News: Centre Graphenehttp://www.chalmers.se/sv/nyheterNews related to Chalmers University of TechnologyMon, 23 May 2022 10:48:08 +0200http://www.chalmers.se/sv/nyheterhttps://www.chalmers.se/en/departments/mc2/news/Pages/simpler-graphene-method-paves-way-for-new-era-of-nanoelectronics.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/simpler-graphene-method-paves-way-for-new-era-of-nanoelectronics.aspxSimpler graphene method paves way for new era of nanoelectronics<p><b>​Ever since its discovery in 2004, graphene has received attention owing to its extraordinary properties, among them its extremely high carrier mobility. However, the high carrier mobility has only been observed using techniques that require complex and expensive fabrication methods. Now, researchers at Chalmers report on a surprisingly high charge-carrier mobility of graphene using much cheaper and simpler methods.“This finding shows that graphene transferred to cheap and flexible substrates can still have an uncompromisingly high mobility, and it paves the way for a new era of graphene nano-electronics”, says Munis Khan, researcher at Chalmers University of Technology.</b></p><div>​Graphene is the one-atom-thick layer of carbon atoms, known as the world's thinnest material. The material has become a popular choice in semiconductor, automotive and optoelectronic industry due to its excellent electrical, chemical, and material properties. One such property is its extremely high carrier mobility.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>“In solid-state physics, the electron carrier mobility characterizes how quickly an electron can move through a metal or semiconductor when pulled by an electric field. The high electron mobility of graphene points to great potential for broadband communications and high-speed electronics operating at terahertz switching rates. In addition, the other material properties, such as high chemical stability, excellent transparency, and electrical sensitivity towards biochemicals, make it a promising material for displays, light harvesting devices and biosensors”, says Munis Khan. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> <img src="/sv/institutioner/mc2/nyheter/PublishingImages/munis_khan.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:250px" />However, the extremely high carrier mobility in graphene is either observed in mechanically exfoliated graphene, a process that lacks industrial scalability, or graphene devices fabricated on hexagonal-boron nitride. Such high mobilities have also been observed by transferring graphene grown by a process called chemical vapor deposition (CVD) to complex-oxide heterostructures. All these techniques require complex and expensive fabrication methods, which not only makes it more expensive but also hinder mass production of such devices. </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><h2 class="chalmersElement-H2">Cheaper graphene with high carrier mobility</h2></div> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <div>Now, Munis Khan and his colleagues report on a surprisingly high charge-carrier mobility of CVD graphene grown on unpolished copper foil and transferred to EVA/PET lamination foil by using an ordinary office laminator and wet etching of copper. The mobility increased up to eight times after simply holding the graphene-on-plastic sandwich at 60 C for a few hours.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>“This finding shows that even cheap and flexible graphene devices can still have an uncompromisingly high mobility”, says Munis Khan. “Our article proposes a straightforward method to fabricate cheap graphene devices on flexible substrates with high carrier mobility, probably only limited by the CVD process and purity of copper.”</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div>CVD graphene transferred to EVA/PET is being intensely explored and studied for flexible and stretchable electronics, especially in shape-conforming systems such as portable energy-harvesting devices, electronic skin, and wearable electronic devices, which need high flexibility and stretchability. Conventional semiconductors lack the superior mechanical properties that graphene possesses, which makes them unsuitable for such applications – often highly conductive flexible graphene films possessing high carrier mobility are required.<br /></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div> “Our observation will indeed increase the scope of such flexible graphene films in this field. This could also usher the new era of flexible electronics. Applications requiring highly conductive thin films can now be realized by an affordable and simple method as proposed in our article. Indeed, in our research group we intend to use such graphene films for making extremely sensitive biosensors, terahertz detectors and high frequency devices, applications that too requires high carrier mobility. The challenge will be to integrate microfabrication techniques to make devices on flexible substrates. Once such issues are addressed, probably within 2-3 years, we can start utilizing such graphene films to fabricate devices for industrial use”, says Munis Khan.</div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">About the discovery</h2> <div> </div> <div> </div> <div> </div> <div>Chemical vapor deposition (CVD) of graphene on commercial copper (Cu) foils provides a scalable route towards high-quality single-layer graphene. The CVD method is based on gaseous reactants that are deposited on a substrate. The graphene is grown on a metallic surface like Cu, Pt or Ir, after which it can be separated from the metal and transferred to specifically required substrates. The process can be simply explained as carbon-bearing gases that react at high temperatures (900–1100 °C) in the presence of a metal catalyst, which serves both as a catalyst for the decomposition of the carbon species and as a surface for the nucleation of the graphene lattice.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <div>The researchers have discovered that CVD graphene once transferred from copper to EVA/PET (ordinary lamination pouch) by hot press lamination, initially showed low carrier mobility in a range from 500 - 1000 cm^2/(V s). But, once such films were kept at 60 C for several hours in a constant flow of nitrogen, the mobility increased eight times and reached 6000 – 8000 cm^2/(V s) at room temperature.</div> <div> </div> <div><br /></div> <div> </div> <div>The research was partly done in Chalmers’ MyFab cleanroom facilities.</div> <div> </div> <div> </div> <div> </div> <div><br /></div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Read the scientific article</h2> <div> </div> <div> </div> <div> </div> <div><a href="https://www.mdpi.com/2079-4991/12/3/331/htm" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />High Mobility Graphene on EVA/PET </a></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">Contact</h2> <div> </div> <h2 class="chalmersElement-H2"> </h2> <div> </div> <div>Munis Khan, PhD student<br />Department of Microtechnology and Nanoscience, Quantum Device Physics Laboratory </div> <div> </div> <div> </div> <div> </div> <a href="mailto:munis@chalmers.se">munis@chalmers.se</a> <div> </div> <div> </div> <div> </div> <div><br /></div> <div>Text: Robert Karlsson</div> <div>Pictures: Munis Khan<br /></div>Mon, 07 Mar 2022 00:00:00 +0100https://www.chalmers.se/en/centres/2d-tech/news/Pages/Annual-GCC-and-2Dtech-doctoral-thesis-prize-awarded.aspxhttps://www.chalmers.se/en/centres/2d-tech/news/Pages/Annual-GCC-and-2Dtech-doctoral-thesis-prize-awarded.aspxHonored recipients of annual doctoral theses award<p><b>​On February 28, former PhD students Muhammad Asad and Dmitrii Khokhriakov received the annual Graphene Center at Chalmers/2D-tech PhD Awards of 2021 for best doctoral thesis on graphene and related materials at Chalmers.So how will they spend the prize money?“On a nice summer vacation”, says Dmitrii Khokhriakov.“I will buy a cricket bat, balls and bowling machine”, says Muhammad Asad.</b></p><div>​<span lang="EN-US">The two winners received a diploma and a sum of 15 000 SEK at a web seminar held February 28. Both of them emphasize how happy and honored they are about receiving the award.</span><span lang="EN-US"><br /></span></div> <div><span lang="EN-US"><br /></span></div> <div><span lang="EN-US">“I am happy and honored that my thesis work is appreciated by the GCC and 2DTECH board. It feels great to receive such a remarkable acknowledgment”, says Dmitrii Khokhriakov.</span> </div> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">“It motivates me for continuing working hard in future and it sets a good tradition of honor and encouragement”, says Muhammad Asad.</span> </p> <h2 class="chalmersElement-H2"><span lang="EN-US"></span><span lang="EN-US"></span><span><span lang="EN-US">Utilizing graphene</span></span><span lang="EN-US"><span><span lang="EN-US"> and spin transport properties</span></span><br /></span></h2> <p class="MsoNormal"><span lang="EN-US"><img src="/sv/institutioner/mc2/nyheter/PublishingImages/Mohammad%20Asad%20presentation.png" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;width:250px;height:140px" />His thesis is about utilizing graphene for future radio-frequency (RF) applications by solving the challenges from the whole range of material synthesis, via nanodevice fabrication of RF transistors, characterization and integration of graphene field-effect transistors (FET) amplifier in RFIC circuits. The application areas of his work are in future high-frequency electronics, communication and sensor systems.</span> </p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">Dmitrii Khokhriakov’s research</span><span lang="EN-US"> focuses on experimental studies of 2D materials and their heterostructures, and in particular spin transport properties. He developed large area graphene spin circuits to study the spin transport in more complicated devices than was done before, and ultimately managed to make the first prototype of a spin-based majority logic device working with pure spin currents at room temperature.</span> </p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br /><img src="/sv/institutioner/mc2/nyheter/PublishingImages/Dmitrii%20Khokhriakov%20presentation.png" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:140px" />“Although this research is still on the fundamental side, it has perspective for applications in the electronics of the future”, he says. “Currently, the increase in performance of electronics comes from downscaling of transistors. However, this approach results in the growing role of quantum effects that pose such hurdles as increased leakage current and heating. An alternative way forward is to use the electron spin, for instance its magnetic properties, to improve the way we can store and process information. Hopefully, the work in my thesis adds a little brick to the edifice of spintronics, which may one day become an essential part of future computing devices.”</span><br /><span lang="EN-US"></span> </p> <p class="MsoNormal"></p> <h2 class="chalmersElement-H2">Career in industry</h2> <div><span lang="EN-US"></span></div> <p></p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US">At the moment, both winners are continuing their careers in industry. Muhammad Asad is using his RF electronics related knowledge to develop new products and technologies, while Dmitrii Khokhriakov has recently accepted a job as an at Gothenburg-based Smoltek, a company that develops carbon nanotechnology for microelectronics.</span> </p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">“During my PhD, I really enjoyed working both in the cleanroom and in our electronics testing lab”, he says. </span><br /><span lang="EN-US"></span> </p> <p class="MsoNormal"><span lang="EN-US">“For the next step in my career, I want to continue working with nanoelectronics R&amp;D, but in a more industrial setting with a focus on the product.”</span></p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">The prize money will be spent on two quite different things.</span> </p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">“I will probably save the money towards a nice summer vacation once the travel restrictions are lifted”, says Dmitrii Khokhriakov.</span> </p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br /></span></p> <p class="MsoNormal"><span lang="EN-US">“I will buy a cricket bat, balls and bowling machine! Cricket is a sport not well-known in Sweden but that’s what I like the most”, says Muhammad Asad.</span> </p> <h2 class="chalmersElement-H2"><span lang="EN-US">Mohammad Asad about his research and thesis</span></h2> <p class="MsoNormal"><span lang="EN-US"><img src="/sv/institutioner/mc2/nyheter/PublishingImages/Muhammad%20Asad.