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Main references:

• [A-G][ Ambrosio, L; Gigli, N: �A user's guide to optimal trans-

port� (2011) (http://cvgmt.sns.it/paper/195/)

• [V] Villani, �Topics in optimal transportation�, AMS (2003)

We will cover parts of

A-G: Chapter 1-4 (80 pages)

V: Chapter 1,2,4,5,6,9

[In principle, will primarily use A-G and then V for further back-

ground]
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Further useful references:

• Villani, �Optimal transp ort, old and new� Springer (2008)

• Ambrosio, L; Gigli, N; Savare, G: �Gradient Flows in Metric

spaces and in the space of Probability Measures�, Birkhasuer

2008 (second edition)
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Out-line of the main topics

to be covered in the course

1. Transportation theory

2. Relations to Monge-Ampère equations

3. The 2-Wasserstein space W2

4. Otto calculus on W2 and applications to dissipative PDEs

5. Applications to geometric functional inequalities
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1. Transportation theory

Monge's formulation (1781)
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In mathematics terms: assume given two measures on Rn : µ

and ν with the same total mass, normalized to be one, i.e.

µ, ν ∈ P(Rn) := {probability measures onRn}

and a �cost function� c(x, p) on Rn × Rn.

De�nition: A transport map T from µ to ν is a map such that

T : Rn → Rn, T∗µ = ν,

i.e. ˆ
B
dν =

ˆ
T−1(B)

dµ
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The (total) cost of T is

C(T ) :=

ˆ
Rn
c(x, T (x))dµ

A transport map T is optimal (wrt µ, ν and c(x, y)) if it minimizes

the cost C(T ) over all maps transporting µ to ν.
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The Monge Problem

• Prove the existence and uniqueness of an optimal map T

• �Describe� the optimal map T

The standard setting

The most well-behaved case is the �quadratic case�:

c(x, y) = ∥x− y∥2

(but Monge was, in fact, mainly interested in the much more

di�cult case c(x, y) = ∥x− y∥ ...)
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General di�culties:

• Non-linearity: the cost functional

C(T ) :=

ˆ
Rn
c(x, T (x))dµ

is non-linear wrt T.

• Non-compactness: If Ti is a sequence of transport maps,

then Ti may not converge to a transport map.
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Solution: �Relaxation� of the Monge problem, i.e. enlarge {T}!

• Heuristically: allow �splitting of mass�

Def: A transport plan γ is a probability measure on Rn × Rn
whose �rst and second marginals are equal to µ and ν :

• γ ∈ P(Rn × Rn)

• (π1)∗γ = µ

• (π2)∗γ = ν

Then de�ne the cost functional C(γ) :=
´
Rn×Rn c(x, y)dγ
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Example: If T is a map transporting µ to ν, i.e. T∗µ = ν, then

γT := (I × T )∗µ

is a transport plan (from µ to ν).

• Note: the measure γT is supported on the graph of T
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The Kantorovich ('42) problem

Given probability measures µ, ν and a const function c(x, y) �nd

an optimal transport plan γ, i.e. a minimizer of

C(γ) :=

ˆ
Rn×Rn

c(x, y)dγ

Advantage:

• C(γ) is linear wrt γ

• �Compactness� (by weak compactness/tightness)

For any reasonable cost function c(x, y) the existence of an op-

timal γ is then easy.
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More good news:

• There is a dual formulation of the Kantorovich problem

γ ←→ (ϕ, ψ)

where ϕ(x) and ψ(y) are functions on X.

• This leads to a variational formulation involving only a c-

convex function ϕ(x) (using Legendre transforms).
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The new �regularity problem�:

Show that under suitable regularity assumptions on the data (µ, ν

and c(x, y)) the optimal transport plan γ is realized by a transport

map T, i.e. γ = γT .
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2) Relations to Monge-Ampère equations

In the following we specialize to the �standard case�:

c(x, y) = ∥x− y∥2

with µ and ν assumed �regular�, say

µ = f(x)dx, ν = g(y)dy, f, g ∈ C∞(Rn)

One can then a priori show [Brenier'87, Ca�arelli,...] that an

optimal map exists and is uniquely determined by

T (x) = ∇ϕ(x) : Rn → Rn

for a convex function ϕ on Rn.
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For T = ∇ϕ(x) with ϕ smooth and strictly convex it is easy to

see that

T∗(f(x)dx) = g(y)dy

if and only if

det(
∂2ϕ

∂xi∂xj
)g(∇ϕ) = f(x),

i.e. ϕ solves a Monge-Ampère equation.

Ex: prove this!

