Optimal transport: introduction/panorama

(5/9-2013)

Robert Berman

Main references:

• [A-G][Ambrosio, L; Gigli, N: "A user's guide to optimal transport" (2011) (http://cvgmt.sns.it/paper/195/)

• [V] Villani, "Topics in optimal transportation", AMS (2003)

We will cover parts of

A-G: Chapter 1-4 (80 pages)

V: Chapter 1,2,4,5,6,9

[In principle, will primarily use A-G and then V for further back-ground]

Further useful references:

- Villani, "Optimal transp ort, old and new" Springer (2008)
- Ambrosio, L; Gigli, N; Savare, G: "Gradient Flows in Metric spaces and in the space of Probability Measures", Birkhasuer 2008 (second edition)

Out-line of the main topics to be covered in the course

- 1. Transportation theory
- 2. Relations to Monge-Ampère equations
- 3. The 2-Wasserstein space W_2
- 4. Otto calculus on W_2 and applications to dissipative PDEs
- 5. Applications to geometric functional inequalities

1. Transportation theory

Monge's formulation (1781)

In mathematics terms: assume given two measures on \mathbb{R}^n : μ and ν with the same total mass, normalized to be *one*, i.e.

$$\mu,\nu\in\mathcal{P}(\mathbb{R}^n):=\{probability\ measures\ on\,\mathbb{R}^n\}$$
 and a "cost function" $c(x,p)$ on $\mathbb{R}^n\times\mathbb{R}^n.$

Definition: A transport map T from μ to ν is a map such that

$$T: \mathbb{R}^n \to \mathbb{R}^n, \quad T_*\mu = \nu,$$

i.e.

$$\int_{B} d\nu = \int_{T^{-1}(B)} d\mu$$

The (total) cost of T is

$$C(T) := \int_{\mathbb{R}^n} c(x, T(x)) d\mu$$

A transport map T is *optimal* (wrt μ, ν and c(x, y)) if it minimizes the cost C(T) over all maps transporting μ to ν .

The Monge Problem

- ullet Prove the existence and uniqueness of an optimal map T
- ullet "Describe" the optimal map T

The standard setting

The most well-behaved case is the "quadratic case":

$$c(x,y) = ||x - y||^2$$

(but Monge was, in fact, mainly interested in the much more difficult case $c(x,y) = ||x-y|| \dots$)

General difficulties:

Non-linearity: the cost functional

$$C(T) := \int_{\mathbb{R}^n} c(x, T(x)) d\mu$$

is non-linear wrt T.

• Non-compactness: If T_i is a sequence of transport maps, then T_i may not converge to a transport map.

Solution: "Relaxation" of the Monge problem, i.e. enlarge $\{T\}$!

Heuristically: allow "splitting of mass"

Def: A transport plan γ is a probability measure on $\mathbb{R}^n \times \mathbb{R}^n$ whose first and second marginals are equal to μ and ν :

- $\gamma \in \mathcal{P}(\mathbb{R}^n \times \mathbb{R}^n)$
- $\bullet (\pi_1)_* \gamma = \mu$
- $\bullet \ (\pi_2)_* \gamma = \nu$

Then define the cost functional $C(\gamma) := \int_{\mathbb{R}^n \times \mathbb{R}^n} c(x,y) d\gamma$

Example: If T is a map transporting μ to ν , i.e. $T_*\mu = \nu$, then

$$\gamma_T := (I \times T)_* \mu$$

is a transport plan (from μ to ν).

 \bullet Note: the measure γ_T is supported on the graph of T

The Kantorovich ('42) problem

Given probability measures μ, ν and a const function c(x,y) find an optimal transport plan γ , i.e. a minimizer of

$$C(\gamma) := \int_{\mathbb{R}^n \times \mathbb{R}^n} c(x, y) d\gamma$$

Advantage:

- $C(\gamma)$ is linear wrt γ
- "Compactness" (by weak compactness/tightness)

For any reasonable cost function c(x,y) the existence of an optimal γ is then easy.

