On the Lifting of the Dirac Elements in the Higson-Kasparov Theorem

Shintaro Nishikawa

The Pennsylvania State University
sxn28@psu.edu

“Analysis, Noncommutative Geometry, Operator Algebras”
Gothenburg University, Sweden, 12-16/6 2017
Plan of the Talk

Main Topic: The Higson-Kasparov Theorem (2001) = The Baum-Connes Conjecture for a-T-menable groups

- What is the main idea for proving this theorem
- What kind of interesting analysis comes into play (Non-commutative functional calculus: definitions and corrections)
- Simplifications in the lifting argument from E-theory to KK-theory
a-T-menable Groups

Definition: a-T-menable groups
A second countable locally compact group is **a-T-menable** if it acts metrically properly and affine isometrically on a (real) Hilbert space.

Examples of a-T-menable groups
- All compact groups.
- **All amenable groups** (e.g. abelian groups).
- Groups which act properly on trees (e.g. free groups F_n).
- All closed subgroups of $SO(n, 1)$ or $SU(n, 1)$.

Non-examples
- $Sp(n, 1)$ for $n \geq 2$, $SL(n, \mathbb{Z})$, $SL(n, \mathbb{R})$ for $n \geq 3$ (Property (T));
- $SL(2, \mathbb{Z}) \rtimes \mathbb{Z}^2$ (relative Property (T)).
BCC

- G: a second countable, locally compact topological group.
- $\mathcal{E}G$: a classifying space for proper actions of G.
- A: a separable G-C^*-algebra.
- $A \rtimes_r G$: the reduced crossed product of A.

The Baum-Connes Conjecture with Coefficients (BCC), 1991

$$RKK^G_*(\mathcal{E}G, A) \cong K_*(A \rtimes_r G) \quad (\ast = 0, 1)$$

- LHS = Equivariant K-homology of $\mathcal{E}G$ with coefficient in A.
- RHS = K-theory of $A \rtimes_r G$.

G satisfies BCC \Rightarrow All closed subgroups of G satisfy BCC.

BCC \Rightarrow The Baum-Connes Conjecture (when $A = \mathbb{C}$).
BCC and Higson-Kasparov Theorem

- **Abelian Groups**
 - **Amenable Groups**
 - **Exact Groups**
 - **a-T-menable Groups**
 - **BCC**

The Higson-Kasparov Theorem (2001)

Any second countable a-T-menable group G satisfies *BCC*

Their proof involves (infinite-dimensional) functional analysis; (no classical differential geometry or representation theory).
Setting

- \mathcal{H}: a separable (real) Hilbert space.
- G: an a-T-menable group acting properly on \mathcal{H}.
Dual Dirac Method \((1_G = \gamma_G) \)

- \(KK^G \): Kasparov’s equivariant \(KK \)-theory

The Dual Dirac Method

The following is sufficient to prove BCC for \(G \):

- Find a **proper** \(G \)-C*-algebra \(A(\mathcal{H}) \);
- Find an element \(b \in KK^G_* (\mathbb{C}, A(\mathcal{H})) \) (Bott element);
- Find an element \(d \in KK^G_* (A(\mathcal{H}), \mathbb{C}) \) (Dirac element);

such that

- The product \(b \otimes_{A(\mathcal{H})} d = 1_G \) in \(KK^G(\mathbb{C}, \mathbb{C}) \).

A \(G \)-C*-algebra \(A \) is **proper** if there is a proper \(G \)-space \(X \) and a nondegenerate equivariant \(*\)-homomorphism from \(C_0(X) \) to the center of the multiplier algebra \(M(A) \).
Strategy

There is a finite dimensional version of what we want to do:

When Hilbert space is finite dimensional ($\mathcal{H} = \mathbb{R}^n$)

- $C_\tau(\mathbb{R}^n) = \Gamma_0(\mathbb{R}^n, \text{Cliff}(\mathbb{R}^n))$ (proper algebra);
- $b_{\mathbb{R}^n} \in KK_0^G(\mathbb{C}, C_\tau(\mathbb{R}^n))$ (Bott element);
- $d_{\mathbb{R}^n} \in KK_0^G(C_\tau(\mathbb{R}^n), \mathbb{C})$ (Dirac element);
- $b_{\mathbb{R}^n} \otimes_{C_\tau(\mathbb{R}^n)} d_{\mathbb{R}^n} = [L^2(\mathbb{R}^n, \Lambda^*_\mathbb{C}(\mathbb{R}^n)), B_{\mathbb{R}^n}]$;
- $[L^2(\mathbb{R}^n, \Lambda^*_\mathbb{C}(\mathbb{R}^n)), B_{\mathbb{R}^n}] = 1_G$ in $KK^G(\mathbb{C}, \mathbb{C})$.

