Does Form Follow Function?

​Jakob Müller, Doctoral Student at Product Development IMS, defends his doctoral thesis: Does Form Follow Function? - Connecting Function Modelling and Geometry Modelling for Design Space Exploration. On-line Presentation.

Public defence - Jakob Müller
14 December, 2020, 09:00 - 12:00
​Examiner:  Ola Isaksson, IMS​
Opponent: Helen Louise Lockett, Open University, UK 

Public science text
The aerospace industry has to radically change its products: challenges such as new limits for emissions such as CO2, NOx or noise, as well as the ongoing COVID pandemic require products that highly outperform todays aircraft, engines and components. Aerospace engineers need to find new functions and solutions to be able to develop the aircraft of the future.
However, the methods which product developers use to develop new products – the commonly used 3D geometry models in the form of computer aided design (CAD) – do not support the introduction of radically new solutions New functions and solutions need to be introduced – but CAD models are not structured in functions and solutions but features and parameters. While models explicitly representing such functions and solutions exist, are they not widely used. Furthermore, do they not support engineering analysis such as aerodynamic, thermodynamic or structural behaviour, which is needed for the evaluation of a new concept. No product development method or model could be identified which can represent both: a product’s form and function, and how they are connected.
To solve this problem, a method for combined function and geometry exploration (FGE)has been developed and tested. The FGE method enables product developers to explore novel solutions in a function model, which is directly coupled to a CAD model. The method relies on an underlying object model, which maps the product’s geometric features to their respective functions. As such, it combines the information of what a product is supposed to do with the model of its shape: how the form follows the function.
In a first step, the existing product has to be composed from the available CAD model into the function model, and the respective links have to be established. In a next step, developers introduce new functions and solutions into the function model. These are then instantiated into alternative concepts, from which the tool automatically generates CAD models. The method has been implemented in a proof-of-concept tool. The FGE method, through this tool, has been applied in three different studies, in collaboration with industrial partners from the aerospace industry. FGE has proven to represent the design space for a product, enable the introduction of novel solutions and functions, represent the design rationale of a product and automatically generate the respective CAD models. From this it can be stated that it supports the development and exploration of more, and more novel, alternative product concepts. Practitioners have called it "one possibility to generate, and evaluate, lots of concepts”.  

Page manager Published: Tue 17 Nov 2020.