More good news:

• There is a dual formulation of the Kantorovich problem

$$\gamma \longleftrightarrow (\phi, \psi)$$

where $\phi(x)$ and $\psi(y)$ are functions on X.

• This leads to a variational formulation involving only a c-convex function $\phi(x)$ (using Legendre transforms).

The new "regularity problem":

Show that under suitable regularity assumptions on the data (μ, ν) and c(x,y) the optimal transport plan γ is realized by a *transport* map T, i.e. $\gamma = \gamma_T$.

2) Relations to Monge-Ampère equations

In the following we specialize to the "standard case":

$$c(x,y) = ||x - y||^2$$

with μ and ν assumed "regular", say

$$\mu = f(x)dx, \quad \nu = g(y)dy, \quad f, g \in \mathcal{C}^{\infty}(\mathbb{R}^n)$$

One can then a priori show [Brenier'87, Caffarelli,...] that an optimal map exists and is uniquely determined by

$$T(x) = \nabla \phi(x) : \mathbb{R}^n \to \mathbb{R}^n$$

for a convex function ϕ on \mathbb{R}^n .

For $T = \nabla \phi(x)$ with ϕ smooth and strictly convex it is easy to see that

$$T_*(f(x)dx) = g(y)dy$$

if and only if

$$\det(\frac{\partial^2 \phi}{\partial x_i \partial x_j}) g(\nabla \phi) = f(x),$$

i.e. ϕ solves a Monge-Ampère equation.

Ex: prove this!

The Monge-Ampère operator

$$\phi \mapsto \det(\frac{\partial^2 \phi}{\partial x_i \partial x_j})$$

is a propotype of a fully non-linear partial differential operator

- Reversing the story: the transport problem with $c(x,y)=\|x-y\|^2$ thus provides a variational approach to real Monge-Ampère equations
- This can be related to more standard Dirichlet type variational principles [B., "Statistical mechanics of permanents, real-Monge-Ampere equations and optimal transport", arXiv:1302.4045]

3) The 2-Wasserstein space

The space \mathbb{R}^n comes with a standard *metric*, the Euclidean one:

$$d(x,y) := ||x - y||$$

It induces a metric on the infinite dimensional space $\mathcal{P}(\mathbb{R}^n)$ of all probability measures on \mathbb{R}^n :

$$d_{W_2}(\mu,\nu):=$$
 "the minimal cost to transport μ to ν "

(defined in terms of the standard cost function $c(x,y) = ||x-y||^2$), i.e.

$$d_{W_2}(\mu,\nu) = \inf_{\gamma} C(\gamma) (= C(\gamma_{optimal}))$$

over all transport plans γ from μ to ν .

More precisely, the Wasserstein 2-metric d_{W_2} is a well-defined metric on the subspace

$$\mathcal{P}_2(\mathbb{R}^n) := \left\{ \mu \in \mathcal{P}(\mathbb{R}^n) : \int |x|^2 d\mu < \infty \right\}$$

What about the geometric structure of the Wasserstein space $W_2 := (\mathcal{P}_2(\mathbb{R}^n), d_{W_2})$?

• It has *positive curvature* (in the sense of Alexandrov)

How to describe the geodesics in W_2 (i.e. curves μ_t with minimal length)?

They can be described in terms of optimal transport maps:

 \bullet The *geodesic* connecting ("regular") measures μ_0 and μ_1 is given by

$$\mu_t := ((1-t)I + tT)_*\mu_0,$$

where T is the optimal transport map from μ_0 to μ_1

4) Otto calculus on W_2 and applications to dissipative PDEs

Otto's key observation: $d_{W_2}^2$ comes from a Riemannian metric on $\mathcal{P}_2(\mathbb{R}^n)$.

ullet Hence, we can "do calculs" on $\mathcal{P}_2(\mathbb{R}^n)!$

The definition of the length of the tangent vector of the curve

$$\mu_t = \rho_t dx$$

at t = 0, i.e.