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:250px" />“In general, my thesis was about utilizing graphene for future radio-frequency (RF) applications by solving the challenges from the whole range of material synthesis, via nanodevice fabrication of RF transistors, characterization and integration of graphene FET amplifier in RFIC circuits. The focus was of the impact of graphene adjacent dielectrics on the RF performance of graphene FETs.</span></p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br />A great achievement was the experimental verification of a theoretical concept of improving the charge carrier velocity in graphene by utilizing the adjacent substrate materials with higher optical phonon (OP) energy. In this regard, graphene FETs was fabricated on a single crystal diamond (a beautiful combination of sp2 and sp3 carbon), a promising dielectric material has a highest OP energy and thermal conductivity similar to that of graphene. With this approach, a state-of-the-art high frequency graphene FETs was realized with record high fmax performance for 500 nm gate length. Furthermore, in this work, a fully integrated X and Ku band GFET IC amplifier with state-of-the-art performance was demonstrated.”</span> </p> <p class="MsoNormal"><span lang="EN-US"></span><span lang="EN-US"><br />Read the thesis: <a href="https://research.chalmers.se/en/publication/?id=523747" target="_blank">“Impactof adjacent dielectrics on the high-frequency performance of graphenefield-effect transistors”</a></span> </p> <h2 class="chalmersElement-H2"><span lang="EN-US">Dmitrii Khokhriakov about his research and thesis</span></h2> <p class="MsoNormal" style="text-align:justify"><span lang="EN-US"><img src="/sv/institutioner/mc2/nyheter/PublishingImages/Dmitrii%20Khokhriakov.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:250px" />“My research is focused on experimental studies of 2D materials and their heterostructures, and in particular on their spin transport properties. I developed large area graphene spin circuits to study the spin transport in more complicated devices than was done before. Ultimately, I managed to make the first prototype of a spin-based majority logic device working with pure spin currents at room temperature.</span></p> <p class="MsoNormal" style="text-align:justify"><span lang="EN-US"></span><span lang="EN-US"><br />In addition, I have worked a lot with topological insulators, which are also part of 2D materials family. Their unique feature is the large spin-orbit coupling, which allows for active control over spin polarization that is not possible to achieve in graphene. The most important finding from these investigations was that when the graphene and a topological insulator are combined together, the resulting heterostructure allows gate-tunable conversion between charge and spin currents directly in graphene. This a highly desired functionality for the development of spin-based logic technologies.”</span> </p> <div><br />Read the thesis <a href="https://research.chalmers.se/en/publication/?id=523817" target="_blank">“Graphene spin circuits and spin-orbit phenomena in van der Waals heterostructures with topological insulators”</a></div> <br /><div>Text: Robert Karlsson</div> <div>Photos: Susannah Carlsson and private<br /></div> Tue, 01 Mar 2022 15:00:00 +0100https://www.chalmers.se/en/areas-of-advance/ict/news/Pages/the-allwise-alvis.aspxhttps://www.chalmers.se/en/areas-of-advance/ict/news/Pages/the-allwise-alvis.aspx​Time to inaugurate all-wise computer resource<p><b>​Alvis is an old Nordic name meaning &quot;all-wise&quot;. An appropriate name, one might think, for a computer resource dedicated to research in artificial intelligence and machine learning. The first phase of Alvis has been used at Chalmers and by Swedish researchers for a year and a half, but now the computer system is fully developed and ready to solve more and larger research tasks.​</b></p><br /><div><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/300x454_Alvis_infrastructure_1.png" alt="A computer rack" class="chalmersPosition-FloatRight" style="margin:10px;width:270px;height:406px" />Alvis is a national computer resource within the <strong><a href="https://www.snic.se/">Swedish National Infrastructure for Computing, SN​IC,</a></strong> and started on a small scale in the autumn of 2020, when the first version began being used by Swedish researchers. Since then, a lot has happened behind the scenes, both in terms of use and expansion, and now it's time for Chalmers to give Swedish research in AI and machine learning access to the full-scale expanded resource. The digital inauguration will take place on <span style="font-weight:normal"><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">February 25, 202</a>2.</span></div> <div><br /></div> <div><b>What can Alvis contribute to, then? </b>The purpose is twofold. On the one hand, one addresses the target group who research and develop methods in machine learning, and on the other hand, the target group who use machine learning to solve research problems in basically any field. Anyone who needs to improve their mathematical calculations and models can take advantage of Alvis' services through SNIC's application system – regardless of the research field.</div> <div><span style="background-color:initial">&quot;Simply put, Alvis works with pattern recognition, according to the same principle that your mobile uses to recognize your face. What you do, is present very large amounts of data to Alvis and let the system work. The task for the machines is to react to patterns - long before a human eye can do so,&quot; says <b>Mikael Öhman</b>, system manager at Chalmers e-commons.</span><br /></div> <div><br /></div> <h3 class="chalmersElement-H3">How can Alvis help Swedish research?</h3> <div><b>Thomas Svedberg</b> is project manager for the construction of Alvis:</div> <div>&quot;I would say that there are two parts to that answer. We have researchers who are already doing machine learning, and they get a powerful resource that helps them analyse large complex problems.</div> <div>But we also have those who are curious about machine learning and who want to know more about how they can work with it within their field. It is perhaps for them that we can make the biggest difference when we now can offer quick access to a system that allows them to learn more and build up their knowledge.&quot;</div> <div><br /></div> <div>The official inauguration of Alvis takes place on February 25. It will be done digitally, and you will find all <a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">information about the event here.</a></div> <div><br /></div> <h3 class="chalmersElement-H3">Facts</h3> <div>Alvis, which is part of the national e-infrastructure SNIC, is located at Chalmers. <a href="/en/researchinfrastructure/e-commons/Pages/default.aspx">Chalmers e-commons</a> manages the resource, and applications to use Alvis are handled by the <a href="https://www.snic.se/allocations/snac/">Swedish National Allocations Committee, SNAC</a>. Alvis is financed by the <b><a href="https://kaw.wallenberg.org/">Knut and Alice Wallenberg Foundation</a></b> with SEK 70 million, and the operation is financed by SNIC. The computer system is supplied by <a href="https://www.lenovo.com/se/sv/" target="_blank">Lenovo​</a>. Within Chalmers e-commons, there is also a group of research engineers with a focus on AI, machine learning and data management. Among other things, they have the task of providing support to Chalmers’ researchers in the use of Alvis.</div> <div> </div> <h3 class="chalmersElement-H3">Voices about Alvis:</h3> <div><b>Lars Nordström</b>, director of SNIC: &quot;Alvis will be a key resource for Swedish AI-based research and is a valuable complement to SNIC's other resources.&quot;</div> <div><br /></div> <div><span style="background-color:initial"><strong>Sa</strong></span><span style="background-color:initial"><strong>ra Mazur</strong>, Director of Strategic Research, Knut and Alice Wallenberg Foundation: &quot;</span>A high-performing national computation and storage resource for AI and machine learning is a prerequisite for researchers at Swedish universities to be able to be successful in international competition in the field. It is an area that is developing extremely quickly and which will have a major impact on societal development, therefore it is important that Sweden both has the required infrastructure and researchers who can develop this field of research. It also enables a transfer of knowledge to Swedish industry.&quot;<br /></div> <div><br /></div> <div><b>Philipp Schlatter</b>, Professor, Chairman of SNIC's allocation committee Swedish National Allocations Committee, SNAC: &quot;Calculation time for Alvis phase 2 is now available for all Swedish researchers, also for the large projects that we distribute via SNAC. We were all hesitant when GPU-accelerated systems were introduced a couple of years ago, but we as researchers have learned to relate to this development, not least through special libraries for machine learning, such as Tensorflow, which runs super fast on such systems. Therefore, we are especially happy to now have Alvis in SNIC's computer landscape so that we can also cover this increasing need for GPU-based computer time.&quot;</div> <div><br /></div> <div><strong>Scott Tease</strong>, Vice President and General Manager of Lenovo’s High Performance Computing (HPC) and Artificial Intelligence (AI) business: <span style="background-color:initial">“Lenovo </span><span style="background-color:initial">is grateful to be selected by Chalmers University of Technology for the Alvis project.  Alvis will power cutting-edge research across diverse areas from Material Science to Energy, from Health care to Nano and beyond. </span><span style="background-color:initial">Alvis is truly unique, built on the premise of different architectures for different workloads.</span></div> <div>Alvis leverages Lenovo’s NeptuneTM liquid cooling technologies to deliver unparalleled compute efficiency.  Chalmers has chosen to implement multiple, different Lenovo ThinkSystem servers to deliver the right NVIDIA GPU to their users, but in a way that prioritizes energy savings and workload balance, instead of just throwing more underutilized GPUs into the mix. Using our ThinkSystem SD650-N V2 to deliver the power of NVIDIA A100 Tensor Core GPUs with highly efficient direct water cooling, and our ThinkSystem SR670 V2 for NVIDIA A40 and T4 GPUs, combined with a high-speed storage infrastructure,  Chalmers users have over 260,000 processing cores and over 800 TFLOPS of compute power to drive a faster time to answer in their research.”</div> <div><br /></div> <div><br /></div> <div><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx" target="_blank"><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/ichtm.gif" alt="" /></a><a href="/en/areas-of-advance/ict/calendar/Pages/Alvis-inauguration-phase-2.aspx">SEE INAUGURATION PROGRAMME​</a></div> <div><br /></div> <div><em>Text: Jenny Palm</em></div> <em> </em><div><em>Photo: Henrik Sandsjö</em></div> <div><em>​<br /></em></div> <div><em><img src="/SiteCollectionImages/Areas%20of%20Advance/Information%20and%20Communication%20Technology/750x422_Alvis_infrastructure_3_220210.png" alt="Overview computor" style="margin:5px;width:690px;height:386px" /><br /><br /><br /></em></div> <div><br /></div> <div><br /></div> ​Sun, 13 Feb 2022 00:00:00 +0100https://www.chalmers.se/en/departments/bio/news/Pages/Graphene-sensors-can-detect-bacterial-pathogens.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Graphene-sensors-can-detect-bacterial-pathogens.aspxGraphene sensors can detect bacterial pathogens<p><b>​When vulnerable people develop life-threatening infections in hospitals, time is the crucial factor for survival. Researchers are therefore working intensively to find more rapid and safer methods for detecting bacterial pathogens. Graphene is considered to be an especially suitable material for use in biosensors and diagnostic devices. A research group has now shown that the two-dimensional sheet structure of graphene can very rapidly distinguish between types of bacteria. The aim is to make the sensors sensitive enough.​</b></p><p class="chalmersElement-P">​<span>Sepsis, which accounts for one in five deaths globally, is a strong immune response and circulatory collapse that infection can cause. Sepsis is especially serious for people who develop it in a hospital, and 30 per cent die because too much time elapses between determining which microorganism caused it and quickly applying effective treatment. Currently this takes hours, but developments within sensor technology might shorten this time markedly.