Ankit Gupta, Electrical Engineering

​Title: Control of Constrained Dynamical Systems with Performance Guarantees 
With Application to Vehicle motion Control 

Email in advance to recieve the password

The PhD defence can be accessed through Zoom, and it will open shortly before 10:00. We would kindly ask you to keep the video off and mute the microphone during the seminar. At the end of the session there will be an opportunity to ask questions through Zoom. In case there will be any updates about the event, these will be posted on this website.
Ankit Gupta is a PhD student in the research group of Mecatronics, Division of Systems and Control
Faculty opponent is Associate professor Mircea Lazar, Eindhoven University of Technology, The Netherlands    
Examiner is Professor Jonas Sjöberg, Division of Systems and Control​

​In control engineering, models of the system are commonly used for controller design. A standard control design problem consists of steering the given system output (or states) towards a predefined reference. Such a problem can be solved by employing feedback control strategies. By utilizing the knowledge of the model, these strategies compute the control inputs that shrink the error between the system outputs and their desired references over time. Usually, the control inputs must be computed such that the system output signals are kept in a desired region, possibly due to design or safety requirements. Also, the input signals should be within the physical limits of the actuators. Depending on the constraints, their violation might result in unacceptable system failures (e.g. deadly injury in the worst case). Thus, in safety-critical applications, a controller must be robust towards the modelling uncertainties and provide a priori guarantees for constraint satisfaction. 

A fundamental tool in constrained control application is the robust control invariant sets (RCI). For a controlled dynamical system, if initial states belong to RCI set, control inputs always exist that keep the future state trajectories restricted within the set. Hence, RCI sets can characterize a system that never violates constraints. These sets are the primary ingredient in the synthesis of the well-known constraint control strategies like model predictive control (MPC) and interpolation-based controller (IBC). Consequently, a large body of research has been devoted to the computation of these sets. In the thesis, we will focus on the computation of RCI sets and the method to generate control inputs that keep the system trajectories within RCI set. We specifically focus on the systems which have time-varying dynamics and polytopic constraints. Depending upon the nature of the time-varying element in the system description (i.e., if they are observable or not), we propose different sets of algorithms. 

The first group of algorithms apply to the system with time-varying, bounded uncertainties. To systematically handle the uncertainties and reduce conservatism, we exploit various tools from the robust control literature to derive novel conditions for invariance. The obtained conditions are then combined with a newly developed method for volume maximization and minimization in a convex optimization problem to compute desirably large and small RCI sets. In addition to ensuring invariance, it is also possible to guarantee desired closed-loop performance within the RCI set. Furthermore, developed algorithms can generate RCI sets with a predefined number of hyper-planes. This feature allows us to adjust the computational complexity of MPC and IBC controller when the sets are utilized in controller synthesis. Using numerical examples, we show that the proposed algorithms can outperform (volumewise) many state-of-the-art methods when computing RCI sets. 

In the other case, we assume the time-varying parameters in system description to be observable. The developed algorithm has many similar characteristics as the earlier case, but now to utilize the parameter information, the control law and the RCI set are allowed to be parameter-dependent. We have numerically shown that the presented algorithm can generate invariant sets which are larger than the maximal RCI sets computed without exploiting parameter information. 

Lastly, we demonstrate how we can utilize some of these algorithms to construct a computationally efficient IBC controller for the vehicle motion control. The devised IBC controller guarantees to meet safety requirements mentioned in ISO 26262 and the ride comfort requirement by design.
Category Thesis defence
Location: online
Starts: 03 March, 2021, 10:00
Ends: 03 March, 2021, 13:00

Page manager Published: Wed 03 Feb 2021.