16



The Monge-Ampère operator

ϕ 7→ det(
∂2ϕ

∂xi∂xj
)

is a propotype of a fully non-linear partial di�erential operator

• Reversing the story: the transport problem with c(x, y) =

∥x− y∥2 thus provides a variational approach to real Monge-

Ampère equations

• This can be related to more standard Dirichlet type vari-
ational principles [B., �Statistical mechanics of permanents, real-
Monge-Ampere equations and optimal transport�, arXiv:1302.4045]

3) The 2-Wasserstein space
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The space Rn comes with a standard metric, the Euclidean one:

d(x, y) := ∥x− y∥

It induces a metric on the in�nite dimensional space P(Rn) of all
probability measures on Rn :

dW2
(µ, ν) := ”the minimal cost to transport µto ν”

(de�ned in terms of the standard cost function c(x, y) = ∥x− y∥2),
i.e.

dW2
(µ, ν) = inf

γ
C(γ)(= C(γoptimal))

over all transport plans γ from µ to ν.



More precisely, the Wasserstein 2-metric dW2
is a well-de�ned

metric on the subspace

P2(Rn) :=
{
µ ∈ P(Rn) :

ˆ
|x|2dµ <∞

}
What about the geometric structure of the Wasserstein space

W2 := (P2(Rn), dW2
)?

• It has positive curvature (in the sense of Alexandrov)

How to describe the geodesics in W2 (i.e. curves µt with minimal

length)?
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They can be described in terms of optimal transport maps:

• The geodesic connecting (�regular�) measures µ0 and µ1 is

given by

µt := ((1− t)I + tT )∗µ0,

where T is the optimal transport map from µ0 to µ1
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4) Otto calculus on W2 and applications to dissipative PDEs

Otto's key observation: d2W2
comes from a Riemannian metric

on P2(Rn).

• Hence, we can �do calculs� on P2(Rn)!

The de�nition of the length of the tangent vector of the curve

µt = ρtdx

at t = 0, i.e. ∥∥∥∥∂ρt∂t |t=0

∥∥∥∥
W2

is inspired by �uid mechanics/kinetic theory:
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Think of the changing density ρt as induced by a velocity �eld −→vt
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In mathematical terms:

∂ρt

∂t |t=0 = −∇ · (ρ0−→v ) (the continuity equation)

for a vector �eld −→v (uniquely determined by ∇ × −→v = 0, i.e.
−→v = ∇ϕ for some function ϕ)

• Then de�ne ∥∥∥∥∂ρt∂t |t=0

∥∥∥∥2
W2

:=

ˆ
Rn
∥−→v ∥2 ρ0dx

(=the total kinetic energy of the �uid)
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Applications to dissipative PDEs

Given a functional F on the space P(Rn) we can study its gradient-
�ow with respect to dW2

:

∂ρt

∂t
= −∇F|ρt, ρ|t = ρ0
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By construction the functional F is mototone (decreasing) along

the gradient-�ow ρt.

• Many interesting �dissipative� evolution PDEs can be realized

in this way
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Example1: The gradient �ow of the functional

F (ρ) =

ˆ
(log ρ)ρdx

(=-�Boltzmann entropy�) gives the heat (di�usion) equation

∂ρt

∂t
= ∆ρt

Recall: it may be realized using Brownian motion Bt on Rn (i.e.

ρt is the law of Bt)

• The Wasserstein point of view gives a useful bridge to prob-

ability (�interacting particle systems�).
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Example2: Given a (suitable) function V on Rn the gradient

�ow of the functional

F (ρ) =

ˆ
(log ρ)ρdx+

ˆ
V ρdx

is the linear Fokker-Planck equation:

∂ρt

∂t
= ∆ρt+∇ · (ρt∇V )

• Probabilistic interpretation: ρt is the law of the stochastic

process Xt on Rn satisfying the SDO

dXt

dt
= −∇V +

dBt

dt

(=stochastic gradient �ow of V on Euclidean Rn)
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Example3: Assume given a (suitable) function W on Rn. Then
the gradient �ow of the functional

F (ρ) =

ˆ
(log ρ)ρdx+

ˆ ˆ
W (x− y)ρ(x)ρ(y)dxdy

is the following non-linear Fokker-Planck equation

∂ρt

∂t
= ∆ρt+∇ · (ρt∇Vt)

Vt(x) =

ˆ
W (x− y)ρ(y)dy

(this evolution equation appears naturally in chemotaxis, astro-

physics, swarm aggregation,...)
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The gradient �ow formulation of the PDEs is also useful for

proving existence and uniqueness of (weak) solutions.

• The starting point is a variational formulation of gradient-

�ows going back to De Georgi's �minimizing movements�

• Also useful from a numerical point of view (the method is

based on a varational version of Euler's method)
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5) Applications to geometric functional inequalities

Optimal transport techniques have led to spectacularly transper-

ant proofs of a range of geometric inequalities such as

• The Brunn-Minskowski inequality

• Isoperimetric inequalities

• (log) Sobolev inequalities
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In a nut shell the proofs follow one of the following three di�erent

techniques:

• Use a transport map to �linearize� the problem

• Use convexity arguments on the Wasserstein 2-space

• Use a gradient �ow on the Wasserstein 2-space
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