</span></p> <div> </div> <p class="chalmersElement-P">&quot;We developed a simple prototype sensor comprising pristine graphene. We measured tiny changes in the electrical resistance of the material and could thereby differentiate types of bacteria. The prototype demonstrates how graphene can quickly and easily distinguish two types of bacteria. We are now striving to find the properties that characterise the bacteria that most frequently cause sepsis in the healthcare system. Based on that, we will modify the graphene sensors so that they can become sensitive enough to help in a hospital setting,&quot; explains <a href="/en/staff/Pages/Ivan-Mijakovic.aspx">Ivan Mijakovic</a>, Professor at Chalmers and the Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark.</p> <div> </div> <h2 class="chalmersElement-H2">Prototype with great potential​</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Interest in developing biosensors to detect pathogenic bacteria and viruses is growing rapidly. Among nanomaterials, graphene is gaining attention because of its special surface properties and electrical conductivity, which enable extremely small and sensitive sensors. Graphene is a two-dimensional sheet of carbon atoms arranged into a honeycomb lattice, which provides a large and very sensitive surface area.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;The carbon atoms have a sphere of electrons above and below the ultra-thin carbon layer. By attaching electrodes at opposite ends, we can measure electrical resistance, making the surface sensitive to anything in the vicinity. In our new study, we show – to our own great surprise – that graphene is so sensitive that we can not only detect whether bacteria are present through small shifts in the electrical charge but also differentiate between different types of bacteria to some extent,&quot; says Ivan Mijakovic.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">Bacteria typically range in size from 0.5 to 5 µm, and have distinct shapes – spherical, rod-shaped and spiral. In addition, most bacteria are encapsulated by a cell wall comprising a peptidoglycan made of negatively charged N-acetylglucosamine and N-acetylmuramic acid. This layer is thicker in gram-positive bacteria and thinner in gram-negative bacteria.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;This is mainly a prototype to demonstrate the potential of this type of sensor. Without altering anything at the graphene surface, we can therefore detect whether bacteria are present and distinguish their small differences in surface. Naturally, this type of sensor may be useful on surfaces that must be kept completely bacteria-free, such as implants, but our prototype is more a proof of concept that the technology is possible. Now we can take the concept a step further,&quot; explains Santosh Pandit, researcher at Chalmers and the lead author of the study.</p> <div> </div> <h2 class="chalmersElement-H2">The study is p​art of a major European project</h2> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The prototype study is therefore only the first step in a major European project aiming to develop sensors that can quickly and accurately identify the pathogenic bacteria that currently pose the greatest problem in healthcare.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;The human body has thousands of species of bacteria, most of which are actually harmless or often beneficial. We therefore must be able to differentiate between them and thus we need to determine how to functionalise the graphene surface with antibodies or other receptors that are selective to specific bacteria,&quot; says Santosh Pandit.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">The researchers in this international project are therefore collaborating with hospitals to collect the most relevant and problematic pathogens.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;We then 'shave' the surface of these bacteria to reveal which proteins and biomarkers characterise the pathogens. We can then either create antibodies against the peptides or build small, organic chemical receptors for these surface molecules, as we are doing in collaboration with Nina Kann, Professor in Organic Chemistry at Chalmers,&quot; explains Santosh Pandit.</p> <div> </div> <h2 class="chalmersElement-H2">Hospitals need specific and rapid devices</h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <h2 class="chalmersElement-H2"> </h2> <p class="chalmersElement-P">The researchers hope that they can use these diverse types of strategies to further develop the prototype version of the graphene sensor into far more advanced chips.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P">&quot;Hospitals are looking for a device that is both very specific and very rapid. If this technology succeeds, we would be able to reduce the response time from hours to perhaps minutes so that doctors can respond faster and thus save more lives. The initial target is therefore the bacteria that cause sepsis in hospitals and thus threaten the lives of the most compromised people, but once we have the technology fully developed, we also aim to use it for less urgent applications such as chronic infections or in implants,&quot; concludes Ivan Mijakovic.</p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><strong>Text:</strong> Morten Busch, <a href="https://sciencenews.dk/en">Sciencenews </a></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial"><strong>R</strong></span><span style="background-color:initial"><strong>ead the scientific article </strong><a href="https://doi.org/10.3390/s21238085">Graphene-Based Sensor for Detection of Bacterial Pathogens</a></span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span style="background-color:initial">by the a</span><span style="background-color:initial">uthors Santosh Pandit, Yanyan Chen, Shadi Rahimi, Vrss Mokkapati, Alessandra Merlo and Prof. Ivan Mijakovic at the Department of Biology and Biological Engineering, Chalmers, and Mengyue Li and Prof. August Yurgens at the Department of Microtechnology and Nanoscience (MC2), Chalmers.</span><br /></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p>Thu, 03 Feb 2022 09:00:00 +0100https://www.chalmers.se/en/departments/physics/news/Pages/A-pair-of-gold-flakes-creates-a-self-assembled-resonator.aspxhttps://www.chalmers.se/en/departments/physics/news/Pages/A-pair-of-gold-flakes-creates-a-self-assembled-resonator.aspxA pair of gold flakes creates a self-assembled resonator<p><b>​F​or exploring materials right down to the nano-level, researchers often need to construct a complex structure to house the materials – a time-consuming and complicated process. But imagine if there was a way the structure could simply build itself? That is exactly what researchers from Chalmers University of Technology, Sweden, now present in an article in the journal Nature. Their work opens up new research opportunities.</b></p>​<span style="background-color:initial">Investigating nano materials can make it possible to study completely new properties and interactions. To be able to do this, different types of ‘resonators’ are often needed – meaning, in this context, an object inside which light bounces around, much like the way sound bounces inside the body of a guitar. Now, researchers working at the Department of Physics at Chalmers University of Technology, have discovered how a previously known form of resonator, made of two parallel mirrors, can be created and controlled in a much simpler way than previously realised.</span><div><br /></div> <div><a href="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Timur%20Shegai-webb_NY.jpg"></a><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Timur%20Shegai-webb_NY.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:135px;height:174px" /><span style="background-color:initial">“</span><span style="background-color:initial">Creating a high quality, stable resonator, such as we have done, is usually complicated and requires many </span><span style="background-color:initial">hours in the laboratory. But here, we saw it happen of its own accord, reacting to naturally occurring forces, and requiring no external energy input. You could practically make our resonator in your own kitchen – it is created at room temperature, with ordinary water, and a little salt,” explains research leader </span><strong style="background-color:initial">Timur Shegai</strong><span style="background-color:initial">, </span><span style="background-color:initial">Associate Professor at the Department of Physics, who was himself surprised by the nature of the discovery in the lab.</span></div> <div><br /></div> <div><div style="font-size:20px">A self-assembling and growing system </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">What he and his colleagues observed is that when two tiny gold flakes – 5000 nanometres in diameter and only 30 nanometres thick – meet in a salty aqueous solution, an interaction arises that causes them to form a pair. The two gold flakes are both positively charged as the aqueous solution covers them with double layers of ions. This causes a repelling electrostatic force, but, due to the simultaneous influence of something called the ‘Casimir effect’, an attracting force is also created, and a stable balance arises, leaving a distance between the flakes of around 150 nanometres. The two nanoflakes orient themsel</span><span style="background-color:initial">ves facing each other, with a cavity formed between them, and they remain stably in this arrangement, for weeks of observations. The cavity then functions as an optical resonator, a device which provides many opportunities to explore various physical phenomena.</span></div> <div><br /></div> <div>Once the gold flakes have formed a pair, they stay in place, and the researchers also observed that, if not actively separated, more and more pieces of gold seek out each other and form a larger grouping. This means that the structure, purely through naturally occurring forces, can grow and create more interesting opportunities for researchers.</div> <div>The structure can be further manipulated by adding more salt to the aqueous solution, changing the temperature, or by illuminating it with lasers, which can lead to some fascinating observations.</div> <div><br /></div> <div>“What is so interesting in this case is that there are colours which appear inside the resonator. What we’re seeing is basically self-assembled colour. This combines a lot of interesting and fundamental physics, but at the same time it’s very easy to make. Sometimes physics can be so surprising and so beautiful,” says Timur Shegai. </div> <div><br /></div> <div style="font-size:20px">Studying the meeting point between light and matter</div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">The structure can then be used as a chamber for investigating materials and their behaviour. By placing a two-dimensional material, which is only a few atomic layers thick, in the cavity or by making adjustments to the cavity, ‘polaritons’ can also be created – hybrid particles that make it possible to study the meeting point between light and matter.</span></div> <div><span style="background-color:initial"><img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/500_Battulga%20Munkhbat-200924.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:135px;height:179px" /></span></div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial">“</span><span style="background-color:initial">Our structure can now be added to the overall toolbox of self-assembly methods. Thanks to its versatility, this could be used to study both basic and applied physics,” says </span><strong style="background-color:initial">Battulga Munkhbat</strong><span style="background-color:initial">, Post Doc at the Department of Physics and first author of the article.</span><br /></div> <div><br /></div> <div>According to the study's authors, there are no obstacles to the structure being scaled up to use larger gold flakes that can be seen with the naked eye, which could open up even more possibilities.</div> <div><br /></div> <div>“In the future, I could see this platform being used to study polaritons in a simpler way than is possible today. Another area could be to take advantage of the colours created between the gold flakes, for example in pixels, to create different kinds of RGB values, where each colour could be checked for different combinations. There could also be applications in biosensors, optomechanics, or nanorobotics,” says Timur Shegai.