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Main references:

e [A-G][ Ambrosio, L; Gigli, N: “A user’'s guide to optimal trans-
port” (2011) (http://cvgmt.sns.it/paper/195/)

e [V] Villani, “Topics in optimal transportation”, AMS (2003)

We will cover parts of
A-G: Chapter 1-4 (80 pages)
V: Chapter 1,2,4,5,6,9

[In principle, will primarily use A-G and then V for further back-
ground]



Further useful references:

e Villani, “Optimal transp ort, old and new"” Springer (2008)

e Ambrosio, L; Gigli, N; Savare, G: “Gradient Flows in Metric
spaces and in the space of Probability Measures”’, Birkhasuer
2008 (second edition)



Out-line of the main topics
to be covered in the course

1. Transportation theory

2. Relations to Monge-Ampere equations

3. The 2-Wasserstein space W>

4. Otto calculus on W5 and applications to dissipative PDEs

5. Applications to geometric functional inequalities



1. Transportation theory

Monge's formulation (1781)



In mathematics terms: assume given two measures on R"™ : pu
and v with the same total mass, normalized to be one, i.e.

wu,v € P(R™) := {probability measures onR"™}

and a ‘“cost function” c¢(x,p) on R"™ x R",

Definition: A transport map T from p to v is a map such that



The (total) cost of T is

O(T) = /nc(x,T(;v))d,u

A transport map T is optimal (wrt p,v and c¢(x,y)) if it minimizes
the cost C(T) over all maps transporting p to v.



The Monge Problem
e Prove the existence and uniqueness of an optimal map T
e “Describe” the optimal map T’

T he standard setting

The most well-behaved case is the “quadratic case’:

2
c(z,y) = [lz -y

(but Monge was, in fact, mainly interested in the much more
difficult case c(z,y) = ||z — y]...)



General difficulties:

e Non-linearity: the cost functional

O(T) = /nc(x,T(x))d,u

iIs non-linear wrt T.

e Non-compactness: If T; is a sequence of transport maps,
then T; may not converge to a transport map.



Solution: “Relaxation” of the Monge problem, i.e. enlarge {T}!
e Heuristically: allow “splitting of mass”

Def: A transport plan ~ is a probability measure on R"™ x R"
whose first and second marginals are equal to p and v :

o v & P(R"™ x R™)
o (m1)xy =
o (m2)xy =v

Then define the cost functional C(v) ‘= Jpnpn c(x,y)dy
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Example: If T' is a map transporting p to v, i.e. Tyu = v, then

yr = I X T)xp

is a transport plan (from u to v).

e Note: the measure ¢ is supported on the graph of T

11



The Kantorovich ('42) problem

Given probability measures u,v and a const function c¢(z,y) find
an optimal transport plan ~, i.e. a minimizer of

co) = ey

Advantage:
o C(v) is linear wrt ~
e “Compactness” (by weak compactness/tightness)

For any reasonable cost function c(z,y) the existence of an op-
timal ~ is then easy.
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More good news:

e There is a dual formulation of the Kantorovich problem

v < (¢, %)

where ¢(x) and 1 (y) are functions on X.

e This leads to a variational formulation involving only a c¢-
convex function ¢(x) (using Legendre transforms).
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The new ‘“regularity problem’:

Show that under suitable regularity assumptions on the data (u, v
and c¢(x,y)) the optimal transport plan « is realized by a transport
map T, i.e. v = vyp.
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2) Relations to Monge-Ampére equations

In the following we specialize to the “standard case’:

c(z,y) = ||z — vl

with u and v assumed ‘regular’, say

p= f(x)dzx, v=g(y)dy, f,ge€CTR")

One can then a priori show [Brenier'87, Caffarelli,...] that an
optimal map exists and is uniquely determined by

T(z) = Vo(z) : R® — R”

for a convex function ¢ on R™.
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For T' = V¢(x) with ¢ smooth and strictly convex it is easy to
see that

T (f(z)dx) = g(y)dy
if and only if
02 ¢
Ox; 0T
i.e. ¢ solves a Monge-Ampéere equation.

det( )9(Vo) = f(x),

Ex: prove this!
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The Monge-Ampeére operator
92¢ )
8952-63:]-
IS a propotype of a fully non-linear partial differential operator

¢ — det(

e Reversing the story: the transport problem with c(x,y) =
|z — y||? thus provides a variational approach to real Monge-

