Baris Süslü, MPSYS, and Kaan Yilmaz, MPCAS

AV-SLAM: Autonomous vehicle SLAM with gravity direction initialization

Examiner: Henk Wymeersch, Dept of Electrical Engineering
Supervisors: Srikar Muppirisetty and Sohini Roychowdhury, Volvo Car Corporation, and Maryam Lashgari, Dept of Electrical Engineering


The simultaneous localization and mapping (SLAM) algorithms aimed for autonomous vehicles (AVs) are required to utilize sensor redundancies specific to AVs and enable accurate, fast, and repeatable estimations of pose and path trajectories. In this work, a combination of three SLAM algorithms is proposed that utilizes a different subset of available sensors such as inertial measurement unit (IMU), a gray-scale mono-camera, and a Lidar. Furthermore, a novel acceleration-based gravity direction initialization (AGI) method for the visual-inertial SLAM (VI-SLAM) algorithm is proposed. The SLAM algorithms, initialization methods for pose estimation accuracy, speed of convergence, and repeatability on the KITTI odometry sequences are analysed. The proposed VI-SLAM with AGI method achieves significant improvement in relative pose errors, i.e., less than 2% error, the convergence time is reduced to half a minute or less, and also, the convergence time variability is less than 3 seconds, which makes the proposed approach a perfect solution for the AVs.

Category Student project presentation
Location: Web seminar
Starts: 24 August, 2020, 14:00
Ends: 24 August, 2020, 15:00

Published: Mon 10 Aug 2020.