News: Industrial and Materials Science related to Chalmers University of TechnologyTue, 20 Mar 2018 12:49:34 +0100 to make kitchen pots harder<p><b>​New research shows that tailor-making the material used when making stainless steel is the key to optimize hardness and corrosion free properties. This new knowledge is important for oil, gas, food and nuclear industries – and for your kitchen pots.</b></p>​<img src="/SiteCollectionImages/Institutioner/IMS/Material%20och%20tillverkning/Giulio%20Maistro_200x250.png" class="chalmersPosition-FloatRight" alt="Giulio Maistro" style="margin:5px;width:170px;height:213px" /><span style="background-color:initial">In a recently published doctoral thesis, <a href="/en/staff/Pages/maistro.aspx" target="_blank">Giulio Maistro</a> presents studies of methodologies to make austenitic stainless steel harder, without losing the &quot;stainless&quot; properties. The results show that it is important to consciously balance the different metals used in the steel, as well as the additives nitrogen and carbon.</span><div><br /></div> <div><strong>Austenitic stainless steel </strong>is a specific type of stainless steel alloy that is used for kitchen pots and many industrial applications. This type of material is very good to use with strong acids or salty water because it is resistant to corrosion. </div> <div><br /></div> <div><span style="background-color:initial">Unfortunately, today’s stainless steel has the drawback of being very easy to scratch and damage. It is too soft. This is not crucial for our kitchen ware, but is a big problem for jewellery or for industrial applications. In industrial sectors like the oil, gas, food and nuclear industries, the surface has to be smooth like a mirror. </span><br /></div> <div><br /></div> <div><strong>When making stainless steel</strong>, it is the combination of the material in itself and the surface treatment that defines how good the result is. The result of a surface treatment can be radically different depending on the formula the material is composed of. Giulio Maistro says that this can be both a good and a bad thing. </div> <div><span style="color:black;font-family:calibri,sans-serif;font-size:11pt;background-color:initial"><br /></span></div> <div><span style="color:black;font-family:calibri,sans-serif;font-size:11pt;background-color:initial">– </span>Nowadays, we have reached a stagnation in the application of surface treatments like plasma, gas nitriding or carburizing. More or less everyone in the field knows &quot;when it is worth to use them and when it is not&quot;. </div> <div><br /></div> <div>According to Giulio Maistro, companies keep their processes secret which makes process development hard and almost completely abandoned in academia. Giulio Maistro’s research is welcomed. Not much research has been done earlier on the optimization of the materials to fit the treatment. Instead of trying to change and over-optimize the treatment parameters, it could be easier and more effective to tailor-make a new material that better matches the treatment.</div> <div><br /></div> <div><strong>This tailor-making involves</strong> <strong>Nickel and Molybdenum</strong>, two metals that typically are added into the steel to improve resistance against corrosion. </div> <div><span style="color:black;font-family:calibri,sans-serif;font-size:11pt;background-color:initial"><br /></span></div> <div><span style="color:black;font-family:calibri,sans-serif;font-size:11pt;background-color:initial">– </span>In my research I show that by adding Nickel it is possible to decrease the unwanted formation of carbides, which are bad for corrosion. However, when too much Nickel is used, the material cannot be hardened very much. This is because carbon and nitrogen do not like Nickel and vice versa. If you use the metal Molybdenum, the opposite effect is shown. </div> <div><br /></div> <div>To harden the steel, it is common to introduce nitrogen or carbon in it. The more nitrogen or carbon you have, the harder the steel gets. This relates to Nickel and Molybdenum. Depending on how much of those metals you have in the steel, you can change how much nitrogen or carbon you can introduce in it. </div> <div><br /></div> <div>However, if you introduce too much nitrogen or carbon, chemical compounds called nitrides and carbides are formed. When they form, the stainless property of the steel gets lost. In general, Molybdenum increases the amount of nitrogen or carbon you can insert. Nickel limits the amount but also limits the formation of nitrides or carbides. </div> <div><span style="color:black;font-family:calibri,sans-serif;font-size:11pt;background-color:initial"><br /></span></div> <div><span style="color:black;font-family:calibri,sans-serif;font-size:11pt;background-color:initial">– </span>This new knowledge shows that companies that manufacture products made of stainless steel need to find a balance between Nickel and Molybdenum to get the maximum hardness while maintaining the stainless properties, upon introducing nitrogen or carbon, says Giulio Maistro.</div> <div><br /></div> <div><strong>FACTS:</strong></div> <div>Gas nitriding or carburizing are methods to introduce nitrogen or carbon to the steel.</div> <div><br /></div> <div><a href="/en/staff/Pages/maistro.aspx" target="_blank">Giulio Maistro​</a> performed his doctoral studies at the <a href="/en/departments/ims/research/mm/Pages/default.aspx">division of Materials and Manufacture</a> which belongs to the <span style="background-color:initial"><a href="/en/departments/ims/Pages/default.aspx">department of Industrial and Materials Science</a> at <a href="/en/Pages/default.aspx">Chalmers University of Technology</a>. He </span><span style="background-color:initial">successfully defended his doctoral thesis on January 26th. The title of the thesis is: </span></div> <span></span><div><em>Low-temperature carburizing/nitriding of austenitic stainless steels - Influence of alloy composition on microstructure and properties.</em></div> <div><br /></div> <div><strong>Read more in this scientific article:</strong></div> <div><a href=""></a></div> <div><br /></div> <div><em>Text: Nina Silow</em></div> <div><em>Photo in the article: Marcus Folino</em></div> ​Tue, 20 Mar 2018 00:00:00 +0100 for future production researchers<p><b>​During 2018, the Production Area of Advance launches a new Research Associate Programme. Four students from four different master programs have been appointed as the pioneering research associates. Product development in sports, Scandinavia-Balkan industrial design comparison, sustainability in connection to digital technologies and bio-composites are their topics of interest.</b></p>​<span style="background-color:initial">The number of young educated people is decreasing around the world and in the future it will be a fierce competition regarding recruiting young engineers. This is recognized in industry but also by universities. Chalmers wants to secure a new generation of researchers but not everyone knows what it is like to work as a researcher. The Production Area of Advance now launches a new Research Associate Programme. <a href="https://en/Staff/Pages/johan-malmqvist.aspx">Professor Johan Malmqvist who is the Education Officer within the Production Area of Advance​</a> explains the purpose of the programme.