</div> <div> </div> <div style="font-size:20px">More about the research</div> <span style="font-size:20px"> </span><div><span style="background-color:initial"><br /></span></div> <div><ul><li><span style="background-color:initial">The article </span><a href="https://doi.org/10.1038/s41586-021-03826-3" target="_blank">Tunable self-assembled Casimir microcavities and polaritons​</a><span style="background-color:initial"> has been published in Nature. The researchers behind the new results are Battulga Munkhbat, Adriana Canales, Betül Küçüköz, Denis G. Baranov and Timur O. Shegai. </span> </li> <li>The researchers are active at the Department of Physics at Chalmers University of Technology, Sweden, The Center for Photonics and 2D Materials in Moscow, and the Institute of Physics and Technology, Dolgoprudny, Russia. </li> <li>The research was funded by the Swedish Research Council, the Knut and Alice Wallenberg Foundation and the Chalmers Excellence Initiative Nano. </li></ul></div> <div> </div> <div style="font-size:20px"><img src="/SiteCollectionImages/Institutioner/F/350x305/Karusellbild_Attraherade%20guldspeglar_350x305px_ENG.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:50px 0px" /><span style="background-color:initial">How it works: </span></div> <div style="font-size:20px"><span style="background-color:initial">A self-assembled platform </span></div> <div><span style="background-color:initial">When two tiny gold flakes meet in a salt</span><span style="background-color:initial">y aqueous solution, an interaction arises that causes them to form a pair. They are both positively charged as the aqueous solution covers them with double layers of ions (red and blue). This causes a repelling electrostatic force, but, due to the simultaneous influence of something called the ‘Casimir effect’, an attracting force is also created, and a stable balance arises. The two nanoflakes orient themselves facing each other, with a cavity between them formed, and they remain stable in this arrangement, for weeks of observations. This cavity then functions as an optical resonator, a device which offers a tunable system for studying combinations of light and matter known as polaritons.</span><br /></div> <div><br /></div> <div> </div> <div><span style="font-size:20px">For more information, contact:</span> </div> <div><span style="background-color:initial"><br /></span></div> <div><span style="background-color:initial"><a href="/en/Staff/Pages/Timur-Shegai.aspx">Timur Shegai</a>, Associate Professor, Department of Physics, Chalmers University of Technology, Sweden, +46 31 772 31 23, </span><a href="mailto:timurs@chalmers.se"><span style="background-color:initial">timurs@chalm</span><span style="background-color:initial">ers.se</span></a></div> <div><br /></div> <div><strong>Battulga Munkhbat</strong>, Post Doc, Department of Physics, Chalmers University of Technology, Sweden, +46 73 995 34 79, <a href="mailto:battulga@chalmers.se">battulga@chalmers.se</a></div></div> <div><br /></div> <div>Text: Lisa Gahnertz and Mia Halleröd Palmgren<br />Photo: Anna-Lena Lundqvist (portrait pictures) <span style="background-color:initial">| Illustration: </span><span style="background-color:initial">Yen Strandqvist and </span><span style="background-color:initial">Denis Baranov</span><span style="background-color:initial">​</span></div> <br />​Thu, 02 Dec 2021 07:00:00 +0100https://www.chalmers.se/en/departments/ims/news/Pages/Janus-graphene-opens-doors-to-sustainable-sodium-ion-batteries.aspxhttps://www.chalmers.se/en/departments/ims/news/Pages/Janus-graphene-opens-doors-to-sustainable-sodium-ion-batteries.aspxJanus graphene opens doors to sustainable batteries<p><b>​In the search for sustainable energy storage, researchers at Chalmers University of Technology present a new concept to fabricate high-performance electrode materials for sodium batteries. It is based on a novel type of graphene to store one of the world's most common and cheap metal ions – sodium. The results show that the capacity can match today’s lithium-ion batteries.</b></p><div>​Even though lithium ions work well for energy storage, lithium is an expensive metal with concerns regarding its long-term supply and environmental issues. <br /></div> <div> </div> <div><br /></div> <div> </div> <div>Sodium, on the other hand, is an abundant low-cost metal, and a main ingredient in seawater (and in kitchen salt). This makes sodium-ion batteries an interesting and sustainable alternative for reducing our need for critical raw materials. However, one major challenge is to increase the capacity.</div> <div> </div> <div><br /></div> <div> </div> <div>At the current level of performance, sodium-ion batteries cannot compete with lithium-ion cells. One limiting factor is the graphite, which is composed of stacked layers of graphene, and used as the anode in today’s lithium-ion batteries. <br /></div> <div> </div> <div><br /></div> <div> </div> <div>The ions intercalate in the graphite, which means that they can move in and out of the graphene layers and be stored for energy usage. Sodium ions are larger than lithium ions and interact differently. Therefore, they cannot be efficiently stored in the graphite structure. But the Chalmers researchers have come up with a novel way to solve this. <br /></div> <div> </div> <div><br /></div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/IMS/Material%20och%20tillverkning/Jinhua_Sun.jpg" alt="Jinhua Sun" class="chalmersPosition-FloatLeft" style="margin:0px 25px;width:125px;height:145px" />“We have added a molecule spacer on one side of the graphene layer. When the layers are stacked together, the molecule creates larger space between graphene sheets and provides an interaction point, which leads to a significantly higher capacity,” says researcher Jinhua Sun at the Department of Industrial and Materials Science at Chalmers and first author of the scientific paper, published in Science Advances. </div> <div><br /></div> <div> </div> <div><h2 class="chalmersElement-H2">Ten times the energy capacity of standard graphite</h2></div> <div> </div> <div>Typically, the capacity of sodium intercalation in standard graphite is about 35 milliampere hours per gram (mA h g-1). This is less than one tenth of the capacity for lithium-ion intercalation in graphite. With the novel graphene the specific capacity for sodium ions is 332 milliampere hours per gram – approaching the value for lithium in graphite. The results also showed full reversibility and high cycling stability.</div> <div> </div> <div><br /></div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/IMS/Material%20och%20tillverkning/Aleksandar_Matic.jpg" alt="Aleksandar Matic" class="chalmersPosition-FloatRight" style="margin:0px 30px;width:125px;height:146px" />“It was really exciting when we observed the sodium-ion intercalation with such high capacity. The research is still at an early stage, but the results are very promising. This shows that it’s possible to design graphene layers in an ordered structure that suits sodium-ions, making it comparable to graphite,” says Professor Aleksandar Matic at the Department of Physics at Chalmers.</div> <div><br /></div> <div> </div> <div><br /></div> <div> </div> <div><h2 class="chalmersElement-H2">“Divine” Janus graphene opens doors to sustainable batteries</h2></div> <div> </div> <div>The study was initiated by Vincenzo Palermo in his previous role as Vice-Director of the Graphene Flagship, a European Commission-funded project coordinated by Chalmers University of Technology. <br /></div> <div> </div> <div> The novel graphene has asymmetric chemical functionalisation on opposite faces and is therefore often called Janus graphene, after the two-faced ancient Roman God Janus – the God of new beginnings, associated with doors and gates, and the first steps of a journey. In this case the Janus graphene correlates well with the roman mythology, potentially opening doors to high-capacity sodium-ion batteries. <br /></div> <div> </div> <div><br /></div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/IMS/Material%20och%20tillverkning/VincenzoPalermo.jpg" alt="Vincenzo Palermo" class="chalmersPosition-FloatLeft" style="margin:5px 20px;width:140px;height:165px" /></div> <div><br /></div> <div>“Our Janus material is still far from industrial applications, but the new results show that we can engineer the ultrathin graphene sheets – and the tiny space in between them – for high-capacity energy storage. We are very happy to present a concept with cost-efficient, abundant and sustainable metals,” says Vincenzo Palermo, Affiliated Professor at the Department of Industrial and Materials Science at Chalmers.</div> <div><br /></div> <div><br /></div> <div><br /></div> <div><span><em>Text: Marcus Folino and Mia Halleröd Palmgren<br /></em></span></div> <div><span><em></em><span style="display:inline-block"></span></span><span><em>Image of Jinhua Sun: Marcus Folino<span style="display:inline-block"></span></em></span><em><span style="display:inline-block"></span><br /></em><div><em>Image of Aleksandar Matic: Anna-Lena Lundqvist<br /></em></div> <div><span><em>Image of Vincenzo Palermo: Graphene Flagship<span style="display:inline-block"></span></em></span><br /><em><span style="display:inline-block"></span></em></div> <br /></div> <div> </div> <div><br /></div> <div> </div> <h2 class="chalmersElement-H2">More on the material: Janus graphene with a unique structure</h2> <div>The material used in the study has a unique artificial nanostructure. The upper face of each graphene sheet has a molecule that acts as both spacer and active interaction site for the sodium ions. Each molecule in between two stacked graphene sheets is connected by a covalent bond to the lower graphene sheet and interacts through electrostatic interactions with the upper graphene sheet. The graphene layers also have uniform pore size, controllable functionalisation density, and few edges. </div> <div> </div> <h2 class="chalmersElement-H2">More on the research: </h2> <div>The scientific article <a href="https://doi.org/10.1126/sciadv.abf0812" title="Link to the scientific article">“Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications”</a> was published in Science Advances and is written by Jinhua Sun, Matthew Sadd, Philip Edenborg, Henrik Grönbeck, Peter H. Thiesen, Zhenyuan Xia, Vanesa Quintano, Ren Qiu, Aleksandar Matic and Vincenzo Palermo. </div> <div><br /></div> <div>The researchers are active at the Department of Industrial and Materials Science, the Department of Physics and Competence Centre for Catalysis at Chalmers University of Technology, Sweden, Accurion GmbH, Germany and Institute of Organic Synthesis and Photoreactivity (ISOF) at the National Research Council of Italy.</div> <div><br /></div> <div>The research project has received funding from the European Union’s Horizon 2020 research and innovation program under GrapheneCore3 881603–Graphene Flagship, FLAG-ERA project PROSPECT, the Chalmers Foundation and the Swedish Research Council. The calculations were performed at C3SE (Gothenburg, Sweden) through an SNIC grant. This work was performed, in part, at Myfab Chalmers and Chalmers materials analysis laboratory. <br /></div> <h3 class="chalmersElement-H3">For more information, please contact: </h3> <div><a href="/en/staff/Pages/jinhua.aspx">Jinhua Sun</a>, Researcher, Department of Industrial and Materials Science, Chalmers University of Technology, +46 76 960 99 56, <a href="mailto:%20jinhua@chalmers.se">jinhua@chalmers.se<br /></a></div> <div><a href="mailto:%20jinhua@chalmers.se"><br /></a></div> <div><a href="/en/staff/Pages/Aleksandar-Matic.aspx">Aleksandar Matic</a>, Professor, Department of Physics, Chalmers University of Technology, +46 31 772 51 76, <a href="mailto:%20matic@chalmers.se">matic@chalmers.se</a></div> <div><br /> </div> <div><a href="/en/staff/Pages/Vincenzo-Palermo.aspx">Vincenzo Palermo</a>, Affiliated Professor, Department of Industrial and Materials Science, Chalmers University of Technology, Sweden; Director, Institute for Organic Synthesis and Photoreactivity, CNR, Bologna, Italy, +39 051 639 97 73 or +39 051 639 98 53, <a href="mailto:%20palermo@chalmers.se">palermo@chalmers.se</a></div> <div> </div>Wed, 25 Aug 2021 07:00:00 +0200https://www.chalmers.se/en/departments/bio/news/Pages/Graphene-binds-drugs-which-kill-bacteria-on-implants.