible to demonstrate a quantum phenomenon with sound instead of light. A door that was previously closed to the world of quantum physics now opened.</div> <div>“We could place quantum dots (artificial atoms) on a piezoelectric substrate so that it was possible to connect the atom to sound instead of light. The results were published in Science, they have been well cited and have gained many followers. There are a lot of research groups working in that direction now,” he says.</div> <div><br /></div> <div>How does it feel to make such a discovery? Delsing describes it as having the hairs stand up on your arms once the realisation sinks in. Like managing to do a high jump or scoring a goal from a penalty kick in football.</div> <div>“Sometimes you’re looking for something special that you either find or don’t find, but if you see it, it’s quite obvious. I remember how, as a doctoral student, late one July evening I was standing looking at a curve that was being generated on an xy printer, as it was at the time. I knew that the curve should have a little peak, and suddenly saw the printer’s stylus start to go up and then down again. ”Wow, a peak”, I thought. Within a few seconds I realised that I’d got something there.&quot;</div> <div><br /></div> <div>Other times researchers stumble over something quite different from what they were looking for.</div> <div>“It can take quite a while for you to understand what it was that happened and how it took place. Sometimes you find something that you didn’t expect and that’s almost more exciting.”</div> <div><br /></div> <div>Text: Michael Nystås</div> <div>Photo: Henrik Sandsjö</div> <div>Photo of Per in his armchair: Michael Nystås</div> <div><br /></div> <div><a href="/en/departments/mc2/news/Pages/Chalmers-scientists-create-light-from-vacuum.aspx">Read more about creating light from a vacuum</a> &gt;&gt;&gt;<span style="background-color:initial"> </span></div> <div><br /></div> <div><a href="/en/news/Pages/The-sound-of-an-atom-has-been-captured.aspx">Read more about capturing sound from an atom​</a> &gt;&gt;&gt;<span style="background-color:initial"> </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><div><strong>Read a recent interview with Per Delsing by writer Ingela Roos &gt;&gt;&gt;</strong></div> <div><a href="https://kaw.wallenberg.org/en/research/ear-quantum-world">https://kaw.wallenberg.org/en/research/ear-quantum-world</a></div></span></div> <div><br /></div> <h3 class="chalmersElement-H3">MORE ABOUT PER</h3> <div><strong>Born:</strong> In Umeå on 14 August 1959.</div> <div><strong>Lives:</strong> In a house in Landvetter.</div> <div><strong>Family:</strong> Married to Désirée, a language teacher. Four grown-up daughters and three grandchildren, who are three months, six months and two years’ old (in June 2020). “It all goes so fast”.</div> <div><strong>Job: </strong>Professor of Experimental Physics at Chalmers.</div> <div><strong>Leisure interests: </strong>Tennis, skiing and swimming. Very interested in humanity and evolution. “A scientific sideline.”</div> <div><strong>Listening and reading:</strong> “Mostly non-fiction, but I’ve read most of the books written by Henning Mankell and Jan Guillou. I don’t listen to as much music as I used to, I appreciate silence more. In Zürich I could play loud music and study at the same time. I can’t do that any more. I need silence around me when I have to try and understand something. My old favourites are Genesis, Supertramp and Elton John. My taste in music has stagnated over the years.” </div> <div><strong>Favourite place for inspiration:</strong> “My mother-in-law was born on Käringön island and we have a small holiday home there. We spend most summers on the island. I find inspiration from going out into the hills.”</div> <div><strong>Most proud about:</strong> “Apart from my children? In the scientific field, I’m most proud of having been elected to the Nobel committee. You are appointed to it because you are considered to really understand physics. It was recognition. It’s not just an appointment but it’s also highly stimulating work.”</div> <div><strong>Motivation:</strong> “An inquisitive desire to understand the natural world. On the one hand to understand why something happens in the natural world and on the other to be able to turn it round and use it in some way.”</div> <div><strong>First memory of engineering:</strong> “The moon landing.”</div> <div><strong>First memory of physics:</strong> “When I learnt what superconductivity was. For once my Dad couldn’t answer the question, but I had to find it out for myself. It was then I realised that I thought it was a really interesting and exciting subject.”</div> <div><strong>Best thing about being a researcher:</strong> “Being able to work on something that is so interesting and that you are passionate about, together with incredibly talented doctoral students and colleagues. To be entrusted with the task of developing knowledge during working hours.”</div> <div><strong>Challenges of the job: </strong>“Managing to do everything you would like to do.”