</span><div><br /></div> <div>– I really like my job as a researcher and this is an opportunity to show students some of the benefits of being a researcher. With this programme, we want to enable talented students from our master programmes to obtain some experience from research activities such as developing research plans, carrying out simulations or experiments, analyzing data and presenting or publishing your results.</div> <div><br /></div> <div>The programme is inspired by the “Undergraduate Research Opportunity Programs” often found at US universities. However, the structure is unique for the Production Area of Advance Research Associate Programme. It is meant to have a bottom-up approach. If interested in applying for a position in the programme, students are urged to take the initiative to make contact with a faculty member with a project idea. The idea is then put into an application and, if the application is granted, the research associate will receive a senior researcher as mentor during the project. Projects are to be reported both mid-term and in the end of the spring term. </div> <div><br /></div> <div><strong>The pioneers of this seed-bed programme are four students from four different master programmes.</strong></div> <div><br /></div> <div><strong>Priska Herzog</strong> is studying <a href="/en/education/programmes/masters-info/Pages/Product-Development.aspx" target="_blank">Product Development</a> and her mentor is <a href="/en/staff/Pages/iola.aspx">Professor Ola Isaksson</a>. Priska is very active in her spare time and like adventurous sports like snowboarding, surfing, kayaking and mountain biking. She also takes her interest a step further and has e.g. developed and built an own snowboard. Her research associate project is therefore linked to her burning interest in sports. The title is “Involve R&amp;D in sports in product development”. But why is sports interesting for product development research? Priska explains her view.</div> <div><br /></div> <div>– Sport athletes differs from other consumers in that they are very experimental in finding advantages that can make them win in a competition. Sports technology therefore often includes short product development cycles, rapid prototyping, and a collaborative customer that need better products to win and brings immediate feedback and a personal connection. This area is also somewhat less cost sensitivity than other consumer areas. We tend to put money on our hobbies.</div> <div><br /></div> <div>With this project Priska wants to raise awareness about sports technology in product development to improve the offering of sports projects for students and to improve the contact areas between Chalmers and sports.</div> <div><br /></div> <div><strong>Adis Imsirovic </strong>is a student in <a href="/en/education/programmes/masters-info/Pages/Industrial-Design-Engineering.aspx" target="_blank">Industrial Design Engineering</a> with <a href="/en/Staff/Pages/helena-stromberg.aspx">Senior Lecturer Helena Strömberg</a> as his mentor. </div> <div><br /></div> <div>– I am born and raised in Sweden but my family is from Bosnia and we have spent all summer holidays there. During my upbringing I have developed a curiosity about if the design thinking in the two cultures differs. </div> <div><br /></div> <div>The research associate programme gives Adis the opportunity to dive into this question. His project is called “Do designers from Scandinavia interpret design differently from designers in Balkan?”. Adis wants to perform a study where he meets universities and teachers as well as product development departments in companies in both Sweden and Balkan countries. Are there any differences? If yes, how would it be possible to cooperate spite the differences and what difficulties would occur? </div> <div><br /></div> <div><strong>Hasnain Thathia</strong> is a student in <a href="/en/education/programmes/masters-info/Pages/Production-Engineering.aspx" target="_blank">Production Engineering</a> mentored by <a href="/en/Staff/Pages/melanie-despeisse.aspx">Assistant Professor Mélanie Despeisse</a>. His project focuses on the new challenges faced by the manufacturing industry as a result of the increased need for mass-customised products while improving the sustainability performance of production systems. The title of Hasnain’s project is “The influence of digital technologies towards sustainable production”.</div> <div><br /></div> <div>– My aim is to review digital technologies in the manufacturing industry and assess their potential to improve performance with a specific focus on environmental sustainability. These technologies include software for modelling and simulation, virtual/digital factory, cloud computing and sensors which play a huge role in Industry 4.0. I would like to evaluate the performance of these digital technologies implemented in industries and compare them with the traditional technologies from a sustainable perspective (energy, waste, material usage, data accuracy).</div> <div><br /></div> <div><strong>Shankar Paramasivam</strong> is a student in <a href="/en/education/programmes/masters-info/Pages/Applied-Mechanics.aspx" target="_blank">Applied Mechanics</a> with <a href="/en/staff/Pages/martin-fagerstrom.aspx">Associate Professor Martin Fagerström</a> and <a href="/en/staff/Pages/gunnar-westman.aspx">Professor Gunnar Westman​</a> as his mentors. In his project, Shankar faces a bit of a challenge since his background is from mechanical engineering and the projects includes quite a lot of chemistry. This project also differs from the others since it is initiated by the mentor and not the student. The title is “Supporting the upscaling of sustainable biocomposites from cellulose fibres for use in structural components”.</div> <div> </div> <div>– The aim of the project is to support research to find a more sustainable alternative to the commonly used composites carbon fiber composites and glass fiber composites that are non-biodegradable and takes a lot of energy to produce.</div> <div><br /></div> <div>Even if the subject is new to Shankar, he finds the project very interesting.</div> <div><br /></div> <div>– It combines the mechanical engineering knowledge that I already have with a new area. Even though the project includes chemical knowledge, I feel confident since I will have two mentors by my side. I look forward to learn more about biocomposites.</div> <div><br /></div> <div><br /></div> <div><em>We will follow these projects and report the results in the end of the spring term. Did the concept of the research associate programme turn out successful? Stay tuned to find out.</em></div> <div><br /></div> <div><br /></div> <div><strong>For more information, please contact:</strong></div> <div><a href="/sv/personal/Sidor/johan-malmqvist.aspx">Professor Johan Malmqvist</a>, Dean of education MATS and Educational Officer of the Production Area of Advance.</div> <div><br /></div> <div><br /></div> <div>Text: Nina Silow</div>Tue, 20 Feb 2018 00:00:00 +0100 appreciate the silence in electric buses<p><b>​ElectriCity and the opportunities for cities and passengers from different user perspectives, was in focus during a workshop on Wednesday 24th Jan. Visitors from all over Europe, took part in the EBSF 2 – European Bus System of The Future 2 demo event, held by the division Design &amp; Human Factors.</b></p><p>Oskar Rexfelt and Pontus Wallgren both presented results on user experiences of indoor bus stops and results from passengers’ perceptions survey.