Wideband waveguide power divider-combiner for MM-wave Instrumentation

Background: MM-wave applications for instrumentation and industry need novel and compact components, e.g., power combining or dividing devices. Such components could be used in power applications (transmitters) or receivers (multi-band, quadrature). Pure substrate-based components have excessive insertion loss at mm-waves. An approach of using a combination of waveguide structures and substrate-based elements proved to be useful, Fig. 1, [1].

Fig.1 Illustration of the design of directional couplers employing combined waveguide + substrate-based elements approach [1].

Thesis project: The work is based on recently published design as a starting point, and aims to understand, simulate and modify, optimize and develop a new design to be suitable for applications at frequencies in the range of 150...400 GHz. The work will include:

- Literature survey
- Microwave circuit design and simulation (ADS+HFSS)
- Circuit mechanical and photomask design
- Tests of a prototype, 150-220 GHz

Prerequisites
Course in Microwave engineering, skill in ADS and HFSS
THz electronics, Course in Superconductivity, low temperature physics, are not required, but good to have

Supervisors
Victor Belitsky, Victor.Belitsky@chalmers.se, 031-7721893
Vincent Desmaris, Vincent.desmaris@chalmers.se, 031-7721846

References