Here, $B_{\mathbb{R}^n}$ is a Bott-Dirac operator of \mathbb{R}^n.

$n=1$

- $c(e_1) (\bar{c}(e_1))$: (skew-) s.a. Clifford mult. by $e_1 \in \mathbb{R}$;
- $b_{\mathbb{R}} = [C_\tau(\mathbb{R}), c(e_1)x] \in KK_0^G(\mathbb{C}, C_\tau(\mathbb{R}))$;
- $d_{\mathbb{R}} = [C_\tau(\mathbb{R}) \bowtie L^2(\mathbb{R}, \Lambda^*_\mathbb{C}(\mathbb{R})), \bar{c}(e_1) \frac{d}{dx}] \in KK_0^G(C_\tau(\mathbb{R}), \mathbb{C})$;
- $b_{\mathbb{R}} \otimes_{C_\tau(\mathbb{R})} d_{\mathbb{R}} = [L^2(\mathbb{R}, \Lambda^*_\mathbb{C}(\mathbb{R})), B_{\mathbb{R}} = c(e_1)x + \bar{c}(e_1) \frac{d}{dx}]$.
The proof of the Higson-Kasparov Theorem is nothing but to make sense of the following “limits”:

- \(A(\mathcal{H}) := \text{“} \lim C_t(\mathbb{R}^n) \text{”} \) (proper algebra);
- \(b := \text{“} \lim b_{\mathbb{R}^n} \in KK^G_1(\mathbb{C}, A(\mathcal{H})) \text{”} \) (Bott element);
- \(d := \text{“} \lim d_{\mathbb{R}^n} \in KK^G_1(A(\mathcal{H}), \mathbb{C}) \text{”} \) (Dirac element);
- \(\text{“} \lim[L^2(\mathbb{R}^n, \Lambda^\mathbb{C}_*(\mathbb{R}^n)), B_{\mathbb{R}^n}] = 1_G \in KK^G(\mathbb{C}, \mathbb{C}) \text{”} \).

An interesting analysis is used when we deal with the “limit” of the cycles \([L^2(\mathbb{R}^n, \Lambda^\mathbb{C}_*(\mathbb{R}^n)), B_{\mathbb{R}^n}]\).
(Non-commutative functional calculus).
The Bott-Dirac Operator $B_{\mathbb{R}^n}$ represents 1_G in $KK^G(\mathbb{C}, \mathbb{C})$.

$$B_{\mathbb{R}} := c(e_1)x + \tilde{c}(e_1) \frac{d}{dx} = \begin{pmatrix} 0 & x - \frac{d}{dx} \\ x + \frac{d}{dx} & 0 \end{pmatrix}$$

- $B_{\mathbb{R}}$ is an odd unbounded operator on $L^2(\mathbb{R}, \Lambda^*_C(\mathbb{R}))$;
- It is defined on the Schwartz space $s(\mathbb{R}, \Lambda^*_C(\mathbb{R}))$;
- It is selfadjoint and diagonalizable;
- It has compact resolvent; and $\text{Ker}B_{\mathbb{R}} = \text{span}\{e^{-\frac{||x||^2}{2}}\}$.