<br /></p> <p>- We have studied what passengers and bus drivers think about the buses and bus stops from a user experience and adoption view. We found that the bus drivers appreciated the improved work environment, which they perceived as quieter, safer, smoother, and less tiring, says Pontus Wallgren.<br /></p> <p>- The passenger also appreciated the bus to be silent, smooth, well kept, environmentally better and, not the least, they appreciated the friendly bus drivers.<br /></p> <p>Another area of research is the heating (HVAC) in electric buses, where Volvo Bus presented their solution for an improved heating.<br /></p> <p>- Since we can’t have diesel heaters in an electric bus, it’s necessary to find new solutions, says Pontus Wallgren, senior lecturer at the division of Design &amp; Human Factors, Department of Industrial and Materials Science. Volvo has developed new methods of heating with an operational energy saving of around 60%.<br /></p> <p>The day ended with technical tour with bus 55, an electric bus ride to Lindholmen, with a presentation of the indoor bus stop.<br /></p> <p>- There are ideas on indoor bus stops, but this is probably the first one built and operating. So it is very interesting to see, both on how they charge the bus, the environment and thoughts how to design the bus stop, says Michele Tozzi, UITP, project manager EBSF 2.  <br /></p> <p><strong></strong> </p> <p><strong>The project ends with final presentations at TRA2018 conference in Wienna, 16-19 April.<br /></strong></p> <p> </p> <p> </p> <h4>More information</h4> <div style="margin:0cm 0cm 0pt"><span lang="EN-US" style="font-size:11pt"><font face="Calibri"><a href="/en/projects/Pages/European-Bus-System-of-the-Future-2.aspx">EBSF 2 – European Bus System of The Future 2 at Chalmers</a></font></span></div> <div style="margin:0cm 0cm 0pt"><span style="font-size:11pt"><a href=""><span lang="EN-US"><font color="#0563c1" face="Calibri"></font></span></a></span><span lang="EN-US" style="font-size:11pt"></span></div> <div style="margin:0cm 0cm 0pt"><span style="font-size:11pt"><a href=""><span lang="EN-US"><font color="#0563c1" face="Calibri"></font></span></a></span><span lang="EN-US" style="font-size:11pt"></span></div> <h4>Contact</h4> <div>MariAnne Karlsson, Professor Design &amp; Human Factors, Chalmers University of Technology</div> <div><a href=""></a></div> <br /><br />Text och foto: Carina Schultz<br /><div> </div>Tue, 06 Feb 2018 05:20:00 +0100 turned the electric bus stop into a living room<p><b>​​A living room with lots of green plants, a place to meet, study or have a cup of coffee. That was the result when Chalmers researchers asked passengers on the electric bus route 55 to design an indoor stop where people want to stay.</b></p><img src="/sv/styrkeomraden/transport/nyheter/PublishingImages/PontusWallgren_250px.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />At the bus stop at Lindholmen, the bus waits indoors. The <span>quiet and emission-free<span style="display:inline-block"></span></span> electric drive of bus 55 allows the stop to be placed in the middle of a calm and clean environment.<br /><br />&quot;The original plan for the indoor bus stop back in 2015 was to create a place where you want to stay on for a while, to study or meet with friends<span>&quot;<span style="display:inline-block"></span></span>, says Pontus Wallgren, researcher in industrial and material science at Chalmers. &quot;However, when we interviewed passengers it turned out that although the stop is popular, not many people stay there.&quot;<br /><br />This is why a group of passengers were asked to contribute to the further development of the indoor stop, in collaboration with the researchers and the <span>partners <span style="display:inline-block"> in the  </span></span>ElectriCity project .<br /><br /><img src="/sv/styrkeomraden/transport/nyheter/PublishingImages/workshopdeltagare_inomhushållplats.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />&quot;The participants all agreed that they wanted to make the stop more like a living room and less like a garage, and with lots of green plants&quot;, says Pontus Wallgren. Furniture and plants ordered, the passengers can soon start enjoying their new living room.<br /><br />The facelift of the bus stop is part of a study that investigates how drivers and passengers experience the electric buses and the bus stops. According to Pontus Wallgren, both buses and stops received high marks. Among other things, the buses are considered well adapted for persons with reduced mobility, and easy to drive smoothly and comfortably.<br /><br />The time required for charging at end stops is a challenge for public transport planners. Route 55 is relatively short, about 25 minutes, and the buses need to charge for three to four minutes. However, the timetable has a margin of ten minutes between the trips.<br /><br />&quot;The drivers see the break as an advantage. They say it reduces stress and back pain and makes them more alert while driving&quot;, concludes Pontus Wallgren.<br /><br />The results of the study will be presented at a seminar at Chalmers on January 24, 2018. <a href="/en/departments/ims/calendar/Pages/EBSF_2-Gothenburg-demo-showcase.aspx">Sign up here &gt;&gt;</a><br /><br /><strong>FACTS ABOUT THE STUDY</strong><br />The study is part of <a href="">European Bus System of the Future 2</a>, a project led by the <a href="">International Association of Public Transport</a> and partly financed by the EU Horizon 2020 program.<br />The study was conducted by Pontus Wallgren, Oskar Rexfelt, Victor Bergh Alvergren, MariAnne Karlsson and Erik Ohlson, Chalmers.<br /><em>Contact</em>: Pontus Wallgren, +46 31 772 13 97, <a href=""></a><br /><br /><strong>FACTS ABOUT ELECTRICITY</strong><br /><a href="">ElectriCity</a> has run in Gothenburg since 2015 and is a collaboration between industry, academia and society where the participants develop and test solutions for tomorrow's sustainable public transport. The electric and hybrid buses on route 55, on which different technology solutions are tested and developed, drive between Chalmers's two campuses.<br /><br /><em>Pictures</em>:<br />Sketch from the workshop. Photo Pontus Wallgren.<br />Pontus Wallgren. Photo Jenny Netzler.<br />Participants in the workshop. Photo Pontus Wallgren.<br /><br /><em>Text</em>: Emilia Lundgren<br />Mon, 22 Jan 2018 00:00:00 +0100 Foundation invests in new 2D super materials<p><b>​To ensure Chalmers as key player for graphene based two dimensional (2D) composite materials research, Chalmers Foundation invests SEK 15 million into a new research group. 2D materials are only one-atom-thick and have the potential to become super materials to be used for health sensors, water filters, new cool electronics or better batteries.</b></p>​<span style="background-color:initial">The discovery of graphene allowed researchers to produce and process a wide range of two dimensional (2D) materials. The next step is to combine these one-atom-thick, large and flexible nanosheets with polymers, metals or molecules in order to become new innovative nano-composites – super materials. </span><div><br /><span style="background-color:initial"></span><div><span style="background-color:initial"><strong>In order to empower Chalmers</strong> as a key player for the research on graphene-based 2D composites, the <a href="/en/foundation/Pages/default.aspx" target="_blank">Chalmers University of Technology Foundation</a> will invest SEK 15 million in the next three years to finance laboratory equipment and to part-finance a research group under the supervision of Professor Vincenzo Palermo.