CHALMERS

UNIVERSITY OF TECHNOLOGY

Numerical Modelling of Neutral Atmospheric Boundary Layer Flow over Complex Terrain Covered by the Heterogeneous Forest

Complex Terrain, Topographical Location (Röbergsfjället Wind Plant, built in 2007)

Southern part of Vansbro municipality bordering Ludvika municipality in Dalarna County.

Measurement Data

 Met mast data @ 60 m above ground in 2006 (365 days x 24 hr) without any turbine

CHALMERS UNIVERSITY OF TECHNOLOGY

Wind Plant Layout and Forest Properties (216 deg w.r.t North)

SWPTO

CFD Modelling # 1 (without Turbines' Model)

- Solving incompressible, Navier-Stokes equations using Large-Eddy Simulation (LES) with Standard Smagorinsky sub-grid scale model using STAR-CCM+ software.
- 2^{nd} order time-descretization scheme with constant time step of $\Delta t = 0.1 s$.
- Domain size, $L = 9 km \times W = 6 km \times H \approx 1.5 km$.
- Computational grid size, ~16 million cells (with resolution of $\Delta x = \Delta z = 17 m$ in horizontal plane).
- Prism layer height of $\delta y = 207 m$ including 30 cells in vertical direction with first vertical grid height of $\Delta y = 2 m$ and $\Delta y = 17 m$ for the last cell.
- Complex terrain with low aerodynamic surface roughness.
- Heterogeneous forest model.
- Actuator disk model for turbines including wake interaction.
- Neutral atmospheric condition.
- Prescribed wind speed of 6 m/s at 60 m above ground (met mast height).
- Total simulation time of $t = 7260 s \approx 120 \min$
- Sampling collection time of $t = 5460 \ s \approx 90 \ min$

Boundary	Туре	Quantity		
Inlet	Velocity inlet	Sheared mean profile, synthetic turbulence (turbulence intensity, turbulent length scale)		
Outlet	Pressure outlet	P=0		
Ground	Wall	Smooth wall		
Ceiling/Sides	Symmetry			

Left) Time-averaged axial wind velocity profile, Right) Streamwise Turbulence intensity, at the met mast location compared with the measurement.

0.225

0.25

0.2

 TI_u [-]

Results, CFD Modelling #1

Mean wind speed (s), turbulent kinetic energy (k), mean yaw angle (γ) and mean veer angle (ϕ) at eight turbine locations.

Iso-surface of mean wind speed (s) and turbulent kinetic energy (k) at hub height (90 m above the ground).

Results, CFD Modelling # 1

Streamlines of in-plane mean wind speed around the rotor plane perpendicular to the dominant wind direction colored by $\sqrt{(v_2^2 + v_3^2)/v_1}$

A Generic 2.0 MW Turbine Model

- Modelling in the opensource aeroelastic simulator, FAST v8.
- Structural properties relevant to Vestas V90-2.0 MW.
- Controller is based on the 5-MW NREL reference turbine (without "power boost")

TECHNICAL DATA FOR V90-1.8/2.0 MW

Power regulation		pitch regulated with variable speed			Main dimensions
Operating data Rated power Cut-In wind speed Rated wind speed Cut-out wind speed Frequency Operating temperat	ture	VIIII Variat IECIIA 1,800 kW 4 m/s 12 m/s 25 m/s 50 Hz/60 standard r: -20°C to 4	Hz ange 0°C	IEC IIIA 2,000 kW	Blade Length Max.chord Welght Nacelie Height for transport Height installed (including CoolerTop [™])
		-30°C to 40°C			Length Width Weight
30000 power (10 m above ground 4 m/s 5 m/s 6 m/s 7 m/s > 8 m/s	d, hub height 8	0 m air der 94.4 dB(A 99.4 dB(A 102.5 dB(103.6 dB(104 dB(A)	nsity 1,229) A) A)	5 kg/m³)	Hub Max. diameter Max. width Length Weight
Rotor Rotor diameter Swept area Nominal revolutions Operational interval Air brake Tower		90 m 6,362 m ² 14.5 rpm 9.3 • 16.6 rpm full blade foothering with 3 pitch cylinders			80 m Weight 95 m Weight 105 m Weight 125 m Weight
Type Hub heights		tubular steel tower 80 m, 95 m and 105 m (IEC IIA) 95 m, 105 m and 125 m (DIBt II)		Power curve V90-1.8/ Noise reduced sound p	
Generator Type Nominal output	50 Hz 4-pole asynchronous with variable speed 1,800 kW/ 2,000 kW		60Hz 6-pole asynchronous with variable speed 1,800 kW		2,000
Gearbox Type 3		3-stage planetary/helical			1,400
Copyright Notice This documents is created by Vestax Wind Systems A/S and contains copyrighted mate- rial, trademarks, and other proprietary information. All rights reserved. No part of the documents may be propolocide or copyright any form or buy any means such as a graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems Mouth the prior within the primission of visitas Wind Systems A/S					5 1,000
-	200				

10

Wind speed (m/s

44 m

3.5 m

4 m

5.4 m 10.4 m

3.4 m 70 metric tonnes

3.3 m

148 metric tonnes

206 metric tonnes

245 metric tonnes 335 metric tonnes Vesta

4 m 4.2 m 18 metric tonnes

6.700 kg

V90-1.8/2.0 MW

low-wind sites

CHALMERS

Results, CFD Modelling # 2 (with Actutor Disk Model)

Iso-surface of mean wind speed (s) and turbulent kinetic energy (k) at hub height (90 m above the ground). Left) without AD model, Right) with AD model

1500

Results, CFD Modelling # 2 vs. Measurement Data

0.4

0.3

0.2

0.1

Allifo 0.3

ador Probe 0.15

0.15

Relative frequency of samples of generated power P_t (top-left), mean wind speed *ws* (top-right) and turbulence intensity *Ti* (bottom-middle) collected from neutral conditions (118 days in 2018). Blue line is the mean value of the 118 samples from the measurement data and **Red line** is the mean value predicted by the LES simulations.

SWEDISH WIND POWER TECHNOLOGY CENTRE

Conclusion

- Employing the Airborne Laser Scanning (ALS) data for the site-specific complex topography and the forest properties may increase the accuracy level for the numerical modeling of airflow.
- A single met mast data might not be a real representative for the wind field of entire wind farm situated in complex terrain increasing the risk of generalization.
- Variation of inflow variables such as mean wind speed, shear exponent and turbulence intensity at each wind turbine location justifies the need for high-fidelity numerical methods to accurately model the airflow inside and over complex terrains and around each wind turbine in a wind farm.
- A higher turbulence intensity is predicted by the homogeneous forest modeling rather than the heterogeneous forest modeling.
- A choice of Actuator Line turbine model may improve the results.

Reference

• Abedi, H.; Sarkar, S.; Johansson, H. Numerical modelling of neutral atmospheric boundary layer flow through heterogeneous forest canopies in complex terrain (a case study of a Swedish wind farm). Renew. Energy 2021, 180, 806-828.

Thanks for Your Attention

hamidreza.abedi@ri.se

https://orcid.org/0000-0002-0096-3144