$$B_{\mathbb{R}} = \begin{pmatrix}
0 & 0 & 0 & \cdots \\
0 & \sqrt{2} & 0 & \cdots \\
0 & 0 & \sqrt{4} & \cdots \\
0 & 0 & 0 & \sqrt{6} \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$
Bott-Dirac Operator of \mathbb{R}^n

$$B_{\mathbb{R}^n} := \sum_{j=1}^{n} c(e_j)x_j + \bar{c}(e_j)\frac{\partial}{\partial x_j}$$

$$= B_{\mathbb{R}^n} \hat{\otimes} 1 \hat{\otimes} \cdots \hat{\otimes} 1 + 1 \hat{\otimes} B_{\mathbb{R}^n} \hat{\otimes} 1 \hat{\otimes} \cdots \hat{\otimes} 1 + \cdots + 1 \hat{\otimes} \cdots \hat{\otimes} 1 \hat{\otimes} B_{\mathbb{R}^n}$$

$$L^2(\mathbb{R}^n, \Lambda^c_*(\mathbb{R}^n)) = L^2(\mathbb{R}, \Lambda^c_*(\mathbb{R})) \hat{\otimes} \cdots \hat{\otimes} L^2(\mathbb{R}, \Lambda^c_*(\mathbb{R}))$$

- $B_{\mathbb{R}^n}$ is an odd unbounded operator on $L^2(\mathbb{R}^n, \Lambda^c_*(\mathbb{R}^n))$;
- It is defined on the Schwartz space $s(\mathbb{R}^n, \Lambda^c_*(\mathbb{R})^n)$;
- It is independent of the choice of a basis $\{e_j\}_{j=1}^n$ of \mathbb{R}^n;
- It is selfadjoint and diagonalizable;
- It has compact resolvent; and $\text{Ker}B_{\mathbb{R}^n} = \text{span}\{e^{-\frac{||x||^2}{2}}\}$;
- Note: the eigenspace of $B_{\mathbb{R}^n}^2$ for $\lambda = 2$ has dimension $2n$.
We want to define Bott-Dirac Operator $B_{\mathcal{H}}$ of an infinite dimensional Hilbert space \mathcal{H} as an inductive limit of $B_{\mathbb{R}^n}$.

There is a natural construction of such an inductive limit.
Bott-Dirac Operator of \mathcal{H}

- \mathcal{H}: a separable (real) (G-)Hilbert space.
- For each finite dimensional subspace V of \mathcal{H},
 $$H(V) := L^2(V, \wedge^* (V))$$
 $$s(V) := s(V, \wedge^* (V))$$ (Schwartz space);
 B_V: Bott-Dirac Operator of V
- For an inclusion of subspaces $V \subset V' = V \oplus W$,
 $$H(V) \to H(V') = H(V) \hat{\otimes} H(W): \xi \mapsto \xi \hat{\otimes} e^{-\frac{||w||^2}{2}}$$
 $$H(\mathcal{H}) := \lim_V H(V): \text{naturally } G\text{-Hilbert space.}$$
- $$B_\mathcal{H} := \lim_V B_V$$
- $B_\mathcal{H}$ is defined on $s(\mathcal{H}) := \text{alg-lim}_V s(V)$;
- It is a well-defined odd unbounded operator on $H(\mathcal{H})$.
Bott-Dirac Operator of \mathcal{H}

$$B_\mathcal{H} := \lim_{V} B_V$$

For $\xi \in s(V) \subset s(\mathcal{H})$, $B_\mathcal{H}(\xi) := B_V \xi \in s(V) \subset s(\mathcal{H})$.

It is well-defined because the following diagram commutes for $V \subset V \oplus W \subset \mathcal{H}$:

$$
\begin{array}{ccc}
s(V) & \longrightarrow & s(V \oplus W) \\
\downarrow B_V & & \downarrow B_{V \oplus W} \\
s(V) & \longrightarrow & s(V \oplus W)
\end{array}
$$

To see this, one may write $B_{V \oplus W} = B_V + B_W$. For $\xi \in s(V)$, $B_{V \oplus W}(\xi \hat{\otimes} e^{-\frac{||w||^2}{2}}) = B_V \xi \hat{\otimes} e^{-\frac{||w||^2}{2}} + \xi \hat{\otimes} B_W e^{-\frac{||w||^2}{2}} = B_V \xi \hat{\otimes} e^{-\frac{||w||^2}{2}}$.
Bott-Dirac Operator of \mathcal{H}

$$B_{\mathcal{H}} := \lim_{V} B_{V}$$

- $B_{\mathcal{H}}$ is an odd unbounded operator on $H(\mathcal{H}) := \lim_{V} H(V)$;
- It is selfadjoint and diagonalizable;
- It is G-equivariant if G acts on \mathcal{H} linearly;
- $\text{Ker} B_{\mathcal{H}} = \text{span}\{ e^{-\frac{\|x\|^2}{2}} \}$;
- It does not have compact resolvent:
 - the eigenspace of $B_{\mathcal{H}}^{2}$ for $\lambda = 2$ has infinite dimension.