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/Graphene-binds-drugs-which-kill-bacteria-on-implants.aspxGraphene binds drugs which kill bacteria on implants<p><b>​Bacterial infections relating to medical implants place a huge burden on healthcare and cause great suffering to patients worldwide. Now, researchers at Chalmers, have developed a new method to prevent such infections, by covering a graphene-based material with bactericidal molecules. </b></p><p class="chalmersElement-P">​​<img src="/SiteCollectionImages/Institutioner/Bio/SysBio/Santosh_Pandit_340x400px.jpg" class="chalmersPosition-FloatRight" alt="Santosh Pandit" style="margin:5px 10px;width:240px;height:282px" /><span>“Through our research, we have succeeded in binding water-insoluble antibacterial molecules to the graphene, and having the molecules release in a controlled, continuous manner from the material. This is an essential requirement for the method to work. The way in which we bind the active molecules to the graphene is also very simple, and could be easily integrated into industrial processes,” explains <strong>Santosh Pandit</strong>, researcher at the Department of Biology and Biological Engineering at Chalmers, and first author of the <a href="https://doi.org/10.1038/s41598-021-89452-5">study which was recently published in Scientific Reports​</a>.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">Certain bacteria can form impenetrable surface layers, or ‘biofilms’, on surgical implants, such as dental and other orthopaedic implants, and represent a major problem for healthcare globally. Biofilms are more resistant than other bacteria, and the infections are therefore often difficult to treat, leading to great suffering for patients, </span><span style="background-color:initial">and in the worst cases, necessitating removal or replacement of the implants. In addition to the effects on patients, this entails large costs for healthcare providers.</span></p> <h2 class="chalmersElement-H2"><span>Graphene is suitable as an attachment material​<br /></span></h2> <p class="chalmersElement-P"><span style="background-color:initial">There are a variety of water-insoluble, or h</span><span style="background-color:initial">ydrophobic, drugs and molecules that can be used for their antibacterial properties, but in order for them to be used in the body, they must be attached to a material, which can be difficult and labour intensive to manufacture.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">“Graphene offers great potential here for interaction with hydrophobic molecules or drugs, and when we created our new material, we made use of these properties. The process of binding the antibacterial molecules takes place with the help of ultrasound,” says Santosh Pandit.</span></p> <p class="chalmersElement-P"><span style="background-color:initial">In the study, the graphene material was covered with usnic acid, which is extracted from lichens, for example fruticose lichen. Previous research has shown that usnic acid has good bactericidal properties. It works by preventing bacteria from forming nucleic acids, especially inhibiting of RNA synthesis, and thus blocking protein production in the cell. Usnic acid was tested for its resistance to the pathogenic bacteria <em>Staphylococcus aureus</em> and <em>Staphylococcus epidermidis</em>, two common culprits for biofilm formation on medical implants.  </span></p> <h2 class="chalmersElement-H2"><span>Simple method paves way for future drugs</span></h2> <p class="chalmersElement-P"><span style="background-color:initial">The researchers’ new material displayed a number of promising properties. In addition to successful results for integrating the usnic acid into the surface of the graphene material, they also observed that the usnic acid molecules were released in a controlled and continuous manner, thus preventing the formation of biofilms on the surface. </span></p> <p class="chalmersElement-P"><span style="background-color:initial">“Even more importantly, our results show that the method for binding the hydrophobic molecules to graphene is simple. It paves the way for more effective antibacterial protection of biomedical products in the future. We are now planning trials where we will explore binding other hydrophobic molecules and drugs with even greater potential to treat or prevent various clinical infections,” says Santosh Pandit.</span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><br /></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><strong>More about the study</strong></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"></p> <ul><li>Read the full scientific article <a href="https://doi.org/10.1038/s41598-021-89452-5">Sustained release of usnic acid from graphene coatings ensures long term antibiotic film protection </a></li> <li>The research project is run by <a href="/en/departments/bio/research/systems-biology/mijakovic-lab/Pages/default.aspx">Professor Ivan Mijakovic's group</a> at the Department of Biology and Biotechnology at Chalmers University of Technology and is funded by Formas and the Swedish Research Council.</li></ul> <p></p> <p class="chalmersElement-P"> </p> <div> </div> <div><strong>Text: </strong>Susanne Nilsson Lindh &amp; Joshua Worth<br /><strong>Illustration:</strong> Yen Strandqvist/Chalmers<br /><strong>Photo (Santosh Pandit):</strong> Johan Bodell/Chalmers</div> <div><br /></div> <div><div><strong>Read more: </strong></div> <div><ul><li><a href="/en/departments/bio/news/Pages/Graphite-nanoplatelets-on-medical-devices-prevent-infections-.aspx">Graphite nanoplatelets prevent infections</a></li> <li><a href="/en/departments/bio/news/Pages/Spikes-of-graphene-can-kill-bacteria-on-implants.aspx">Spikes of graphene can kill bacteria on implants</a></li></ul></div></div> <div> </div> <div><br /></div> <div> </div>Mon, 09 Aug 2021 07:00:00 +0200https://www.chalmers.se/en/departments/mc2/news/Pages/new-director-of-2d-tech-and-graphene-centre.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/new-director-of-2d-tech-and-graphene-centre.aspxNew director of 2d-tech and graphene centre<p><b>​Entrepreneurship, pro-activity, and interaction with the industry – three crucial ingredients when making Chalmers the Swedish epicenter of atomically thin materials and quantum materials. At least if you ask Samuel Lara-Avila who now takes the lead as new director of 2D-TECH and Graphene centre at Chalmers University. ​​​</b></p><span style="background-color:initial"><img src="/SiteCollectionImages/Centrum/2D-TECH/Samuel%20Lara%20Avila_1.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;width:250px;height:218px" />Samuel Lara-Avila, associate professor of physics, was appointed new director of 2D-TECH and Graphene Centre at the 2D-TECH assembly on 3 March. And with more than ten years’ experience working on graphene and an academic history at Chalmers that took off already in 2006, it’s safe to say he’s in familiar territories. </span><div><br /><span style="background-color:initial"></span><div>“I know for a fact that graphene can bring something to the table and solve real-world problems that other materials cannot. I see GCC and 2D-TECH as two tools to consolidate Chalmers as the Swedish epicenter of atomically thin materials and quantum materials”, says Samuel. </div> <div><br /></div> <div><strong>What made you want to take on the role as director? </strong></div> <div>“The conditions right now are very favorable: there is a large enthusiastic and highly competent community taking part in GCC and 2D-TECH. It has been a great achievement to kick-start a Vinnova competence centre and I’m here to do my best in trying to push it beyond. With the human resources and the infrastructure at Chalmers and partners, I believe this to be a feasible endeavour”.  </div> <div><br /></div> <div><strong>What challenges do you see and what are your thoughts on how to overcome them? </strong></div> <div>“One core challenge that needs to be addressed is that many of the graphene technologies worldwide are at risk of getting stuck in the technological “valley of death”. But when I look at the list of PIs and participants of 2D-TECH, I see many ingredients are in place in order to tackle that challenge. For the next couple of years, I see It will be crucial to ensure we are not a passive community. Accountability for deliverables should be in place, and the interactions between companies and PIs should be closely followed. We should not forget the entrepreneurial spirit, of which I see more and more at Chalmers, especially among younger PIs”. </div> <div><br /></div> <div>Samuel succeeds Ermin Malic who has been director of Graphene Centre since 2017 and of 2D-TECH since its birth in February 2020. And to Ermin stepping down doesn’t mean slowing down. New challenges await in the same country where he once got his PhD 13 years ago.  </div> <div><br /></div> <div><strong><img src="/SiteCollectionImages/Centrum/2D-TECH/ErminMalic_190415_05.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px;width:200px;height:174px" />So, what will you be doing now? </strong></div> <div>“I’m building up a new research group &quot;Ultrafast Quantum Dynamics&quot; at the Philipps-Universität Marburg in Germany. The focus will be on microscopic understanding of moire exciton physics in atomically thin semiconductors”, says Ermin. </div> <div><br /></div> <div><strong>If you were to put the last few years into words, what would you say? </strong></div> <div>“Building up the 2D-TECH center at Chalmers was a very challenging, intense and rewarding time and it broadened my horizon in many different ways”. </div> <div><br /></div> <div><strong>Text:</strong> Lovisa Håkansson</div> </div>Wed, 03 Mar 2021 00:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/Recipients-of-the-annual-PhD-award.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Recipients-of-the-annual-PhD-award.aspxRecipients of the annual PhD award<p><b>​Molecular doping of epigraphene and excitons in two-dimensional materials – those are the topics of the day as Samuel Brem and Hans He receive the GCC/2D-tech PhD Award for best doctoral thesis on graphene and related materials at Chalmers in 2020. </b></p>​<span style="background-color:initial">The two award winners received their prizes – a diploma and 15 000 SEK - at a web seminar on 1 March. </span><div><br />&quot;I’m honored that Graphene Center has recognized my PhD work, and I am grateful to be the recipient of the 2D-Tech award. I am very happy that my research on applications of epigraphene has garnered some interest&quot;, says Hans He, former PhD student at the quantum device laboratory at MC2. <br /></div> <div>And his co-award-winner Samuel Brem, who carried out his PhD work at Condensed Matter and Materials Theory at the Physics department, joins in: </div> <div>&quot;This award means a lot to me and I am very proud of it. It motivates me to continue my path in the academic world and to keep working hard on myself.&quot;<br /><br /></div> <div><img src="/SiteCollectionImages/Centrum/2D-TECH/Samuel%20Brem%20300x400.jpg" class="chalmersPosition-FloatLeft" alt="" style="margin:5px" />Samuel’s  thesis titled Microscopic theory of exciton dynamics in two-dimensional materials focuses on the dynamics of excitons in transition metal dichalcogenides (TMD’s) and their heterostructures – a topic that is believed to further new physics and help open the route to new technological applications such as sensors or light emitters. His PhD work includes five peer-reviewed scientific articles with Samuel being the first author, and a scientific production of 31 articles, which so far have been cited 524 times – arguably the highest H-index in the history of newly graduated PhD:s from Chalmers. <br /><br /></div> <div>&quot;Samuel has developed a novel theoretical approach to describe moire exciton phenomena in technologically promising van der Waals heterostructures. He has been involved in over 30 scientific publications, including a cover article on Nature Materials&quot;, says Ermin Malic, director of the Graphene Centre and 2D-TECH. </div> <div><br /></div> <div><img src="/SiteCollectionImages/Centrum/2D-TECH/hans_he_300x400.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />In his thesis, Molecular doping of epitaxial graphene for device application, Hans He uses a doping method to solve a common challenge when working with graphene and 2D materials: to create practical devices that are stable in ambient conditions and that can last for many years. By comparing with conventional quantum resistance standards, it has been confirmed that doped epigraphene meets the stringent criteria for use in precision quantum resistance metrology. The product is now commercialized and is has been used by various National Metrology Institutes across the world. In his PhD work, Hans also developed sensitive Hall sensors for magnetic field detection and contributed to the fabrication of a proof-of-concept terahertz detector, which potentially could revolutionize sensors used in next-generation space telescopes.