Ampéere equations

e This can be related to more standard Dirichlet type vari-
ational principles [B., “Statistical mechanics of permanents, real-
Monge-Ampere equations and optimal transport”, arXiv:1302.4045]

3) The 2-Wasserstein space
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The space R"™ comes with a standard metric, the Euclidean one:

d(z,y) = |l -yl

It induces a metric on the infinite dimensional space P(R") of all
probability measures on R":

dw,(u,v) :="the minimal cost to transport puto v"

(defined in terms of the standard cost function c(z,y) = ||z — y||?),
€.

dWQ(Ma v) = iljyf C(y)(= C('Yoptz’mal))

over all transport plans v from u to v.



More precisely, the Wasserstein 2-metric sz iIs a well-defined
metric on the subspace

Po(R") 1= {u € P(R") : /lezdu < oo}

What about the geometric structure of the Wasserstein space
Wo 1= (P2(R™), dw,)7

e It has positive curvature (in the sense of Alexandrov)

How to describe the geodesics in W5 (i.e. curves u; with minimal
length)?
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They can be described in terms of optimal transport maps:

e The geodesic connecting (“regular’) measures pug and uq is
given by

pe = ((1 = t)I + tT)xpo,

where T' is the optimal transport map from ug to pq
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4) Otto calculus on W5 and applications to dissipative PDEs

Otto’s key observation: d%VQ comes from a Riemannian metric
on Po(R™).

e Hence, we can “do calculs” on P> (R"™)!

The definition of the length of the tangent vector of the curve

pt = prdx
at t =0, I.e.
Opt
o =olls,

is inspired by fluid mechanics/kinetic theory:

20



Think of the changing density p; as induced by a velocity field o7

21



In mathematical terms:

0
%\tzo = -V -(po@) (the continuity equation)

for a vector field ¥ (uniquely determined by V x ¥ = 0, i.e

¥ = V¢ for some function ¢)

e [ hen define

dpt
|2 o||W :=/R 17112 poda
2 n

(=the total kinetic energy of the fluid)
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Applications to dissipative PDEs

Given a functional F' on the space P(R"™) we can study its gradient-
flow with respect to sz :
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By construction the functional F' is mototone (decreasing) along
the gradient-flow py.

e Many interesting “dissipative” evolution PDEs can be realized
in this way
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Examplel: The gradient flow of the functional

F(p) = / (10g p)pdz

(=-"Boltzmann entropy’) gives the heat (diffusion) equation

Opt
A
By Pt

Recall: it may be realized using Brownian motion B; on R" (i.e.
p¢ is the law of By)

e T he Wasserstein point of view gives a useful bridge to prob-
ability (“interacting particle systems").
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Example2: Given a (suitable) function V on R"™ the gradient
flow of the functional

F(p) = [ (log pypd + [ Vpdz
IS the linear Fokker-Planck equation:

0
% = ADp + V- (ptVV)

e Probabilistic interpretation: p; is the law of the stochastic
process X; on R" satisfying the SDO

X iB
- vy 4+
dt dt

(=stochastic gradient flow of V on Euclidean R")
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Example3: Assume given a (suitable) function W on R"™. Then
the gradient flow of the functional

F(p) = / (10g p)pdz + / / W (e — y)p()p(y)dzdy

IS the following non-linear Fokker-Planck equation

0
% = Api+ V- (pVVy)

Vi(z) = /W(aj —y)p(y)dy

(this evolution equation appears naturally in chemotaxis, astro-
physics, swarm aggregation,...)

27



The gradient flow formulation of the PDEs is also useful for
proving existence and uniqueness of (weak) solutions.

e T he starting point is a variational formulation of gradient-
flows going back to De Georgi’s “minimizing movements”

e Also useful from a numerical point of view (the method is
based on a varational version of Euler's method)
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5) Applications to geometric functional inequalities

Optimal transport techniques have led to spectacularly transper-
ant proofs of a range of geometric inequalities such as

e [ he Brunn-Minskowski inequality

e Isoperimetric inequalities

e (log) Sobolev inequalities

29



In a nut shell the proofs follow one of the following three different
techniques:

e Use a transport map to ‘“linearize’” the problem

e Use convexity arguments on the Wasserstein 2-space

e Use a gradient flow on the Wasserstein 2-space
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