

System balancing at nearly 100% renewable generation

PhD project

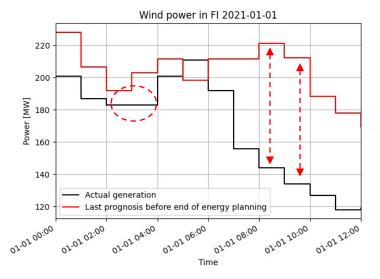
Henrik Nordström

Supervisors: Lennart Söder (KTH), Robert Eriksson (Svk)

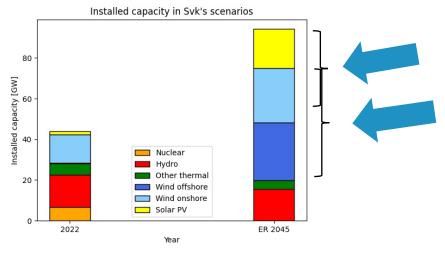
Outline

- Power system balancing challenges with high share of wind power
- Scenario "Electrification renewables 2045"
- Including balancing in long-term simulations
- How to efficiently handle balancing at a high share of wind power?
- Current and future work

Power system balancing


- In power systems, there <u>IS</u> always a balance between supplied and consumed power.
 - During a blackout?

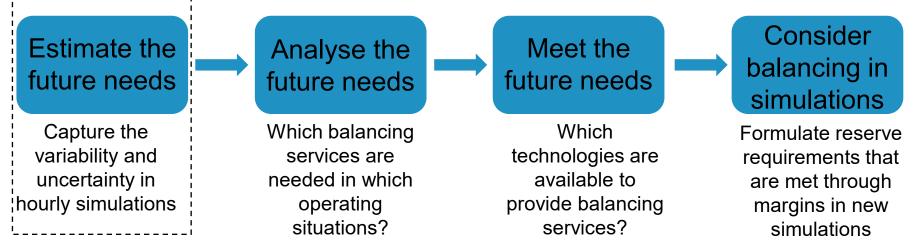
	balancing: At every time instant meet the vithin a certain range.	electricity demand while keeping the
	balance is kept through planning, control sical reaction of synchronous machines.	systems, manual actions, and the
 Three main 	activities contribute to balancing:	
- Energy b	alancing: Anticipated demand and generation	is matched in markets.
Balancing λ – Frequen	cy balancing: Keeping the frequency close to a	a nominal level in a synchronous system.
services $\sum_{i=1}^{n}$ Power ba	alancing: Keeping the area control error to zer	o in a balancing area.
· · · · · · · · · · · · · · · · · · ·		'


Balancing challenges with high share of wind

- Finnish wind power data to illustrate the challenges.
- Wind power brings more <u>uncertainty</u> to the energy balancing.
- Wind power brings more variability within the planning periods.
- Wind power does not provide inertia.

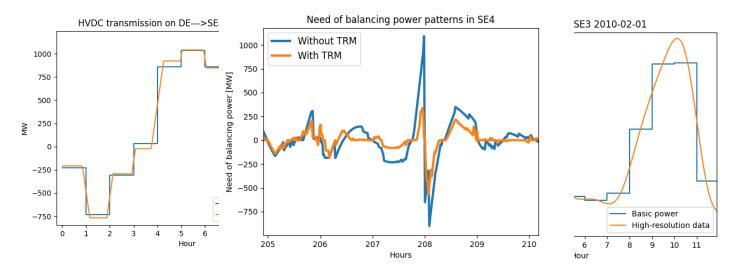
Electrification renewables 2045

- Project is based on Svk's scenario of a nearly 100% renewable Nordic system year 2045.
- Power system dispatch simulated with hourly resolution for 35 years of weather data in Svk's long-term market analysis [1].
- About 59% of installed capacity in Sweden is wind power!
- Demand about twice as high in Sweden large potential for flexibility
- Balancing will be about a since


ETENSKA

 Svenska kraftnät, Långsiktig marknadsanalys 2021, 2021, https://www.svk.se/siteassets/omoss/rapporter/2021/langsiktig-marknadsanalys-2021.pdf

Including balancing in long-term simulations


- Balancing at a high share of wind power is clearly an important challenge should be considered in future scenario studies.
- Currently, only the hourly energy balancing is simulated in Svk's studies.
- Could be considered by keeping margins in resources based on simulated operating conditions. This is performed in North American studies like [2].
- How can we perform such studies in the Nordic countries? Need to know <u>which</u> margins to keep <u>where.</u>

[2] Brinkman, G. et al. (2021). The North American Renewable Integration Study: A US Perspective—Executive Summary. www.nrel.gov/publications.

Estimating the need of balancing power

- A model to estimate the need of balancing power was presented in [3].
- Main idea: Interpolation methods to extend hourly simulations to higher resolution.
 - Simplified wind power modelling method to better capture uncertainty and variability is being developed.
- Every minute: Area need of balancing power = (Consumption + Export) (Production + Import)

VETENSKAP

[3] Nordström, H., Söder, L., & Eriksson, R. (2022). Estimating the Future Need of Balancing Power Based on Long-Term Power System Market Simulations. Proceedings of 11th Bulk Power Systems Dynamics and Control Symposium (IREP 2022).

Keeping balance at high share of wind power

- How to handle the continuous balance in systems with high share of wind power?
- Strategies and outlooks vary between systems and countries. Work on international review.
- Depends on:
 - Future needs

More wind and solar will increase the challenge.

- Balancing principles

15 minutes trading period means more granular energy balancing.

Dynamic methods to determine balancing service needs instead of static methods.

- Available technologies

How much could the demand side contribute? EVs, electrolysers, batteries and demand flexibility.

- Market design/Regulation for balancing services

Power balancing will be handled through the European platforms MARI and PICASSO.

Current/Future work

- Ongoing projects:
 - Review of current outlooks on how different systems will handle continuous balancing at high wind power penetration. International collaboration article within IEA Wind TCP: Task 25.
 - Improved modeling of high-resolution wind power in future scenarios.
 - Towards dynamic dimensioning of FRR in the Nordic power system. Collaboration with A. Khodadadi.
- Future work:
 - Developing methods to set reserve requirements in a nearly 100% renewable Nordic system.
 - Investigate which technologies could provide with cost-efficient balancing services.
 - Estimate future costs of balancing services.
 - Include reserve procurement in future long-term scenario simulations.

Thank you!

Contact: hnordstr@kth.se