</div> <div><strong>Dream for the future:</strong> “A great many of my dreams have been fulfilled. Of course, I had a dream of becoming a professor. I have also been able to achieve many of the discoveries I dreamt about. I dreamt of having grandchildren.”</div> <div><strong>Hidden talent:</strong> “I think I’m quite handy. I do quite a lot of practical work at home: carpentry, laying floors, electrical work.”</div>Wed, 25 Nov 2020 09:00:00 +0100https://www.chalmers.se/en/centres/gpc/news/Pages/Goran-wants-to-build-Swedens-first-quantum-computer.aspxhttps://www.chalmers.se/en/centres/gpc/news/Pages/Goran-wants-to-build-Swedens-first-quantum-computer.aspxGöran wants to build Sweden&#39;s first quantum computer<p><b>​Physicist, researcher and TedX speaker. It is important to Göran Johansson to talk to others about his research. He is also one of the driving forces behind the construction of Sweden&#39;s first quantum computer. “The dream is to be able to solve a real problem with a quantum computer,” he says.​​</b></p><div><span style="background-color:initial">Quantum physics has followed Göran Johansson like a golden thread throughout his academic career. He is Professor of Applied Quantum Physics and Head of the Applied Quantum Physics Laboratory (AQP) at the Department of Microtechnology and Nanoscience, MC2, at Chalmers. </span><br /></div> <div>“Traditional mechanics felt comprehensible, but I didn’t feel the same about quantum physics. I thought it was strange. Which is why I have spent much of my life thinking about quantum physics in various contexts,” he says. </div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/gjohansson_300x450_listbild_artikelbild.jpg" class="chalmersPosition-FloatRight" alt="Picture of G Johansson" style="margin:5px" />Göran divides his time between a number of activities. As well as being Head of AQP, he is Deputy Head of the Excellence Initiative Nano (EI Nano), and one of the principal researchers in the billion SEK project the Wallenberg Centre for Quantum Technology (WACQT), the aim of which is to build a functioning quantum computer within twelve years. </div> <div>“We want to find the real problems that are best suited to a quantum computer. It would be fascinating to be able to use quantum physics to solve difficult problems like flying more efficiently, perhaps with fewer planes and fewer flights. We want to see whether a quantum computer can do the job better and we’ve carried out an initial theoretical calculation that shows that it works,” says Göran.</div> <div><br /></div> <div>WACQT has initiated partnerships with a number of companies such as Jeppesen and Volvo. Göran Wendin is the driving force behind a partnership with Astra Zeneca which may eventually lead to new medicines. Another project is in progress with researchers at Sahlgrenska University Hospital and concerns calculations for DNA sequencing.</div> <div>“These are all extremely difficult calculation problems with which a quantum computer could help,” explains Göran Johansson.</div> <div>At WACQT he also manages a graduate school with around thirty doctoral students.</div> <div><strong>How do you manage everything?</strong></div> <div>“Well, I don’t really. WACQT is a huge project in which I coordinate the theoretical work. And the core of operations is now up and running with a number of excellent corporate partnerships,” says Göran. </div> <div>What do you enjoy most?</div> <div>“Thinking about problems, discussing physics and supervising doctoral students. But just sitting on my own doing calculations can be a bit boring.”</div> <div><br /></div> <div>We meet at the cosy Kafé Zenith in the Majorna district of Gothenburg. This is Göran’s home turf. He has spent a lot of time here. He knows the district like the back of his hand.</div> <div>“I thought it would be fun to meet in Majorna. My parents grew up in Majorna and we used to visit my grandparents here when I was small. When I left home, I moved to Klarebergsgatan street and lived there until we moved to Kommendörsgatan street, which is just 100 metres from here.”</div> <div>Part of what he loves about the area is its rich and varied cultural life.</div> <div>“Yes, there is much to enjoy here. I used to listen to new music and buy LPs at Bengans a stone’s throw from here.”</div> <div><br /></div> <div>Göran Johansson grew up in Påvelund, where his parents moved from the Frölunda Torg area. His mother was a domestic science teacher and his father a mechanical engineer who studied at Chalmers. Göran also has a sister who is four years older. He now lives with his wife Annika and their two children Adam, who is studying engineering physics at Chalmers, and Ellen, who is in the first year of upper secondary school, in a terraced house in Hagen, very close to Påvelund.</div> <div>“As you can see, I haven’t moved very far,” he says with a smile. </div> <div><br /></div> <div>Göran developed an interest in technology at a young age. There is still something of the technical dreamer from his childhood in Påvelund in the 70s and 80s about Göran Johansson. He lights up when he talks about exploring science as a child, often with his father.