<br /><br /></div> <div>&quot;Hans has developed a novel molecular doping technique for 2D materials, which has resulted in a patent and a high-impact publication in Nature Communications&quot;, says Ermin. <br /></div> <div>The director of the Graphene Centre is also keen to emphasize what the two award winning theses mean to the university at large. <br /></div> <div>&quot;Chalmers is often just seen as the coordinator of the big Graphene Flagship, but Samuel and Hans demonstrate how strong the actual 2D material research is at Chalmers.&quot;<br /><br /></div> <div>After receiving their prizes Hans and Samuel presented their award-winning theses. And besides enjoying the honor of winning the awards, it turns out also the prize money will come in handy. <br /></div> <div>&quot;As for the money, I'll probably save it until this pandemic passes and go travel somewhere with my wife&quot;, says Hans. <br /></div> <div>&quot;I will buy myself a good tablet to keep all my notes in the cloud and the rest of it will probably contribute to the budget needed to finally get my driving license&quot;, concludes Samuel. <br /><br /></div> <div>Samuel is currently doing his PostDoc at the University of Marburg in Germany and Hans is working for RISE where he continues doing active research on graphene-based primary metrology. </div> <div><br /></div> <div><strong>Text</strong>: Lovisa Håkansson</div> Mon, 01 Mar 2021 16:00:00 +0100https://www.chalmers.se/en/departments/bio/news/Pages/New-nano-weapon-against-resistant-bacteria.aspxhttps://www.chalmers.se/en/departments/bio/news/Pages/New-nano-weapon-against-resistant-bacteria.aspxNew nano-weapon against resistant bacteria<p><b>​Nanoparticles coated with graphene flakes and antibiotics. This antibacterial nano-weapon is the goal of a new Nordic research project co-ordinated by Professor Ivan Mijakovic at Chalmers. The project aims to deliver the next generation of treatments against antibiotic-resistant bacteria. </b></p><p class="chalmersElement-P">​<span><span>Bacterial infections that cannot be treated due to antibiotic resistance is a rising and acute global problem. More than 700,000 people worldwide die each year due to infections caused by antibiotic-resistant bacteria. </span></span></p> <p class="chalmersElement-P"><span><span>In a worst-case scenario presented in a UN report in 2018, we can, if no measures are taken, reach a situation by 2050 where the death toll due to these infections rises to 10 million per year. As it is a time-consuming process to develop new antibiotics, and today's antibiotics are rapidly becoming ineffective, innovations are needed quickly.</span></span></p> <div> </div> <div><h2 class="chalmersElement-H2">Treatment of antibiotic resistant <em>Staphylococcus aureus</em>​</h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><span style="background-color:initial"></span></span></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span><img src="/SiteCollectionImages/Institutioner/Bio/SysBio/IvanMijakovic_180327_340x400.jpg" alt="Ivan Mijakovic" class="chalmersPosition-FloatRight" style="width:240px;height:282px" />“This is the right time for scientists to mobilise and try to solve this problem, which will be a real threat to mankind in a decade or two. Traditionally we all tend to think that the solution is to find new antibiotics, but we could also try to find a disruptive new technology that is not based on antibiotic discovery,” says<strong> Ivan Mijakovic</strong>, Professor of Systems and Synthetic Biology at the Department of Biology and Biological Engineering at Chalmers, w​ho is the co-ordinator of the new Nordic project.  </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>The research </span><span>pro</span><span>ject will run </span><span>for three years, and in January 2021 it was awarded 15 MSEK by </span><a href="https://www.nordforsk.org/">Nordforsk</a><span>. The researchers will specifically be focusing on treatment of methicillin-resistant </span><em>Staphylococcus aureus</em><span> (MRSA), which, among other things, causes chronic skin infections and sepsis. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>MRSA can also infect tissues and organs inside the body, such as heart and lungs, and they can also grow on different kinds of implants used in health care. MRSA-infections are easily spread in hospitals and cause great suffering in affected patients. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"><span>Combine three techniques in a new way</span></h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>The idea of the project is to combine three already established techniques in a completely new way to create a new system for drug delivery. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>Metal nanoparticles, graphene flakes and antibiotics all have antibacterial properties. Combined they would be even more powerful, as these particles most likely can penetrate the bacterial biofilm formed at the area of infection and release the antibiotic there. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>Biofilm is the thick layer of bacteria and the mucus they produce when they attach to a surface and start to multiply, and it creates a protective barrier for the bacteria. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"><span>Graphene flakes cut and kill bacteria</span></h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><p class="chalmersElement-P"><span><img src="/SiteCollectionImages/Institutioner/Bio/SysBio/A%20Yurgens%201_340x400.jpg" alt="August Yurgens" class="chalmersPosition-FloatRight" style="width:240px;height:282px" />Ch</span><span>almers is one of the world leading universities in the research field of graphene. The idea of using graphene for medical treatments is relatively young but has great potential.  <strong>August Yurgens</strong> is Professor at the Department of Microtechnology and Nanoscience at Chalmers. His research group is developing the process where the nanoparticles are coated axially with graphene flakes. </span></p></div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>“Sharp edges of graphene flakes placed vertically on a surface cut through the membrane of cells of a certain size, which <a href="/en/departments/bio/news/Pages/Spikes-of-graphene-can-kill-bacteria-on-implants.aspx">research from Ivan and other scientists at Chalmers already has shown</a>.  Small bacterial cells are killed when they are cut by the sharp graphene edges, but human cells, which are bigger, are not harmed. The graphene flakes will be coated with the drug for transporting it deeper into the infected tissue. The antibiotics will then be released in the infected tissue gradually, &quot;says August Yurgens and continues: </span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>&quot;Since some chemicals used as drugs are non-soluble in water, the main constituent of our bodies, we must find other ways of transporting the drugs within the body. The graphene coated nanoparticles could be a solution to this problem.” </span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>His research group has made trials where they tried to grow graphene on silicon nanoparticles </span><span>−</span><span> </span><span> with promising results. </span></p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>“Of course, we are facing some challenges since the nanoparticles are spherical and for most efficient result, they need to be covered evenly with graphene flakes. We have several ideas on how we can solve that,” he says. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2"><span>Green nanoparticles and novel drugs​</span></h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P"><span>The other Nordic partners are <a href="https://www.biosustain.dtu.dk/">DTU</a> in Denmark, and the research institute <a href="https://www.sintef.no/en/">SINTEF​</a> in Norway.  DTU will deliver the so-called green nanoparticles, which produced from plant or bacterial extracts, for an environmentally friendly production. </span></p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"> </p> <div> </div> <p class="chalmersElement-P"><span>Researchers at SINTEF are developing new drugs with antibacterial properties, which will be loaded on the graphene coated nanoparticles. </span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <h2 class="chalmersElement-H2">&quot;Mechanism that effectively can be used against MRSA&quot;</h2> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <p class="chalmersElement-P">I<span>van Mijakovic’s research group will test the new nano-weapons for killing of bacterial biofilms. Ivan Mijakovic says that even if their study is successful, further obstacles must be overcome before this system can be used in patients. </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span>Graphene-based nanotechnology is not yet allowed in medical treatments within the EU. But, since this area has such potential, there are ongoing clinical trials to ensure safe treatments. </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span> “It usually takes decades to develop treatments like this. But we are at the forefront of developing a mechanism that we think can be effectively used against MRSA and other dangerous pathogens, and it is important that we test it and act now,” says Ivan Mijakovic.  </span></p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"> </p> <p class="chalmersElement-P"><span><strong>Text: </strong>Susanne Nilsson Lindh</span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><br /></span></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><strong>Read more: </strong></span></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><ul><li><a href="/en/departments/bio/news/Pages/Spikes-of-graphene-can-kill-bacteria-on-implants.aspx">Spikes of graphene can kill bacteria on implants</a></li> <li><a href="/sv/institutioner/bio/nyheter/Sidor/Ny-teori-om-snabb-spridning-av-antibiotikaresistens.aspx" style="font-weight:300">​</a><a href="/en/departments/bio/news/Pages/Graphite-nanoplatelets-on-medical-devices-prevent-infections-.aspx">Graphite nanoplatelets prevent infections​</a></li></ul></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><a href="/en/departments/bio/news/Pages/Graphite-nanoplatelets-on-medical-devices-prevent-infections-.aspx"></a></div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div><span style="font-size:14px"><br /></span></div></div>Tue, 02 Feb 2021 10:00:00 +0100https://www.chalmers.se/en/departments/mc2/news/Pages/Cooling-electronics-efficiently-with-graphene-enhanced-heat-pipes.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Cooling-electronics-efficiently-with-graphene-enhanced-heat-pipes.aspxCooling electronics efficiently with graphene-enhanced heat pipes<p><b>​Researchers at Chalmers University of Technology, Sweden, have found that graphene-based heat pipes can help solve the problems of cooling electronics and power systems used in avionics, data centres, and other power electronics. &quot;Heat pipes are one of the most efficient tools for this because of their high efficiency and unique ability to transfer heat over a large distance,&quot; says Johan Liu, Professor of Electronics Production, at the Department of Microtechnology and Nanoscience – MC2, at Chalmers. The results, which also involved researchers in China and Italy, were recently published in the scientific Open Access journal Nano Select.</b></p><div><img src="/SiteCollectionImages/Institutioner/MC2/News/jliu_2016_350x305.jpg" alt="Picture of Johan Liu." class="chalmersPosition-FloatRight" style="margin:5px" />Electronics and data centres need to be efficiently cooled in order to work properly. Graphene enhanced heat pipes can solve these issues. Currently, heat pipes are usually made of copper, aluminium or their alloys. Due to the relatively high density and limited heat transmission capacity of these materials, heat pipes are facing severe challenges in future power devices and data centres.</div> <div><br /></div> <div><em>(Picture to the right: Prof. Johan Liu)</em><br /> </div> <div> </div> <div>Large data centres that deliver, for example, digital banking services and video streaming websites are extremely energy-intensive, and an environmental culprit that emits more than the aviation industry. Reducing the climate footprint of this industry is therefore vital. The researchers’ discoveries here could make a significant energy efficiency contribution to these data centres, and in other applications too.</div> <div> </div> <div>The graphene-enhanced heat pipe exhibits a specific thermal transfer coefficient which is about 3.5 times better than that of copper-based heat pipe. The new findings pave the way for using graphene enhanced heat pipes in lightweight and large capacity cooling applications, as required in many applications such as avionics, automotive electronics, laptop computers, handsets, data centres as well as space electronics.