</span></div> <div><span style="background-color:initial"><br /> <a href="/en/Staff/Pages/Vincenzo-Palermo.aspx" target="_blank">Vincenzo Palermo</a> has for the last four years been the leader of activities on nano-composites of the <a href="" target="_blank">Graphene Flagship</a>. Since 2017 he is also the vice-director of the Graphene Flagship and professor at the <a href="/en/departments/ims/Pages/default.aspx">Department of Industrial and Materials Science​</a>. In his research, Vincenzo Palermo uses nanotechnology and supramolecular chemistry to create new materials with applications in mechanics, electronics and energy. In particular, he works with the production of carbon-based composite materials as graphene. </span></div> <div><br /><div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/IMS/Material%20och%20tillverkning/Graphene_270x200.png" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />Graphene is a crystalline material consisting of one layer of carbon atoms, arranged in a hexagonal pattern. The material is <em>100 times thinner </em>than a human hair but <em>20 times stronger </em>than steel. At the same time, graphene is light and flexible, and also conducts both electricity and heat very well. </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><strong>As graphene has these properties</strong>, there are many potential uses. Improved batteries and touch screens for mobiles and tablets are some examples but if graphene is combined with layers of other materials, the possibilities are even bigger.</span></div> <div><span style="background-color:initial"> </span></div> <div><span style="background-color:initial">– Yes, the potential is enormous and now our imagination is put to a test. Graphene could be used for sensors for measuring of e.g. cholesterol, glucose or haemoglobin levels in the body, new antibiotics or cure for cancer, or perhaps for curtains that capture sunlight and heat up the house. Another thing is that graphene-based materials shall allow water to pass through it while blocking other liquids or gases. It could therefore be utilized as a filter of, for instance, drinking water. Also, because the material is so strong and weighs so little it can be used to produce new composites in aircrafts or other vehicles, in order to save weight and reduce energy consumption.</span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"></span><span style="background-color:initial"><strong>Thanks to the funding</strong> granted by Chalmers Foundation, Vincenzo Palermo will be able to expand his research team. </span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">– I am very happy for the opportunities this gives me. The funding will lead to the development of innovative composites of 2D materials with polymers and metals, the creation of new industrial collaboration with key partners and, last but not least, to the training of a new group of young researchers from Chalmers.</span></div> <div><br /></div> <div><br /></div> <div><strong>FACTS</strong></div> <div>Vincenzo Palermo obtained his Ph.D. in physical chemistry in 2003 at the University of Bologna, after working at the University of Utrecht (the Netherlands) and at the Steacie Institute, National Research Council (Ottawa, Canada). Now Vincenzo Palermo holds a position as research professor at Chalmers <a href="/en/departments/ims/Pages/default.aspx">Department of Industrial and Materials Science​</a> in Gothenburg, Sweden, and is acting as vice-director of the <a href="">Graphene Flag​ship​</a>. </div> <div><ul><li><span style="background-color:initial">&gt; 130 scientific articles (&gt;4000 citations, h-index=35).</span><br /></li> <li><span style="background-color:initial">In 2012 he won the Lecturer Award for Excellence of the Federation of European Materials Societies (FEMS) </span><br /></li> <li><span style="background-color:initial">In 2013 he won the Research Award of the Italian Society of Chemistry (SCI). </span><br /></li> <li><span style="background-color:initial">He has published two books on the life and science of Albert Einstein (Hoepli, 2015) and of Isaac Newton (Hoepli, 2016). </span><br /></li> <li><span style="background-color:initial">In November 2017 he won a Research Project Grant for Engineering Sciences, assigned within the Research Grants Open call 2017 from Vetenskapsrådet.</span><br /></li></ul></div> <div><br /></div> <div><span style="background-color:initial">The donation from the <a href="/en/foundation/Pages/default.aspx">Chalmers University of Technology Foundation</a> comprises SEK 15 million divided over three years by SEK 5 million per year during the period of 2018-2020. The money is intended to part-finance a research group to Professor Vincenzo Palermo and to finance laboratory equipment. The research group is supposed to consist of two research assistants and two post-docs.</span></div> <div><br /></div> <div><br /></div> <div>Text: Nina Silow</div> <div>Photo: Graphene Flagship</div> ​</div></div> ​Tue, 05 Dec 2017 00:00:00 +0100 guest lecturer at IMS<p><b>​The department had an environmental celebrity guest last week, when the eco-fighter, adventurer and humanist Rob Greenfield gave a lecture for students.</b></p>​<span style="background-color:initial">Greenfield started his career like any other student and liked to party. But a couple of years after his BSc in Biology/Chemistry, he started to re-think about his life and impact on nature. There and then he decided to take on 100 eco-challenges during two years. And after finishing that, he just kept on going with new goals. </span><div>One example of his gentle, nudgy activism is the NY-experiment. He lived like an ordinary newyorker and collected all his garbage for a month. </div> <div><br /></div> <div>Every time he produced waste of some sort, he put it in bags he carried on his body. Gradually it grew and it ended up in a 40 kilo heavy garbage suit. All dressed up, he started to walk around in Manhattan, ended in media and drew big attention to the garbage issue. </div> <div><br /></div> <div><div>On the question from the audience of what was the most satisfying achivement, he answered “getting rid of the car and going over to a vegetarian lifestyle”.</div> <div><br /></div> <div>Today he owns just 111 things, and live in a little house in San Diego making his living by talks and environmental actions. </div> <div><br /></div> <div>More about Rob on: <a href=""></a></div> <div><br /></div> <div>The talk was sponsored and arranged by the course <a href=";parsergrp=3">PPU206 Sustainable Products and Productions Systems</a>, <span style="background-color:initial">in co-operation with</span><a href=""> Renova​</a><span style="background-color:initial">,</span><span style="background-color:initial"> </span></div></div> <div><br /></div> <div><br /></div> <div>Text and photo: Carina Schultz</div>Thu, 30 Nov 2017 00:00:00 +0100 through digitalisation of the maritime industry<p><b>​ECOPRODIGI is a newly launched EU-funded research project addressing eco-efficiency through digitalisation of the maritime sector in the Baltic Sea region. The project includes 27 partners across 8 countries. Chalmers contribution is digital technology applications.