</div> <div>“He has always been interested in technology. I used to get up early and go with him to his shed. He would bring home old electronic gadgets, and he let me cut off all the resistors and sort them. We watched popular science TV shows. I really liked Carl Sagan’s TV series ‘Cosmos’ and learned a lot from it. Above all, I was extremely interested in physics and wanted to understand how the world works. I have always wanted to find new things,” says Göran.</div> <div><br /></div> <div>He was also a member of the ‘Teknoteket’ technology club started by Staffan Ling and Bengt Andersson, the duo behind the children’s TV programme ‘Sant &amp; Sånt’.</div> <div>“You got a box of puzzles and books with a technology theme through the post every month. There were boxes on nuclear power, on genetic engineering and much more besides,” says Göran.</div> <div><br /></div> <div>He decided to take one of the first classic home computers along to the photo session at Henrik Sandsjö’s studio in Röda Sten, a Sinclair ZX81. It turns out to be the very machine that Göran bought aged eleven in London in 1981 on a trip with his family.</div> <div>“It was my first computer, and I’ve kept it all these years. It was on sale for half price in London! The next day I wanted to buy a game. At that time, you bought games on cassette tapes and I remember getting to the shop at closing time, putting my foot in the door and saying in my broken English “I want to buy a computer game”. They let me in to buy one,” he says. </div> <div>Göran gets enthusiastic:</div> <div>“Back then, you could buy magazines with program code for games that you could program yourself. When I connected the computer up at home, I suddenly realised that you could write on TV! It was a great feeling.”</div> <div>As a childhood memory, there is still a big sticker from ‘Teknoteket’ on the computer, a collage of stars, planets and Albert Einstein.</div> <div><br /></div> <div>After taking the natural sciences course at school at Sigrid Rudebecks Gymnasium, Göran began studying engineering physics at Chalmers.</div> <div>“I knew that I wanted to do that at a very early stage. I think it’s because my dad studied mechanical engineering at Chalmers. He was the first in his family to go to university. I remember him saying that “the engineering physics students really seem to know what they are talking about...”.”</div> <div><br /></div> <div>His studies at Chalmers were interrupted after six months by 15 months’ military service in Sollefteå, but in February 1995 Göran graduated as an engineer. He was 23 years old and he wanted more.</div> <div>“I did some extra work on theoretical physics with Professor Bengt Lundqvist while I was studying and spent some time with the doctoral students. I didn’t really think that I learned all that much as an undergraduate and wanted to learn more. So it was quite natural to continue,” says Göran. </div> <div>This involved postgraduate studies with professors Göran Wendin and Vitaly Shumeiko as supervisors. They are now colleagues at MC2. Göran Johansson wrote his doctoral thesis in 1998: ‘Multiple Andreev Reflection – a Microscopic Theory of ac Josephson Effect in Mesoscopic Junctions’.</div> <div>“In the thesis, we gave a theoretical description of how current flows in a small superconductor. I thought we had discovered something new and was slightly disappointed when our theory was subsequently not used in experiments by other researchers. We had worked hard but no one really cared.”</div> <div><br /></div> <div>His doctoral studies went fast and Göran then spent a few years in the late 90s as a research project manager at Ericsson Mobile Data Design.</div> <div>“I managed a research project on computer communication. It was about digital radio, and we were looking at how you could download data extremely fast on your mobile using the digital radio network,” he explains.</div> <div><br /></div> <div>However, his longing to do proper research again grew, and when Göran Wendin offered him the opportunity to be part of an EU project, he returned to Chalmers. </div> <div>“At Ericsson, I realised that I like solving mathematical problems. I now had the chance to be involved in a project with the aim of building a superconducting quantum computer that was actually based on the technology in my thesis. Now it was OK to do calculations with our small superconductors.”</div> <div><br /></div> <div>Göran then became a postdoc at the illustrious Karlsruhe Institute of Technology in Germany, where his family lived in 2002–2004. This was because the Institute was involved in the EU project. Göran thinks with hindsight that the working climate in Germany was quite tough.</div> <div>“It was also extremely exciting to carry on working with superconducting quantum computers, and my wife really liked it there. But when I was offered a position as Assistant Professor at Chalmers in 2004, we returned to Gothenburg.” </div> <div><br /></div> <div>One aim of Göran Johansson’s research is to understand more about how quantum physics works and how its effects can be used in technological applications. He sees great value in presenting research to the general public, and appears as often as he can in various popular science contexts. He has given two TedX talks, in Gothenburg in 2017 and in Lund in 2018.