</div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/ya_liu_350x305.jpg" alt="Picture of Ya Liu." class="chalmersPosition-FloatRight" style="margin:5px" />The graphene-enhanced heat pipes are made of high thermal conductivity graphene assembled films assisted with carbon fibre wicker enhanced inner surfaces. The researchers tested pipes of 6mm outer diameter and 150mm length. They show great advantages and potential in cooling of a variety of electronics and power systems, especially where low weight and high corrosion resistance are required. </div> <div>&quot;The cold part of the graphene enhance heat pipe can be substituted by a heat sink or a fan to make the cooling even more efficient when applied in a real case,&quot; explains Ya Liu <em>(picture to the right)</em>, PhD Student at the Electronics Materials and Systems Laboratory at Chalmers. </div> <div> </div> <div>The new study is based on a collaboration between researchers from Chalmers University of Technology, Fudan University, Shanghai University, China, SHT Smart High-Tech AB, Sweden and Marche Polytechnic University, Italy. <br /></div> <h3 class="chalmersElement-H3">For further information &gt;&gt;&gt;</h3> <div>Ya Liu, PhD Student, Electronics Materials and Systems Laboratory (EMSL), Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden, yaliu@chalmers.se </div> <div> </div> <div>Johan Liu, Professor, Electronics Materials and Systems Laboratory (EMSL), Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden, johan.liu@chalmers.se </div> <div> </div> <div>Illustration: Ya Liu and Johan Liu</div> <div>Photo of Johan Liu: Michael Nystås</div> <div>Photo of Ya Liu: Bo Hu</div> <div><br /></div> <div> </div> <div><strong>Read the full paper in Nano Select &gt;&gt;&gt;</strong></div> <div><a href="http://dx.doi.org/10.1002/nano.202000195"><span>http://dx.doi.org/10.1002/nano.202000195<span style="display:inline-block"></span></span></a></div>Thu, 03 Dec 2020 08:00:00 +0100https://www.chalmers.se/en/departments/physics/news/Pages/Magic-chemical-makes-perfect-edges-in-2D-materials.aspxhttps://www.chalmers.se/en/departments/physics/news/Pages/Magic-chemical-makes-perfect-edges-in-2D-materials.aspxHow to make perfect edges in 2D-materials<p><b>Ultrathin materials such as graphene promise a revolution in nanoscience and technology. Researchers at Chalmers University of Technology, Sweden, have now made an important advance within the field. In a recent paper in Nature Communications they present a method for controlling the edges of two-dimensional materials using a ‘magic’ chemical. </b></p><div><div>​</div> <img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/500_Battulga%20Munkhbat-200924.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;height:166px;width:130px" /><span style="background-color:initial">“</span><span style="background-color:initial">Our method makes it possible to control the edges – atom by atom – in a way that is both easy and scalable, using only mild heating together with abundant, environmentally friendly chemicals, such as hydrogen peroxide,” says Battulga Munkhbat, a postdoctoral researcher at the Department of Physics at Chalmers University of Technology, and first author of the paper. </span><div><br /></div> <div>Materials as thin as just a single atomic layer are known as two-dimensional, or 2D, materials. The most well-known example is graphene, as well molybdenum disulphide, its semiconductor analogue. Future developments within the field could benefit from studying one particular characteristic inherent to such materials – their edges. </div> <div>Controlling the edges is a challenging scientific problem, because they are very different in comparison to the main body of a 2D material. For example, a specific type of edge found in transition metal dichalcogenides (known as TMD’s, such as the aforementioned molybdenum disulphide), can have magnetic and catalytic properties. </div> <div><br /></div> <div><span style="background-color:initial">Typical TMD materials have edges which can exist in two distinct variants, known as zigzag or armchair. These alternatives are so different that their physical and chemical properties are not at all alike. For instance, calculations predict that zigzag edges are metallic and ferromagnetic, whereas armchair edges are semiconducting and non-magnetic. Similar to these remarkable variations in physical properties, one could expect that chemical properties of zigzag and armchair edges are also very different. If so, it could be possible that certain chemicals might ‘dissolve’ armchair edges, while leaving zigzag ones unaffected. </span><br /></div> <div><span style="background-color:initial"><br /></span></div> <div>Now, such a ‘magic’ chemical is exactly what the Chalmers researchers have found – in the form of ordinary hydrogen peroxide. At first, the researchers were completely surprised by the new results. </div> <div><br /></div> <div>“It was not only that one type of edge was dominant over the others, but also that the resulting edges were extremely sharp – nearly atomically sharp. This indicates that the ‘magic’ chemical operates in a so-called self-limiting manner, removing unwanted material atom-by-atom, eventually resulting in edges at the atomically sharp limit. The resulting patterns followed the crystallographic orientation of the original TMD material, producing beautiful, atomically sharp hexagonal nanostructures,” says Battulga Munkhbat.</div> <div><br /></div> <div>The new method, which includes a combination of standard top-down lithographic methods with a new anisotropic wet etching process, therefore makes it possible to create perfect edges in two-dimensional materials.</div> <img src="/SiteCollectionImages/Institutioner/F/Blandade%20dimensioner%20inne%20i%20artikel/Timur%20Shegai-webb_NY.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px;height:166px;width:130px" /></div> <div>​<br /><div>“This method opens up new and unprecedented possibilities for van der Waals materials (layered 2D materials). We can now combine edge physics with 2D physics in one single material. It is an extremely fascinating development,” says Timur Shegai, Associate Professor at the Department of Physics at Chalmers and leader of the research project. </div> <div><br /></div> <div>These and other related materials often attract significant research attention, as they enable crucial advances within in nanoscience and technology, with potential applications ranging from quantum electronics to new types of nano-devices. These hopes are manifested in the Graphene Flagship, Europe’s biggest ever research initiative, which is coordinated by Chalmers University of Technology. </div> <div><br /></div> <div>To make the new technology available to research laboratories and high-tech companies, the researchers have founded <a href="http://www.smena-tech.com/">a start-up company ​</a>that offers high quality atomically sharp TMD materials. The researchers also plan to further develop applications for these atomically sharp metamaterials.</div> <div><br /></div> <div><strong>Text:</strong> Mia Halleröd Palmgren and Joshua Worth</div> <div><strong>Portrait pictures: </strong>Anna-Lena Lundqvist</div> <a href="https://www.eurekalert.org/pub_releases/2020-10/cuot-cpe101620.php"><div><br /></div> <div><div><img class="ms-asset-icon ms-rtePosition-4" src="/_layouts/images/icgen.gif" alt="" />Read the press release and download high resolution images.​​​​</div></div></a></div> <div> <h2 class="chalmersElement-H2">More on the publication </h2> <div>The paper <a href="https://doi.org/10.1038/s41467-020-18428-2">Transition metal dichalcogenide metamaterials with atomic precision​</a> recently appeared in Nature Communications The article is written by Battulga Munkhbat, Andrew Yankovich, Denis Baranov, Ruggero Verre, Eva Olsson and Timur Shegai at the Department of Physics at Chalmers. </div> <div><h2 class="chalmersElement-H2"><span>For more information, please contact: </span></h2></div> <div><a href="/en/staff/Pages/Battulga-Munkhbat.aspx">Battulga Munkhbat</a>, Post Doc, Department of Physics, Chalmers University of Technology, Sweden, +46 73 995 34 79, <a href="mailto:battulga@chalmers.se">battulga@chalmers.se​</a></div> <div><br /></div> <div><a href="/en/staff/Pages/Timur-Shegai.aspx">Timur Shegai</a>, Associate Professor, Department of Physics, Chalmers University of Technology, Sweden, +46 31 772 31 23, <a href="mailto:timurs@chalmers.se">timurs@chalmers.se</a></div> </div>Mon, 19 Oct 2020 06:00:00 +0200https://www.chalmers.se/en/departments/mc2/news/Pages/A-New-Spin-on-Topological-Quantum-Material.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/A-New-Spin-on-Topological-Quantum-Material.aspxA New Spin on Topological Quantum Material<p><b>​Researchers at Chalmers University of Technology, Sweden, with collaborators in Germany and China, have discovered a new spin polarization in Tungsten di-telluride (WTe2), a topological Weyl semimetal candidate. These experimental findings can pave the way for the utilization of spin currents in developing the next generation of faster and energy-efficient spintronic and quantum technologies. The results are recently published in the journal Advanced Materials.</b></p><div><span style="background-color:initial">Topological quantum materials have attracted significant attention in condensed matter physics and information technology because of their unique band structure with topologically protected electronic states. After the realization of graphene and topological insulators, recently, Weyl semimetals were discovered with topological electronic properties. In contrast to the Schrödinger equation used to describe the electronic behavior in conventional materials and the Dirac equation for graphene and surface states of topological insulators, in Weyl semimetals, they follow the Weyl principles, proposed by Herman Weyl in 1929.</span><br /></div> <div><br /></div> <div>In these Weyl semimetals, the conduction and valence bands cross at specific points in momentum space, known as Weyl nodes. These nodes are topologically secured with opposite chirality in bulk with linear band dispersions. The appealing revelation in a Weyl semimetal is the presence of nontrivial surface states that connect the projections of Weyl nodes on the surface, called Fermi-arc. It has been shown that such a Weyl semimetal candidate WTe2 hosts unique electronic transport phenomena such as chiral anomaly, unconventional quantum oscillations, colossal magnetoresistance, spin Hall effect, and quantum spin Hall states, which opens a new era for physics experiments. </div> <div><br /></div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/saroj_prasad_dash_350x305.jpg" alt="Picture of Saroj Dash." class="chalmersPosition-FloatLeft" style="margin:5px" />In the present experiment​, researchers at Chalmers detected an unconventional spin current in Weyl semimetal WTe2, which is parallel to the applied electric field. The generated spin polarization in WTe2 is found to be different from the <a href="/en/departments/mc2/news/Pages/Spin-Hall-effect-in-Weyl-semimetal-for-Energy-efficient-Information-Technology.aspx" target="_blank">already known​</a> conventional spin-Hall and Rashba-Edelstein effects. </div> <div>&quot;Such a new spin-polarization component can be possible due to its broken crystal symmetry combined with large Berry curvature, spin-orbit interaction, and novel spin-texture of WTe2,&quot; explains Associate Professor Saroj Prasad Dash (to the left), who leads the research group at the Quantum  Device Physics Laboratory (QDP), the Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology.</div> <div><br /></div> <div>The spin polarization in WTe2 is electrically detected by using both direct and its inverse phenomenon, obeying Onsager reciprocity relation. A robust and practical method for electrical creation and detection of spin polarization is demonstrated and utilized for efficient spin injection and detection in a graphene channel up to room temperature. </div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/bing_zhao_2020_350x305.jpg" alt="Photo of Bing Zhao." class="chalmersPosition-FloatRight" style="margin:5px" /><br />&quot;These findings open opportunities for utilizing topological Weyl materials as non-magnetic spin sources in all-electrical 2D spintronics&quot;, states Bing Zhao (to the right),  researcher at QDP, and the first author of the paper.