</b></p>​<span style="background-color:initial">ECOPRODIGI is an ambitious 3-year project with 27 partners across 8 countries. Chalmers has received EU-funding to take part in this project, addressing eco-efficiency through digitalisation of the maritime sector in the Baltic Sea region. ECOPRODIGI project kick-starts a unique collaboration between research organisations and the industry end-users to create and pilot digital solutions increasing eco-efficiency throughout the vessel life cycle. Ultimately, the project supports the Baltic Sea region in becoming a front-runner in maritime industry digitalisation and clean shipping.</span><div><br /></div> <div>ECOPRODIGI focuses on creating and piloting digital solutions for vessel performance monitoring, cargo stowage optimization as well as shipyard process optimization. In addition to the digital solutions, the project will produce a roadmap for maritime sector digitalisation and policy recommendations. The project will also design and deliver training programmes for shipyard ecosystems and organize public events to deepen the networks within the maritime sector.</div> <div><br /></div> <div>Chalmers University of Technology is responsible for investigating and piloting digital technology applications, such as 3D-scanning, to enhance the eco-efficiency of shipyard processes (ship building, repair, maintenance, and retrofit).</div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/IMS/Produktionssystem/Ecoprodigi-kickoff-710x250.png" alt="" style="margin:5px" /><br /><em>Participants of the ECOPRODIGI project kickoff in Turku, Finland.</em><br /><br /></div> <div><span style="background-color:initial">ECOPRODIGI is led by the </span><a href="">University of Turku</a><span style="background-color:initial"> (Finland), The project has received more than €3 million from the Interreg Baltic Sea Region Programme. With the partners’ own contributions, the overall project budget is €4.2 million. </span><br /></div> <div><br /></div> <div>The project’s results, news and open events are communicated on our website <a href="" target="_blank">​</a> and on Twitter @ECOPRODIGI_BSR. </div> <div><br /></div> <div>For more information: <a href="/en/projects/Pages/Ecoprodigi-QEco-efficiency-to-maritime-industry-processes-in-the.aspx">Chalmers ECOPRODIGI project page</a></div> <div><br /></div> <div><strong>Contact</strong></div> <div>Björn Johansson</div> <div></div> <div>+46 31 772 38 09 </div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/IMS/Produktionssystem/Ecoprodigi-logga-1_750x210.png" alt="" style="margin:5px" /><br /><br /><br /></div>Thu, 02 Nov 2017 17:00:00 +0100 workshop<p><b>​A two-day workshop hosted by Chalmers Materials Analysis Lab and SAXSLAB.</b></p>​<img src="/SiteCollectionImages/Institutioner/F/CMAL/SAXS_pattern2.png" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />We are pleased to invite all internal and external researchers who are interested in using or learning more about our newly installed SAXS/WAXS/GISAXS instrument to a two-day workshop. <br /><br /><strong>27 September</strong>, 09:00-17:00<br /><strong>28 September</strong>, 09:00-11:45<br /><br />For more information, download the invitation.<br /><a href="/en/researchinfrastructure/CMAL/news/Documents/Invitation%20SAXS%20workshop.pdf"><img class="ms-asset-icon ms-rtePosition-4" src="/en/researchinfrastructure/CMAL/news/_layouts/images/icpdf.png" alt="invitation SAXS workshop.pdf" />Invitation to SAXS workshop</a> (pdf) or contact Katarina Logg.<br /><br />Katarina Logg <br /><a href=""> </a><br />031-772 32 80 <br />Wed, 06 Sep 2017 12:00:00 +0200 Asp new president in ICCM<p><b>Leif Asp was elected on 23 August as new president of the International Committee on Composite Materials (ICCM), which is the largest organization in the world for information and experience sharing in composite materials.</b></p><a href="/en/Staff/Pages/leifas.aspx">​Leif Asp</a> is Professor in Lightweight composite materials and structures at the division of Materials and Computational Mechanics at <a href="/en/departments/ims/Pages/default.aspx">the Department of Industrial and Materials Sciences</a>. He has previously chaired the European counterpart called European Society for Composite Materials and been Vice President of the ICCM.<br /><br /><em>- Congratulations Leif! Could you please tell us something about ICCM and your new assignment?</em><br /><br />Thank you, it feels amazingly fun and honorable. ICCM is an international worldwide organization in the technical and scientific community that deals with composite materials. The mission is to create a forum and work for the exchange of information in all aspects of composite materials and structures that may be of interest to science. At the same time, we want to pay attention to individual achievements in the subject. Every second year, a major conference is held, the International Conferences on Composite Materials, where scientists from all over the world meet. As chairman, I have a great responsibility to communicate internationally with all of our talented researchers and ensure that the conference is organized in the best possible way. Besides this, of course, I will also do my best to manage the world-leading position that ICCM holds today.<br /><br /><em>- What are you hoping to achieve in your role as president?</em><br /><br />- I will work to further strengthen the relations and participation from the industry in ICCM's network. It is very important that there is a good connection and interaction between academia and industry. I also would like us to be better at paying attention to people who are early or in the middle of their career. In this case we are going to establish a prize for younger researchers and engineers who have made impact in the area of composites. Gender balance and diversity are also issues that I can see that we need to deal with.<br /><br /><a href="">More about <span>the International Committee on Composite Materials</span></a><br /><br />Text and photo: Marcus Folino<a href=""><span><span style="display:inline-block"></span></span></a>Thu, 31 Aug 2017 00:00:00 +0200 management for Production Area of Advance<p><b>​Lars Nyborg and Anette Larsson take over the management of Chalmers Production Area of Advance after Rikard Söderberg and Johan Stahre.</b></p>​There are two new leaders of the Production Area of Advance, both very well-known at Chalmers. <a href="/en/Staff/Pages/lars-nyborg.aspx" target="_blank">Lars Nyborg </a>was previously Head of the Department of Materials and Manufacturing Technology and <a href="/en/Staff/Pages/anette-larsson.aspx" target="_blank">Anette Larsson</a> is in charge of the <a href="/en/centres/sumo/Pages/default.aspx">SuMo BIOMATERIALS</a> research center.<br /><br /><a href="/en/Staff/Pages/lars-nyborg.aspx" target="_blank">Lars Nyborg</a> has been appointed Director, succeeding Rikard Söderberg. He also continues as responsible for the profile area of manufacturing processes. Lars Nyborg is professor in surface technology and a very active researcher in powder and surface technology. He is also prominent in the highly topical research field additive manufacturing. Until recently, Lars Nyborg has been in charge of the former Department of Materials and Manufacturing Technology and is now also Vice Head of Department and Responsible for Utilization at the <a href="/en/departments/ims/Pages/default.aspx">Department of Industrial and Materials Science</a>. Here he describes how he sees the future in the production area.<br /><br />– &quot;Society faces major challenges in areas such as digitization and life sciences, and not least the environment and the climate. We researchers need to gather all our skills and work together with industry and other actors in society to find the best solutions in these areas, &quot;says Lars Nyborg.