MSA350 Stokastisk analys 7,5 hp

 
 Calculus, including integration, differentiation, and differential equations are of fundamental importance for modelling in most branches on natural sciences. However, these tools are insufficient to model phenomena which include ”chance” or ”uncertainty”, like noise disturbances of signals in engineering, uncertainty about future stock prices in finance, and the macroscopic result of many microscopic particle movements in natural sciences. Among the most important tools required for the modelling of the latter phenomena are stochastic analysis and stochastic differential equations. The course gives a solid basic knowledge of stochastic analysis and stochastic differential equations. Tools from calculus, probability theory and stochastic processes that are required in stochastic calculus. Brownian motion calculus. Elements of Levy processes and martingales. Stochastic integrals. Stochastic differential equations. Examples of applications in engineering, mathematical finance and natural sciences. Numerical methods for stochastic differential equations.
 
Kursen ges
  • första halvan av hösten
  • tillsammans med Chalmers TMS165

 

Kursinformation 2019

Kursinformation 2018

Kursinformation 2017

Kursinformation 2016

Kursinformation 2015

Kursinformation 2014

Kursinformation 2013

Kursinformation 2012

Kursinformation 2011

Kursinformation 2010

Kursinformation 2009

Kursinformation 2008

Kursinformation 2007


 

 

 

Publicerad: ti 04 dec 2012. Ändrad: må 22 jul 2019