</div> <div>“It is a challenge to explain something so difficult as easily as possible, and it was extremely useful to try and say something interesting in eight minutes... Great fun and slightly nerve-wracking,” he says.</div> <div><br /></div> <div>At Senioruniversitetet i Stockholm, which offers courses for pensioners aged 55 and over, he lectured about quantum computers to 300 people in a full cinema. And this year, he talked about the future on an expert panel at a science fiction festival. </div> <div>He knows that his research field is one of the most difficult and most challenging to explain. This is one of the things he has noticed in social situations:</div> <div>“People understand what I am talking about when it’s about computer communication and mobile surfing. As soon as I mention quantum physics, which I think is fun and in which I have a PhD, people stop listening,” he laughs. </div> <div><br /></div> <div>2020 saw the publication of the book ‘Kvantfysiken och livet’ (Quantum Physics and Life) (Volante Förlag), which Göran wrote with Göran Wendin, Joar Svanvik, Ingemar Ernberg and the science journalist Tomas Lindblad. This interdisciplinary book shows how a combination of quantum physics and medical research may form the basis of the next scientific revolution. It took several years to write.</div> <div>“First, we read papers and discussed among ourselves for a number of years. Then we each wrote a few chapters, which we then read and commented on. When Tomas entered the picture, he looked through all the chapters and made the style a little more consistent. It was a lot of work, but so great when it was finished. We are also talking about an English version,” says Göran.</div> <div>Most of the marketing activities have been postponed on account of the coronavirus pandemic. However, there is a piece on UR Play in which co-author Ingemar Ernberg is interviewed about the book by Tomas Lindblad. There are also plans to take part in the Aha festival at Chalmers in May 2021. Göran is on the festival organising committee.</div> <div><br /></div> <div>In 2012, Göran Johansson was involved in a major innovation. Researchers at Chalmers had succeeded in creating light from a vacuum, a milestone in quantum mechanics that physicists had been anticipating for over 40 years. With the experimentalists Per Delsing and Christopher Wilson, Göran was able to demonstrate the dynamic Casimir effect.</div> <div>“It is an example of an interesting fundamental effect of quantum mechanics which describes how photons are generated from a vacuum when a mirror accelerates and moves at speeds close to the speed of light,” he explains.</div> <div>The researchers’ article was published in the journal Nature and attracted huge attention from Swedish and international media. The experiment was based on Göran’s theories, and they were able to capture photons that constantly emerge and disappear in a vacuum. The media described the discovery as ‘creating light from a vacuum’.</div> <div>“It was the most enjoyable project I have worked on and I got a real kick out of it. It was the first time I was involved in such a high-profile project. If you are published in Nature, doors open and you have the chance to be interviewed on Vetenskapsradion (a science programme on Swedish radio) and in other media. It means a lot and is a career boost,” says Göran.</div> <div><br /></div> <div>Not long afterwards, he was awarded two prestigious prizes: the Albert Wallin Science Prize by the Royal Society of Arts and Sciences in Gothenburg, and the Edlund Prize by the Royal Swedish Academy of Sciences.</div> <div>“I was really happy. The Albert Wallin prize was my first prize, so of course it means a little more.”</div> <div><strong>I assume that you sometimes have some free time. What do you like doing?</strong></div> <div>“I am trying to be better at taking time off and switching off properly. I like family dinners and being out in nature,” he says.</div> <div>Running is another interest, and Göran has run the Göteborgsvarvet half marathon many times.</div> <div>“The first time I was still at school and I was unable to finish. That taught me that you have to have good shoes.”</div> <div>The Lidingöloppet cross country race, the Kiel Marathon and the Skogsmaran run between Skatås and Hindås along the Vildmarksleden trail are other competitions he has taken part in.</div> <div>“I like running a long way but not very fast,” he says with a smile.</div> <div><br /></div> <div>Science fiction is one of Göran’s major interests, both literature and films. </div> <div>“This is one of my favourite film and literary genres. When I was small, I read every single science fiction book I could find in the library.”