$[H(\mathcal{H}), B_{\mathcal{H}}]$ doesn’t define an element in $KK^{G}(\mathbb{C}, \mathbb{C})$.
Quick Solution

After fixing some basis \(\{e_j\}_{j=1}^\infty \) of \(\mathcal{H} \), we may write \(B_\mathcal{H} \) as:

\[
B_\mathcal{H} = \sum_{j=1}^\infty c(e_j)x_j + \bar{c}(e_j) \frac{\partial}{\partial x_j}
\]

\[
= B_R \hat{\otimes} 1 \hat{\otimes} \cdots + 1 \hat{\otimes} B_R \hat{\otimes} 1 \hat{\otimes} \cdots + \cdots
\]

\[
H(\mathcal{H}) = L^2(\mathbb{R}, \Lambda^C(\mathbb{R})) \hat{\otimes} L^2(\mathbb{R}, \Lambda^*_C(\mathbb{R})) \hat{\otimes} \cdots
\]

A quick solution for the non-compact resolvent issue is:

Proposition

Fix some basis as above. For any unbounded increasing sequence \((n_k) \) of positive numbers,

\[
\tilde{B}_\mathcal{H} := n_1 B_R \hat{\otimes} 1 \hat{\otimes} \cdots + n_2 1 \hat{\otimes} B_R \hat{\otimes} 1 \hat{\otimes} \cdots + n_3 1 \hat{\otimes} 1 \hat{\otimes} B_R \hat{\otimes} \cdots + \cdots
\]

defines an unbounded, diagonalizable selfadjoint operator on \(H(\mathcal{H}) \) having compact resolvent with \(\text{Ker} B_\mathcal{H} = \text{span}\{e^{-\|x\|^2/2}\} \).
Non-Commutative Functional Calculus

Non-commutative functional calculus is a more systematic way to do such perturbation of $B_\mathcal{H}$.

Non-Commutative Functional Calculus (Higson, Kasparov)

- h: any symmetric, densely defined operator on \mathcal{H};
- \mathcal{H}_h: the domain of h;
- $h(B_\mathcal{H}) := \sum_{j=1}^{\infty} c(he_j)x_j + \bar{c}(he_j)\frac{\partial}{\partial x_j}$;
- $h(B_\mathcal{H})$ is defined on $\text{alg- lim}_{V \subseteq \mathcal{H}_h} s(V)$;
- It is a well-defined odd symmetric operator on $H(\mathcal{H})$;
- It is independent of the choice of a basis $\{e_j\}_{j=1}^{\infty}$ of \mathcal{H}_h;
- When h is diagonalizable, so is $h(B_\mathcal{H})$;
- When h has compact resolvent, so is $h(B_\mathcal{H})$;
- The assignment $h \mapsto h(B_\mathcal{H})$ is \mathbb{R}-linear.
Let's take a closer look at the definition:
Consider for any densely defined operator h on \mathcal{H},

- $V_n := \text{span}\{ e_j | j = 1, \cdots, n \} \subset \mathcal{H}_h$
- $h(B_{V_n}) := \sum_{j=1}^{n} c(he_j)x_j + \bar{c}(he_j)\frac{\partial}{\partial x_j}$

Can we define $h(B_{\mathcal{H}}) := \lim h(B_{V_n})$?