<br /><br /><a href="/en/Staff/Pages/anette-larsson.aspx" target="_blank">Anette Larsson</a> is Assistant Professor of Pharmaceutical Technology at the Department of Chemistry and Chemical Engineering. She has previously been employed at <a href="">AstraZeneca R &amp; D in Mölndal</a> as a researcher, before returning to Chalmers. Today she is doing research about controlled release of drugs and customized pharmaceutical products. In addition, Anette Larsson is responsible for the <a href="/en/centres/sumo/Pages/default.aspx">SuMo BIOMATERIALS</a> research center. From this autumn, she is appointed Co-Director, succeeding Johan Stahre.<br /><br />Anette Larsson has not participated in the Production Area of Advance earlier and looks forward to learning more about the research conducted. She clearly sees what she can contribute with.<br /><br />– &quot;I have been working in the industry for many years and have also been in charge of a research center that has six major industrial companies as partners. I have gathered experiences that are valuable for an area of advance that has so many links to industrial challenges as Production has.<br /><br />In the immediate future, the focus for the new management is to support active fields and review how the strengths can support internationalization, education and, not least, cooperation. Lars Nyborg gives a few examples of the latter.<br /><br />– &quot;One of our areas is continuous production that can be linked to life sciences, and by being reinforced by Anette we can be even better in, for example, drug production. Another link that we will continue to develop is that between Production and Materials, where we believe there are great opportunities for both areas.<br /><br />Lars Nyborg and Anette Larsson also have the ambition to find new meeting forms and are about to launch a new concept this autumn.<br /><br />–  ”We want to invite everyone to a recurring Afternoon tea! Our three profile areas will be asked to present an urgent topic for each area. In addition, we would like to ask anyone who is curious about additive manufacturing, or 3D printing in metal, to sign up for our <a href="/en/areas-of-advance/production/calendar/Pages/initiative-seminar-2017-AM.aspx">initiative seminar on Frontiers of Additive Manufacturing</a> which is planned for <strong>October 11-12</strong>.”<br /><br /><br />Text: Nina SilowMon, 21 Aug 2017 14:00:00 +0200 the future happen today!<p><b>Students in the Master&#39;s program Product Development, in collaboration with industrial partners, have been working on various projects in product development during a six-month period. These projects were presented in the Virtual Development Laboratory at the Department of Industrial and Materials Sciences. In connection with the presentations, an exhibition was organized where people could mingle and ask questions. ​</b></p><div>​<span><a href="/en/education/programmes/masters-info/Pages/Product-Development.aspx"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" />Master's Program Product Development</a><a href="/en/education/programmes/masters-info/Pages/Product-Development.aspx"><span style="display:inline-block"></span></a></span><br /><br />A total of ten projects were presented during the day. All of which have links to companies that have been part of the financing. One of the projects was done at Volvo Cars and is related to semi-autonomous driving. That is, you should be able to drive the car yourself and then also have the option to make the vehicle self-driving. The students explains that what has been developed is a steering wheel that moves inwardly in the self-driving mode, thus creating more space in the passenger compartment. On the wheel itself, they have also developed a concept with a display that can be used for watching movies, video conferencing and other activities. A positive effect is that you can take advantage of the commuting time in the car for more purposes other than the driving itself.<br />     Lakshmi Salelkar, working in a project at GKN Aerospace, explains how their product helps the aviation industry to become even safer. They have developed a concept for advanced cleaning of pipes in gas turbines using ultrasound. <em>&quot;It has been great fun to work with this project! We have had a great GKN supervisor who has been in contact with us regularly to support and motivate our team.&quot;</em><span><span style="display:inline-block"></span></span></div> <div> </div> <h4 class="chalmersElement-H4">Teamwork</h4> <div>Each project has had five to six students working together. Markus Nilsson, who has been a part of the Drop Arm project with the company Gunnebo, shares his experiences on teamwork: <em>&quot;We all have different strengths and we all found our different roles in the project very quickly. I for an example have had a more coordinating role and making everyone feel involved. Then in prototyping, everyone contributes with whatever they can.&quot;</em> Kathryn Bleakley, who participates in an Erasmus exchange with Queen's University in Belfast, has been mostly involved in the desig<span></span>n parts of the project, but she also emphasizes that it is a joint effort. Kathryn thinks that the time at Chalmers has been fantastic.</div> <div>    <a href="/sv/personal/redigera/Sidor/erik-hulthen.aspx">Erik Hulthén​</a>, coordinator of the Product Development Master Program, says that students themselves have chosen which project to participate in. The composition of the teams has then been based on the students' background and competence. <em>&quot;I think this is one of the reasons why the results are so good. It's really impressive to see what our students can achieve in such a short timespan as half a year! Here we can see examples of the future, such as the Volvo project on the steering wheel for autonomous driving, and the students who designed a self-navigating pick-up truck in the Helge Nyberggruppen project. &quot;</em><span style="background-color:initial"><em> </em><br /></span></div> <span></span><div></div> <div> </div> <h4 class="chalmersElement-H4">All projects<br /></h4> <p>•    GKN - Oil Coke Prevention in Tubes for Gas Turbines<br />•    Gunnebo - Drop Arm<br />•    Modul-System - Ladder Holder for Commercial Vehicles<br />•    Thule and INXIDE - Light Weight Multi-Functional Stroller<br />•    ASKO - Spraying Concept<span><br />•    ASKO - Cutlery Basket 2.0<span style="display:inline-block"></span></span><br />•    ASSA ABLOY - Entrance Activator without Wire Routing and Battery Change<br />•    Helge Nyberg AB - Order Picking Trolley with Follow Me Function<br />•    NEVS - The Light Weight Car Door for the Future<br />•    Volvo Cars - Use of Steering Wheel in Autonomous Drive Situations</p> <p><br /></p> Mon, 14 Aug 2017 05:25:00 +0200 Experience in Nepal with Engineer without Border Sweden<p><b>​The project that we do is called “Build up Nepal: Earth Brick and Stone”. The main goal is to help Build up Nepal with the CSEB press machine. Many machines break down easily, making the production process quite inefficient. We are expected to find solutions of the common problems the machine usually have.