</div> <div>His favourites include Jules Verne and Isaac Asimov, in particular the latter’s Foundation trilogy and ‘I, Robot’. </div> <div>“Jules Verne was extremely prescient. And I’ve read all of Haruki Murakami! ‘The Wind-Up Bird Chronicle’ was the first of his I read. There is another that is a mixture of a hard-boiled detective novel and fantasy – ‘Hard-Boiled Wonderland and the End of the World’.” </div> <div><br /></div> <div>He also recommends films such as ‘The Fifth Element’, ‘The Matrix’, ‘Interstellar’, ‘Star Wars’ and ‘Star Trek’. </div> <div>“The first Matrix film is still good. I watched it in the cinema with my daughter on its 20th anniversary. She liked it as well.”</div> <div>Göran has also been a guest reviewer of the TV series ‘Devs’ on the website of publisher Volante. A quantum computer plays an important role in the series.</div> <div>“It’s a nice thriller with good music that deals with quantum physics in a relevant, well-informed and appealing manner,” he says.</div> <div><br /></div> <div>Given that he used to hang out at Bengans record shop, it is hardly surprising that Göran also loves music. When he was younger, he listened to a lot of synth. Depeche Mode, Lustans Lakejer and Ultravox were some of his idols. Later, his taste broadened to include Talking Heads, Kent and Olle Ljungström.</div> <div>“I saw an early recording with Broder Daniel of the Swedish TV show Valvet as a friend’s brother was in the band. ‘Shoreline’ is one of my favourite songs, by both Broder Daniel and Anna Ternheim.”</div> <div>Håkan Hellström is a big favourite with the entire family.</div> <div>“We listen to him all the time and had tickets for concerts in both June and August, but unfortunately they were postponed to 2021.”</div> <div><br /></div> <div>At the end of the year, Göran Johansson will leave his position at EI Nano, which will then come under new leadership. The plan is to take his family to MIT in Boston towards summer 2021 and live there as a guest researcher for a year. </div> <div><br /></div> <div>Text: Michael Nystås</div> <div>Photo: Henrik Sandsjö</div> <div>Photo of Göran drinking coffee: Michael Nystås</div> <div><br /></div> <div><span style="background-color:initial"><a href="https://youtu.be/zPRi6kFHx3g">See Göran Johansson at TedX Lund on 14 November 2018</a> &gt;&gt;&gt;</span><span style="background-color:initial"> </span></div> <div><br /></div> <div><a href="https://urplay.se/program/217766-ur-samtiden-en-ny-verklighet-och-livet-vi-vill-leva-kvantfysiken-och-livet-nya-svar-pa-gamla-fragor">See the piece on the book ‘Kvantfysiken och livet’ on UR Play</a> &gt;&gt;&gt;</div> <div><br /></div> <div>Read more about the high-profile Nature article &gt;&gt;&gt;</div> <div><a href="http://www.chalmers.se/sv/nyheter/sidor/chalmersforskare-skapar-ljus-ur-vakuum.aspx">Chalmers researchers create light from a vacuum</a></div> <div><br /></div> <div><a href="https://volante.se/texter/kvantdatorbyggande-forfattare-tipsar-om-kvantfyisk-hbo-serie">Read Göran’s review of the TV series ‘Devs’</a> &gt;&gt;&gt;<span style="background-color:initial"> </span></div> <div><br /></div> <div><a href="https://sv.wikipedia.org/wiki/ZX81">Read more about the Sinclair ZX81 home computer</a> &gt;&gt;&gt;</div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial"><br /></span></div> <div><span style="color:rgb(33, 33, 33);font-family:inherit;font-size:16px;font-weight:600;background-color:initial">ABOUT GÖRAN</span><br /></div> <div><strong>Born:</strong> Yes, 7 December 1971 in Påvelund.</div> <div><strong>Lives:</strong> Terraced house in Hagen, Gothenburg.</div> <div><strong>Family:</strong> Wife and two children.</div> <div><strong>Job:</strong> Professor of Applied Quantum Physics at Chalmers.</div> <div><strong>Career in brief:</strong> Has been trying to build a quantum computer since 2000.</div> <div><strong>Leisure interests:</strong> Running and forest walks. Family, music, film and books.</div> <div><strong>Favourite place for inspiration:</strong> Out in the forest. I switch off and am happy.</div> <div><strong>Most proud of:</strong> My children. I am pleased that they seem to enjoy life. In terms of research, the experiment on the dynamic Casimir effect.</div> <div><strong>Motivation:</strong> Curiosity.</div> <div><strong>Best thing about being a researcher:</strong> Being curious, exploring new things, thinking about how the world works and finding new solutions. I think that is really exciting.</div> <div><strong>Challenges of the job:</strong> Being innovative and asking the right questions that can be answered. I now have a role in which I also have to inspire others and get them to work well with each other. This is always a challenge. Everyone is motivated by different things. As with all jobs, it is easier if you like what you do. I try to help people feel that way.</div> <div><strong>Dream for the future:</strong> One dream is to find a problem that a quantum computer can solve. That would be fantastic. I look forward to spending a year at MIT. Otherwise I am very happy with my lot and think that I have found the right balance between administration and research. No radical changes are needed in my life. Maybe just to find a new dream in the future.</div> Tue, 24 Nov 2020 09:00:00 +0100