For $V_n \subset V_n' \subset V_n'' \subset \mathcal{H}_h$ and $V_n'' + hV_n'' \subset W$:

we may hope that the following diagram commutes:

$$
\begin{array}{ccc}
\text{s}(V_n, \Lambda^C_*(V_n)) & \longrightarrow & \text{s}(V_n', \Lambda^C_*(V_n')) \\
\downarrow h(B_{V_n'}) & & \downarrow h(B_{V_n''}) \\
\text{s}(V_n', \Lambda^C_*(W)) & \longrightarrow & \text{s}(V_n'', \Lambda^C_*(W))
\end{array}
$$
Non-commutative Functional Calculus

In the paper by Higson and Kasparov, it was (implicitly) claimed that this diagram commutes:

\[
s(V_n, \Lambda^C_*(V_n)) \longrightarrow s(V_n', \Lambda^C_*(V_n')) \longrightarrow s(V_n'', \Lambda^C_*(V_n''))
\]

\[
\downarrow \quad h(B_{V_n'}) \quad \quad \quad \downarrow \quad h(B_{V_n''})
\]

\[
s(V_n', \Lambda^C_*(W)) \longrightarrow s(V_n'', \Lambda^C_*(W))
\]

However, in general, this diagram does not commute.

Theorem (Fixed non-commutative functional calculus) (N.)

- The diagram asymptotically commutes iff \(h^* \) is defined on \(V_n \).
- The following formula defines \(h(B_{\mathcal{H}}) \) unambiguously for any \(h \) whose adjoint \(h^* \) is defined on \(\mathcal{H}_h \):

\[
\xi \in s(V), \quad h(B_{\mathcal{H}})(\xi) := \lim_{W \subset \mathcal{H}_h} h(B_{V \oplus W})(\xi \otimes e^{-\frac{||w||^2}{2}})
\]
Example 1: consider if $h = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ on span\{e_1, e_2\};

This is not commutative due to the following nonzero term:

$$(c(h e_2)x_2 + \bar{c}(h e_2)\frac{\partial}{\partial x_2})(\xi \hat{\otimes} e^{-\frac{x_2^2}{2}})$$

$$= \text{int}(e_1)\xi \hat{\otimes} 2x_2 e^{-\frac{x_2^2}{2}} \ (\text{for } \xi \in s(V_1)).$$
Example 2: consider:

\[
h = \begin{pmatrix}
1 & 0 & 0 & 0 & \cdots \\
0 & 2 & 0 & 0 & \cdots \\
0 & 0 & 3 & 0 & \cdots \\
0 & 0 & 0 & 4 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix} + \begin{pmatrix}
1 \\
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{4} \\
\vdots
\end{pmatrix} (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots);
\]

\[
s\left(V_1, \Lambda^C_*(V_1)\right) \rightarrow s\left(V_n', \Lambda^C_*(V_n')\right) \rightarrow s\left(V_n'', \Lambda^C_*(V_n'')\right)
\]

\[
\downarrow h(B_{V_n'}) \quad \downarrow h(B_{V_n''})
\]

\[
s\left(V_n', \Lambda^C_*(W)\right) \rightarrow s\left(V_n'', \Lambda^C_*(W)\right)
\]

This is not commutative no matter how large we take \(V_n'\). Nonetheless, it asymptotically commutes.
So what is \(\lim[L^2(\mathbb{R}^n, \Lambda^*_C(\mathbb{R}^n)), B_{\mathbb{R}^n}] \)?

With suitable \(h \), one can guarantee “asymptotic equivariance” for a family \(\{(1 + th)(B_{\mathcal{H}})\}_{t > 0} \).

“Via asymptotic morphisms”, one may define “\([H(\mathcal{H}), (1 + th)(B_{\mathcal{H}})] = 1_G \in KK^G(\mathbb{C}, \mathbb{C})\)."
$A(\mathcal{H})$: C^*-algebra of Hilbert space \mathcal{H}

The following “limits” can be defined without so much trouble:

- $A(\mathcal{H}) := \text{“lim } C_\tau(\mathbb{R}^n)\text{” (proper algebra)}$;
- $b := \text{“lim } b_{\mathbb{R}^n}\text{” (Bott element)}$;
- $S = C_0(\mathbb{R})$: a (graded) C^*-algebra.