</b></p><div dir="ltr" style="text-align:justify"><div dir="ltr"><p class="chalmersElement-P"><span lang="IN">Engineers Without Borders (EWB) (France: </span><span><span>Ingénieurs Sans Frontières</span></span><span><span lang="IN">, ISF) is a term used for number of non-governmental organizations in various countries which the activities focus on engineering that is oriented to development of disadvantaged communities, such as building or installing a form of facility that requires a degree of engineering work in underdeveloped countries. The organizations, have various projects driven by students. Many of them usually involve engineering student going down to solve real problems and helping the community.​</span></span></p> <div> </div> <p class="chalmersElement-P"><span><span lang="IN"></span></span><span>There</span><span> is also EWB in Sweden. Often called Ingenjörer utan gränser (IUG), the organization engages and supports projects based on engineering skills, often with collaboration with local organizations in many disadvantaged communities.The network includes students, professionals and seniors. IUG has many active projects in Tanzania, Kenya, Rwanda, Nepal and many other countries. See more about </span><a href="">IUG</a><span> by click here. </span></p></div></div> <div> </div> <div> </div> <div> </div> <div style="text-align:justify"> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P" style="text-align:justify"><span><span lang="IN"><img src="/en/education/next-stop/stuamb/PublishingImages/Ambassador%20Post%20Images/Napalese%20street.jpg" class="chalmersPosition-FloatRight" alt="" style="width:297px;height:403px" />This summer, 4 bachelor students from Chalmers are sent to Nepal to work on their thesis in as well as to help with rehabilitation of earthquake-struck regions.There is one organization in Nepal called Build up Nepal, which is run by Swedish entrepreneur Björn Soderberg that is actively help rebuilding destroyed villages in Nepal after the famous 2015 Gorkha earthquake, which made about 200000 people homeless (see more at <a href="">Build Up Nepal</a></span></span><span><span lang="IN">). Build up Nepal provides training and tools to build houses made of compressed stabilised earth brick (CSEB), a building material with strength that rivals conventional fired bricks, but using local material and without the need to use fire to produce. The students work on quality control of the brick, building manuals and the roofing construction as their volunteering project as well as their thesis work.​</span></span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="MsoNormal" style="text-align:justify"><span style="font-size:13pt;line-height:107%;font-family:arial, sans-serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-attachment:initial;background-origin:initial;background-clip:initial"></span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="MsoNormal" style="text-align:right"><br /></p> <p class="MsoNormal" style="text-align:right"><br /></p> <div> </div> <p class="chalmersElement-P" style="text-align:right"><span>(A</span><span> typical evening in Nepalese street)</span></p> <p class="chalmersElement-P" style="text-align:justify"><span style="background-color:initial"><br /></span></p> <p class="chalmersElement-P" style="text-align:justify"><span></span><span style="background-color:initial">I</span><span style="background-color:initial">n addition, 2 more people were also sent to Nepal as volunteers from IUG. Me, Aksa, Chalmers’ alumni and Student Ambassador, and Johan Larsson, a professional. We go down to Nepal as mechanical engineers to improve the productivity of the machines used to create the CSEBs. Since we are not doing our thesis here, we can be considered a full time volunteer workers. Among the problems we need to tackle are: the difference of working style of people in Nepal, weather, and the un-ideal condition in Nepal. Build up Nepal has installed the CSEB press machine in more than 30 different remote areas in Nepal. Each one requires about 6 hours of driving from Kathmandu, where the main office of Build up Nepal is located. Not to mention that the machine weighs about 200 kilograms each and has to be carried through very bumpy and steep roads.</span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P" style="text-align:justify"><span><span><img src="/en/education/next-stop/stuamb/PublishingImages/Ambassador%20Post%20Images/machine.jpg" class="chalmersPosition-FloatLeft" alt="" style="width:445px;height:224px" />The project that we do is called “Build up Nepal: Earth Brick and Stone”. The main goal is to help Build up Nepal with the CSEB press machine. Many machines break down easily, making the production process quite inefficient. We are expected to find solutions of the common problems the machine usually have.</span></span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p></p> <div> </div> <p class="chalmersElement-P"><span><br /></span></p> <p class="chalmersElement-P"><span><br /></span></p> <p class="chalmersElement-P"><span style="background-color:initial">(D</span><span style="background-color:initial">iscus</span><span style="background-color:initial">sing about the CSEB machine with local engineer)</span></p> <p class="chalmersElement-P"><span style="background-color:initial"><br /></span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P" style="text-align:justify"><span lang="IN">You can also join IUG. Chalmers has a good connection with IUG. You can start by visiting </span><a href=""><span><span>Ingenjörer </span><span>U</span><span>tan </span><span>G</span></span><span>ränser </span></a><span><a href=""></a></span><span lang="IN">facebook page</span><span lang="IN">. Often, they will also organize lunch lecture about their projects, such as what did the students do, the results, obstacles, and how you can join and contribute your skills to help the needy. The best part? You can do so while travelling to exotic countries!</span></p> <div> </div> <div style="text-align:justify"> </div> <div> </div> <div style="text-align:justify"> </div> <div> </div> <div style="text-align:justify"> </div> <div> </div> <p class="chalmersElement-P" style="text-align:justify"><span lang="IN">Keep in touch, I will post more stories about my journey here in Nepal.</span></p> <div> </div> <div style="text-align:justify"> </div> <div> </div> <div style="text-align:justify"> </div> <div> </div> <div style="text-align:justify"> </div> <div> </div> <p class="chalmersElement-P" style="text-align:justify"><span><span lang="IN">Story by : </span></span><span><span><a href="/en/education/next-stop/stuamb/Pages/Kurnia-Bijaksana.aspx">Muhammad Kurnia Bijaksana</a></span></span></p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"> </p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"> </p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"> </p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"> </p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"> </p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"> </p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"> </p> <div> </div> <p class="chalmersElement-P" style="text-align:justify"><span>Edited : <a href="/en/education/next-stop/stuamb/Pages/angsusorn-apirajkamol.aspx">Angsusorn Apirajkamol </a></span></p>Thu, 03 Aug 2017 00:00:00 +0200élanie-Despeisse.aspx Mélanie Despeisse – new assistant professor in Production<p><b>​“If we define sustainability as a desirable output, we will create the industrial processes to deliver it efficiently. It’s not just about “less bad” or “zero impact” on the natural environment. It’s about being good, creating a positive impact wherever we can, and simply doing the right thing.”