</div> <div>He continues:</div> <div>&quot;Moreover, the findings have great potential for utilizing topological semimetals in spintronic circuits and quantum technologies. The electrical creation and detection of spin polarization in topological Weyl semimetal can be useful for switching magnetization of ferromagnets for its use in the spin-orbit torque effect in spintronic memory and logic technologies. Furthermore, such layered topological semimetal can be combined with superconductors and ferromagnets to use in topological quantum technologies&quot;.</div> <div> </div> <div>The devices were nanofabricated in the state-of-the-art  cleanroom facility at MC2, and measured at the Quantum Device Physics Laboratory. Theoretical calculations were performed in collaboration with Max Planck Institute of Microstructure Physics, Halle, Germany, and University of Science and Technology Beijing, China. </div> <div><br /></div> <div>The Chalmers researchers acknowledge financial support from the European Union Graphene Flagship, Swedish Research Council, VINNOVA 2D Tech center, and AoA Materials and EI Nano program at Chalmers University of Technology.</div> <div><br /></div> <div>Illustration: Bing Zhao et al</div> <div>Photo of Saroj Prasad Dash: Oscar Mattsson</div> <div>Photo of Bing Zhao: Private</div> <div><br /></div> <div><strong>For further information &gt;&gt;&gt;</strong></div> <div>Saroj P. Dash, Associate Professor, Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden, +46 31 772 5170, saroj.dash@chalmers.se</div> <div><br /></div> <div><span style="background-color:initial"><strong>Read the full paper in Advanced Materials &gt;&gt;&gt;</strong></span><br /></div> <div>Unconventional Charge–Spin Conversion in Weyl‐Semimetal WTe2, Bing Zhao, Bogdan Karpiak, Dmitrii Khokhriakov, Annika Johansson, Anamul Md Hoque, Xiaoguang Xu, Yong Jiang, Ingrid Mertig, Saroj P. Dash; Advanced Materials, 2000818 (2020). <br /><a href="https://doi.org/10.1002/adma.202000818" target="_blank">https://doi.org/10.1002/adma.202000818​</a></div>Thu, 24 Sep 2020 09:00:00 +0200https://www.chalmers.se/en/departments/mc2/news/Pages/Spin-galvanic-effect-in-graphene-with-topological-topping-demonstrated.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/Spin-galvanic-effect-in-graphene-with-topological-topping-demonstrated.aspxSpin-galvanic effect in graphene with topological topping demonstrated<p><b>​Researchers at Chalmers University of Technology, Sweden, have demonstrated the spin-galvanic effect, which allows for the conversion of non-equilibrium spin density into a charge current. Here, by combining graphene with a topological insulator, the authors realize a gate-tunable spin-galvanic effect at room temperature. The findings were published in the scientific journal Nature Communications.</b></p>“We believe that this experimental realization will attract a lot of scientific attention and put topological insulators and graphene on the map for applications in spintronic and quantum technologies,” says Associate Professor Saroj Prasad Dash, who leads the research group at the Quantum Device Physics Laboratory (QDP), the Department of Microtechnology and Nanoscience – MC2.<br /><br />Graphene, a single layer of carbon atoms, has extraordinary electronic and spin transport properties. However, electrons in this material experience low interaction of their spin and orbital angular moments, called spin-orbit coupling, which does not allow to achieve tunable spintronic functionality in pristine graphene. On the other hand, unique electronic spin textures and the spin-momentum locking phenomenon in topological insulators are promising for emerging spin-orbit driven spintronics and quantum technologies. <img src="/SiteCollectionImages/Institutioner/MC2/News/dmitrii_2020_350x305.jpg" alt="Picture of Dmitrii Khokriakov." class="chalmersPosition-FloatRight" style="margin:5px" /><br />However, the utilization of topological insulators poses several challenges related to their lack of electrical gate-tunability, interference from trivial bulk states, and destruction of topological properties at heterostructure interfaces. <br />“Here, we address some of these challenges by integrating two-dimensional graphene with a three-dimensional topological insulator in van der Waals heterostructures to take advantage of their remarkable spintronic properties and engineer a proximity-induced spin-galvanic effect at room temperature,” says Dmitrii Khokhriakov (to the right), PhD Student at QDP, and first author of the article.<br /><br />Since graphene is atomically thin, its properties can be drastically changed when other functional materials are brought in contact with it, which is known as the proximity effect. Therefore, graphene-based heterostructures are an exciting device concept since they exhibit strong gate-tunability of proximity effects arising from its hybridization with other functional materials. Previously, combining graphene with topological insulators in van der Waals heterostructures, the researchers have shown that a strong proximity-induced spin-orbit coupling could be induced, which is expected to produce a Rashba spin-splitting in the graphene bands. As a consequence, the proximitized graphene is expected to host the spin-galvanic effect, with the anticipated gate-tunability of its magnitude and sign. However, this phenomenon has not been observed in these heterostructures previously.<br />“To realize this spin-galvanic effect, we developed a special Hall-bar-like device of graphene-topological insulator heterostructures,” says Dmitrii Khokhriakov. <br /><br /><img src="/SiteCollectionImages/Institutioner/MC2/News/saroj_prasad_dash_350x305.jpg" alt="Picture of Saroj Dash." class="chalmersPosition-FloatLeft" style="margin:5px" />The devices were nanofabricated in the state-of-the-art cleanroom at MC2 and measured at the Quantum Device Physics Laboratory. The novel device concept allowed the researchers to perform complementary measurements in various configurations via spin switch and Hanle spin precession experiments, giving an unambiguous evidence of the spin-galvanic effect at room temperature. <br />“Moreover, we were able to demonstrate a strong tunability and a sign change of the spin galvanic effect by the gate electric field, which makes such heterostructures promising for the realization of all-electrical and gate-tunable spintronic devices,” concludes Saroj Prasad Dash (to the left).<br /><br />The researchers acknowledge financial support from the European Union Graphene Flagship, Swedish Research Council, VINNOVA 2D Tech Center, FlagEra, and AoA Materials and EI Nano program at Chalmers University of Technology.<br /><br />Illustration: Dmitrii Khokhriakov<br />Photo of Saroj Prasad Dash: Oscar Mattsson<br />Photo of Dmitrii Khokhriakov: Private<br /><br /><a href="https://www.nature.com/articles/s41467-020-17481-1">Read the full paper in Nature Communications</a> &gt;&gt;&gt;<br /><br />References<br />1. D. Khokhriakov, A.M. Hoque, B. Karpiak, &amp; S.P. Dash, Gate-tunable spin-galvanic effect in graphene-topological insulator van der Waals heterostructures at room temperature, Nature Communications. 11, 3657 (2020).<br />2. A. Dankert, P. Bhaskar, D. Khokhriakov, I. H. Rodrigues, B. Karpiak, M. V. Kamalakar, S. Charpentier, I. Garate, S.P. Dash. Origin and evolution of surface spin current in topological insulators. Phys. Rev. B 97, 125414 (2018).<br />3. A. Dankert, J. Geurs, M. V. Kamalakar, S. Charpentier, &amp; S.P. Dash, Room Temperature Electrical Detection of Spin Polarized Currents in Topological Insulators. Nano Letters 15, 7976–7981 (2015).<br />4. D. Khokhriakov, A. W. Cummings, K. Song, M. Vila, B. Karpiak, A. Dankert, S. Roche, S. P. Dash, Tailoring emergent spin phenomena in Dirac material heterostructures. Science Advances. 4, eaat9349 (2018).<br />Thu, 27 Aug 2020 09:00:00 +0200https://www.chalmers.se/en/departments/mc2/news/Pages/One-atom-thin-platinum-makes-a-great-chemical-sensor.aspxhttps://www.chalmers.se/en/departments/mc2/news/Pages/One-atom-thin-platinum-makes-a-great-chemical-sensor.aspxOne atom thin platinum makes a great chemical sensor<p><b>​Researchers at Chalmers University of Technology in Sweden, with collaborators, have reported the possibility to prepare one-atom thin platinum and use it as chemical sensors. The results were recently published in the scientific journal Advanced Material Interfaces.</b></p><div><img src="/SiteCollectionImages/Institutioner/MC2/News/Kyung_Kim_350x305.jpg" class="chalmersPosition-FloatRight" alt="Picture of Kyung Ho Kim." style="margin:5px" />“In a nutshell, we managed to make a one-atom thin metal layer, a sort of a new material. We found that this atomically-thin metal is super sensitive to its chemical environment: its electrical resistance changes significantly when it interacts with gases”, explains Kyung Ho Kim (to the right), postdoc at the Quantum Device Physics Laboratory at the Department of Microtechnology and Nanoscience – MC2, and lead author of the article. </div> <div> </div> <div>The spirit of the research is the development of 2D materials beyond graphene.  </div> <div>“Atomically thin platinum can be actually useful for ultra-sensitive and fast electrical detection of chemicals. We have studied the case of platinum in great detail, but other metals like Palladium produce similar results”, says Samuel Lara Avila (below to the right), Associate Professor at the Quantum Device Physics Laboratory at MC2, and one of the authors of the article.</div> <div> </div> <div><img src="/SiteCollectionImages/Institutioner/MC2/News/Samuel_Lara_Avila_1_350x305.jpg" class="chalmersPosition-FloatRight" alt="" style="margin:5px" />The researchers used the sensitive chemical-to-electrical transduction capability of atomically thin platinum to detect part-per-billion contents of toxic gases. They demonstrate this for detection of benzene, a compound that is cancerogenic to very small concentrations in ambient, and for which no low-cost detection apparatus exists. </div> <div>“This new material approach, atomically thin metals, is very promising for future air-quality monitoring applications”, says Jens Eriksson, Head of the Applied sensor science unit at Linköping University and co-author of the paper.</div> <div> </div> <div>The study is a collaboration between scientists from Chalmers, Linköping University, Uppsala University, University of Zaragoza (Spain), and the MAX IV Laboratory in Lund. From Chalmers, Kyung Ho Kim, Hans He and Sergey Kubatkin contributed to the research together with Samuel Lara-Avila.</div> <div> </div> <div>The work was jointly supported by the Swedish Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg Foundation, The Swedish Research Council and Chalmers Excellence Initiative Nano. The experiments were performed in part at the Nanofabrication Laboratory at Chalmers.</div> <div> </div> <div>Text: Michael Nystås</div> <div>Illustration: Hans He</div> <div>Photo of Samuel Lara Avila: Jan-Olof Yxell</div> <div>Photo of Kyung Ho Kim: Private</div> <div> </div> <h3 class="chalmersElement-H3">Contact:</h3> <div>Samuel Lara Avila, Assistant Professor, Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, samuel.lara@chalmers.se </div> <div> </div> <h3 class="chalmersElement-H3">Read the article in Advanced Material Interfaces &gt;&gt;&gt;</h3> <div>Chemical Sensing with Atomically Thin Platinum Templated by a 2D Insulator</div> <div><a href="https://doi.org/10.1002/admi.201902104">https://doi.org/10.1002/admi.201902104 </a></div> <div> </div> <h3 class="chalmersElement-H3">MORE ABOUT THE RESEARCH &gt;&gt;&gt;</h3> <div>Boosting the sensitivity of solid‐state gas sensors by incorporating nanostructured materials as the active sensing element can be complicated by interfacial effects. Interfaces at nanoparticles, grains, or contacts may result in nonlinear current–voltage response, high electrical resistance, and ultimately, electric noise that limits the sensor read‐out. </div> <div> </div> <div>This work reports the possibility to prepare nominally one atom thin, electrically continuous platinum layers by physical vapor deposition on the carbon zero layer (also known as the buffer layer) grown epitaxially on silicon carbide. With a 3–4 Å thin Pt layer, the electrical conductivity of the metal is strongly modulated when interacting with chemical analytes, due to charges being transferred to/from Pt. The strong interaction with chemical species, together with the scalability of the material, enables the fabrication of chemiresistor devices for electrical read‐out of chemical species with sub part‐per‐billion (ppb) detection limits. The 2D system formed by atomically thin Pt on the carbon zero layer on SiC opens up a route for resilient and high sensitivity chemical detection and can be the path for designing new heterogenous catalysts with superior activity and selectivity.</div>Mon, 15 Jun 2020 03:00:00 +0200