$$\left\| \frac{\partial \rho_t}{\partial t} \right\|_{W_2}$$

is inspired by fluid mechanics/kinetic theory:

Think of the changing density ho_t as induced by a velocity field $\overrightarrow{v_t}$

In mathematical terms:

$$\frac{\partial \rho_t}{\partial t}|_{t=0} = -\nabla \cdot (\rho_0 \overrightarrow{v}) \quad \text{(the continuity equation)}$$

for a vector field \overrightarrow{v} (uniquely determined by $\nabla \times \overrightarrow{v} = 0$, i.e. $\overrightarrow{v} = \nabla \phi$ for some function ϕ)

• Then define

$$\left\| \frac{\partial \rho_t}{\partial t} \right\|_{t=0}^2 := \int_{\mathbb{R}^n} \|\overrightarrow{v}\|^2 \rho_0 dx$$

(=the total kinetic energy of the fluid)

Applications to dissipative PDEs

Given a functional F on the space $\mathcal{P}(\mathbb{R}^n)$ we can study its *gradient-flow* with respect to d_{W_2} :

$$\frac{\partial \rho_t}{\partial t} = -\nabla F_{|\rho_t}, \quad \rho_{|t} = \rho_0$$

By construction the functional F is mototone (decreasing) along the gradient-flow ρ_t .

 Many interesting "dissipative" evolution PDEs can be realized in this way **Example1:** The gradient flow of the functional

$$F(\rho) = \int (\log \rho) \rho dx$$

(=-"Boltzmann entropy") gives the heat (diffusion) equation

$$\frac{\partial \rho_t}{\partial t} = \Delta \rho_t$$

Recall: it may be realized using Brownian motion B_t on \mathbb{R}^n (i.e. ρ_t is the law of B_t)

• The Wasserstein point of view gives a useful bridge to probability ("interacting particle systems").

Example2: Given a (suitable) function V on \mathbb{R}^n the gradient flow of the functional

$$F(\rho) = \int (\log \rho) \rho dx + \int V \rho dx$$

is the linear Fokker-Planck equation:

$$\frac{\partial \rho_t}{\partial t} = \Delta \rho_t + \nabla \cdot (\rho_t \nabla V)$$

• Probabilistic interpretation: ρ_t is the law of the stochastic process X_t on \mathbb{R}^n satisfying the SDO

$$\frac{dX_t}{dt} = -\nabla V + \frac{dB_t}{dt}$$

(=stochastic gradient flow of V on Euclidean \mathbb{R}^n)

Example3: Assume given a (suitable) function W on \mathbb{R}^n . Then the gradient flow of the functional

$$F(\rho) = \int (\log \rho) \rho dx + \int \int W(x - y) \rho(x) \rho(y) dx dy$$

is the following non-linear Fokker-Planck equation

$$\frac{\partial \rho_t}{\partial t} = \Delta \rho_t + \nabla \cdot (\rho_t \nabla V_t)$$

$$V_t(x) = \int W(x - y)\rho(y)dy$$

(this evolution equation appears naturally in chemotaxis, astrophysics, swarm aggregation,...) The gradient flow formulation of the PDEs is also useful for proving existence and uniqueness of (weak) solutions.

- The starting point is a variational formulation of gradientflows going back to De Georgi's "minimizing movements"
- Also useful from a numerical point of view (the method is based on a varational version of Euler's method)

5) Applications to geometric functional inequalities

Optimal transport techniques have led to spectacularly transperant proofs of a range of geometric inequalities such as

- The Brunn-Minskowski inequality
- Isoperimetric inequalities
- (log) Sobolev inequalities

In a nut shell the proofs follow one of the following three different techniques:

- Use a transport map to "linearize" the problem
- Use convexity arguments on the Wasserstein 2-space
- Use a gradient flow on the Wasserstein 2-space