</b></p><strong>​</strong><span style="background-color:initial"><strong>Welcome to Chalmers! You have been in connection with Chalmers before, as a student. Can you tell us a bit about what made you come here?</strong></span><div>– Thank you, and yes, I was at Chalmers already as a student. When I decided to go to Chalmers with the ERASMUS exchange programme, I was looking for a new experience, a change of scenery, a chance to study differently, and I was curious about new topics which were not available in my home university. Chalmers offers such a wide range of courses, it felt like the possibilities were unlimited. I took as many courses as I could and even came back for a second year for an MSc degree in Industrial Ecology. I told myself that I would come back some day… And this day has come!</div> <div><br /></div> <div><strong>What did you do when you left Chalmers after graduation?</strong></div> <div>– After leaving Chalmers I conducted industry projects on renewable energy systems and eco-efficiency across Europe. Most recently I was a lead researcher at University of Cambridge in the UK. When the new position for assistant professor in the Production Area of Advance was advertised, I thought it was a perfect match to my research interests and a great opportunity to continue the adventure with Chalmers.</div> <div><br /></div> <div><strong>One of the challenges mentioned in the job posting was about developing intelligent/smart industry. How do you see your role as a key player in Chalmers continued focus on smart industry?</strong></div> <div>– Over the past ten years, I have contributed to various research projects on sustainability and resource efficiency with leading manufacturing companies. My research explores the relationship between industry and environmental sustainability at multiple levels, from processes and factories to products’ life cycle and whole value chains. </div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/IMS/Produktionssystem/Melanie%20Despeisse%20competing%20in%202007%20Eco%20marathon,%20J-O%20Yxell,%20690x350.png" alt="" style="margin:5px" /><br /><em>During her time as an ERASMUS student at Chalmers, Mélanie Despeisse competed in the 2007 Eco marathon. Photo: Jan-Olov Yxell</em><br /><br /></div> <div><strong>What are you most passionate about in your research?</strong></div> <div>– Fundamentally, we need to rethink how industry operates to provide social and economic value while respecting the planet’s capacity to support all human activities. This will require a dramatic shift in the way we produce and consume stuff. With the growing awareness and interest in the sustainability challenge, many people are starting to see opportunities rather than limitations. </div> <div><br /></div> <div>– I really believe that we can play a positive role in our planet’s ecosystem if we put our minds to it. After all, that’s what industrial systems do best: if we define sustainability as a desirable output, we will create the industrial processes to deliver it efficiently. It’s not just about “less bad” or “zero impact” on the natural environment. It’s about being good, creating a positive impact wherever we can, and simply doing the right thing.</div> <div><br /></div> <div><br /></div> <div><div><a href="/en/Staff/Pages/melanie-despeisse.aspx">Mélanie Despeisse</a> is employed <span style="background-color:initial">at the division of <a href="/en/departments/ims/research/production-systems/Pages/default.aspx">Production Systems</a>, which belongs to the <a href="/en/departments/ims/Pages/default.aspx">Department of Industrial and Materials Science</a> at Chalmers</span><span style="background-color:initial">​. Her assignment is as </span><span style="background-color:initial">Assistant Professor within the Production Area of Advance.</span></div></div> ​Thu, 29 Jun 2017 00:00:00 +0200 Chen concretizes sustainability in manufacturing technologies<p><b>Danfang Chen will give her docent lecture on “Development and Challenges in Sustainable Manufacturing Technology”, at the Department of Industrial and Materials Science.</b></p>Danfang’s current research focuses on sustainable manufacturing technology for powertrain components. For example, how sustainability can be interpreted and integrated in development, evaluation and adaption of manufacturing technologies, i.e., how to concretize the concept sustainability for manufacturing technology from a user’s perspective. This would enable us to use more sustainable manufacturing technologies in the future.<br /><br />Her research background is factory planning and sustainable factory. Her research focus before joining Volvo Group Truck Operations in 2015 was concretizing the concept sustainable development at factory level from a factory planner’s viewpoint. Dangfang lives in Skövde and in her spare time she likes to cook, shop and read books.<br /><br /><a href="/en/departments/ims/calendar/Pages/Docent-lecture---Danfang-Chen.aspx">Docent lecture: <span>“Development and Challenges in Sustainable Manufacturing Technology” </span></a><br />Date: 1 June 2017<a href="/en/departments/ims/calendar/Pages/Docent-lecture---Danfang-Chen.aspx"><span><span style="display:inline-block"></span></span></a><br />Thu, 01 Jun 2017 00:00:00 +0200–-Supporting-Less-Energy-reliant-Activities-in-the-Everyday.aspx for a less energy-reliant everyday life<p><b>Anneli Selvefors&#39;s dissertation, &quot;Design Beyond Interventions – Supporting Less Energy-reliant Activities in the Everyday”, explores how energy conservation can be supported from a design perspective.</b></p>Anneli has explored people’s use of energy during everyday activities to understand more about why people may, or may not, prioritize to reduce their energy use during different activities. Additionally, she has evaluated how design can contribute to energy conservation by investigating how the design of an energy feedback system and everyday kitchen appliances such as kettles and toasters, influence energy use in everyday life. The insights gained point to the need of designing artefacts in a way so that they provide preconditions that enable a less energy-reliant everyday life.<br /><br />Anneli holds a Licentiate of Engineering degree in Human-Technology-Design as well as a Master of Science degree in Industrial Design Engineering from Chalmers University of Technology. She became interested in the topic of Design for Sustainability during her undergraduate studies where she had the opportunity to address issues related to energy conservation as part of the Master thesis project, which made her continue exploring this topic as part of her research studies. <br /><br />In the future Anneli will continue to explore opportunities for addressing sustainability challenges through design. She is already involved in a new research project that is looking at how to design products and services for a circular economy. She also aims to start up additional projects on the topic of Design for Sustainability in collaboration with both academia and industry.<br /><br /><a href="/en/Staff/Pages/anneli-selvefors.aspx">Anneli Selvefors</a><br /><a href=""><span>Design Beyond Interventions – Supporting Less Energy-reliant Activities in the Everyday<span style="display:inline-block"></span></span></a><br />Date of dissertation: 29 May 2017<br />Department of Industrial and Materials Science<br />Mon, 29 May 2017 00:00:00 +0200