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DES — DETACHED-EDDY SIMULATIONS

Problem:
◮ the flow in the RANS region is highly unsteady (i.e. URANS)
◮ this means that RANS turbulence models (developed for steady

flow) are not accurate
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FIGURE: : DES; ; 1D steady RANS; : DES resolved k .
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DES — DETACHED-EDDY SIMULATIONS

Problem:
◮ the flow in the RANS region is highly unsteady (i.e. URANS)
◮ this means that RANS turbulence models (developed for steady

flow) are not accurate

Solution:
◮ solve the steady equations in the RANS region
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FIGURE: : DES; ; 1D steady RANS; : DES resolved k .
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TWO SOLVERS IN THE ENTIRE DOMAIN
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FIGURE: Grey color indicates the solver that drives the flow
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DRIFT TERMS ARE ADDED IN WHITE REGIONS

Steady RANS solver
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FIGURE: Subscript T indicates integration over time T

〈φ(t)〉T =
1

T

∫ t

−∞

φ(τ)exp(−(t − τ)/T )dτ ⇒

〈φ〉t
T ≡ 〈φ〉T = a〈φ〉t−∆t

T
+ (1 − a)φt

a = exp(−∆t/T ).
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PREVIOUS WORK

The present method is similar to those in [1, 2, 3]. The main
differences are that

◮ In [1, 3] they use one additional drift terms in the LES momentum

equations to control resolved Reynolds stresses
◮ They include drift terms also in the k and ε equations [1] or the k

equation [3].
◮ In [1, 3] they include five tuning constants in all drift terms. I have

one (T ).
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TURBULENCE MODELS

Steady RANS solver

EARSM (Explicit Algebraic

Stress Model) [4] coupled to

Wilcox k − ω model [5]

DES solver

URANS

LES

DES k − ω model

Lengthscale in dissipation

term of the k eq.is taken from

the IDDES model [6, 7]

FIGURE: RANS and DES turbulence models
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NUMERICAL METHOD: CALC-LES & CALC-BFC

CALC-LES [8]: DES solver
◮ Incompressible finite volume method
◮ Pressure-velocity coupling treated with fractional step
◮ Central differencing scheme for momentum eqns
◮ Hybrid 1st order upwind/2nd order central scheme k & ω eqns.
◮ 2nd -order Crank-Nicholson for time discretization

CALC-BFC [9]: RANS solver, called every 10th timestep
◮ Incompressible finite volume method
◮ SIMPLEC
◮ MUSCL: 2nd order bounded upwind scheme for momentum eqns
◮ Hybrid 1st order upwind/2nd order central scheme k & ω eqns.
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FIRST TEST CASE: CHANNEL FLOW

Reynolds number is Reτ = 5 200.

A 32 × 96 × 32 mesh is used

xmax = 3.2, zmax = 1.6, 15% stretching in y direction
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CHANNEL FLOW: VELOCITY
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FIGURE: T = 10δ/Ub : DES; : RANS; ◦: DNS. Vertical black lines
show locations of δS−RANS.
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CHANNEL FLOW: TURBULENT VISCOSITY

0 1000 2000 3000
0

100

200

300

400

500

PSfrag replacements

y+

ν t
/ν

FIGURE: : DES solver; : RANS solver. Vertical black lines show
locations of δS−RANS.
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SECOND TEST CASE: HUMP FLOW
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FIGURE: The domain of the hump. zmax = 0.2.

The Reynolds number of the hump flow is Rec = 936 000.

The mesh has 386 × 120 × 32 cells (x , y , z)

Grid from NASA workshop.1

Inlet is located at x = −2.1 and the outlet at x = 4.0,

1https://turbmodels.larc.nasa.gov/nasahump val.html
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HUMP FLOW: Cp & Cf
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FIGURE: T = 20h/Uin. : S-DES, j0 = 33; : S-DES, j0 = 53; :

DES
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HUMP FLOW: VELOCITIES
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FIGURE: : S-ZDES, j0 = 33; : S-ZDES, j0 = 53; : DES; ◦: exp
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CONCLUSIONS

A new steady RANS coupled to DES (S-ZDES) is proposed.

Very good results

Drawback: it is dependent on the lower limit of integration time, T
for the hump flow

◮ T = 10h/Uin too small (h is hump height)
◮ T = 20 and 50 give indentical results
◮ For T = 100 we must more than double developing+sampling time

to 345 + 345 (7.3 + 7.3 throughflow times)
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