$A(\mathcal{H}) := \lim_{\mathcal{V}} S \hat{\otimes} C_\tau(V)$ is defined as follows:
- For an inclusion of subspaces $V \subset V' = V \oplus W$,

 $S \hat{\otimes} C_\tau(V) \to S \hat{\otimes} C_\tau(V') \cong S \hat{\otimes} C_\tau(W) \hat{\otimes} C_\tau(V)$:

It’s given by the graded tensor product of $*$-homomorphisms:

- $S \to S \hat{\otimes} C_\tau(W) : f \mapsto f(x \hat{\otimes} 1 + 1 \hat{\otimes} c_W)$
- $C_\tau(V) \to C_\tau(V) : \text{the identity on } C_\tau(V)$
Explanation for $S \rightarrow S\hat{\otimes}C_{\tau}(W) : f \mapsto f(x\hat{\otimes}1 + 1\hat{\otimes}c_{W})$:

- x is an (odd) unbounded multiplier on S: multiplication by x at x in \mathbb{R};
- c_{W} is an (odd) unbounded multiplier on $C_{\tau}(W)$: Clifford multiplication $c(w)$ at w in W;

$x\hat{\otimes}1 + 1\hat{\otimes}c_{W}$ is an (odd) unbounded multiplier on $S\hat{\otimes}C_{\tau}(W)$.

We have a functional calculus $f \mapsto f(x\hat{\otimes}1 + 1\hat{\otimes}c_{W})$.

For example:

$$e^{-x^2} \mapsto e^{-x^2}\hat{\otimes}e^{-\|w\|^2};$$

$$xe^{-x^2} \mapsto xe^{-x^2}\hat{\otimes}e^{-\|w\|^2} + e^{-x^2}\hat{\otimes}c_{W}e^{-\|w\|^2}.$$
$A(\mathcal{H})$: C^*-algebra of Hilbert space \mathcal{H}

- When a group G acts on \mathcal{H} affine isometrically, the C^*-algebra $A(\mathcal{H})$ is naturally a G-C^*-algebra.

- If moreover, G acts on \mathcal{H} (metrically) properly, the C^*-algebra $A(\mathcal{H})$ is a proper G-C^*-algebra.

- Indeed, the center of $A(\mathcal{H})$ is $C_0([0, \infty) \times \mathcal{H})$

- $\lim_{W} x \hat{\otimes} 1 + 1 \hat{\otimes} c_W$ defines an element b in $KK_1^G(\mathbb{C}, A(\mathcal{H}))$.
“\(\lim d_{\mathbb{R}^n} \)” and Spectral Dual-Dirac

- It is somewhat technical to construct the Dirac element \(d := \lim d_{\mathbb{R}^n} \) with bare hands in \(KK^G \).

What we can simply have is the following “Spectral Dual Dirac”

- \(A \rightarrow B \) denotes an asymptotic morphism from \(A \) to \(B \)
- \(A(\mathcal{H}) \): the C*-algebra of Hilbert space \(\mathcal{H} \) (proper algebra)
- \(\beta : S \rightarrow A(\mathcal{H}) \) (“Bott element”);
- \(\alpha : A(\mathcal{H}) \rightarrow S \hat{\otimes} K(H(\mathcal{H})) \) (“Dirac element”);
- The composition \(\alpha \circ \beta : S \rightarrow S \hat{\otimes} K(H(\mathcal{H})) \) is homotopic to \(\text{id}_S : S \rightarrow S \) in a suitable sense.

Indeed, the idea of Higson and Kasparov was to translate (lift) everything into the language of \(KK \)-theory:
Higson and Kasparov lifted this Spectral Dual-Dirac to KK in the following way:

- We already have a Bott element $b \in KK_1^G(\mathbb{C}, A(\mathcal{H}))$ which “corresponds to” the “Bott element” $\beta : S \to A(\mathcal{H})$;
- We can construct an extension of G-C^*-algebras

\[
\begin{array}{cccc}
0 & \to & J & \to & B & \to & A(\mathcal{H}) & \to & 0
\end{array}
\]

which “corresponds to” the “Dirac element” $\alpha : A(\mathcal{H}) \to S \hat{\otimes} K(H(\mathcal{H}))$;
- Although this extension may not be equivariant semi-split, we can show there is an element d in $KK_1^G(A(\mathcal{H}), J)$ which “corresponds to” this extension;
- One can compute the Kasparov product $b \otimes_{A(\mathcal{H})} d \cong 1_G$.

27 / 30
Spectral Dual-Dirac lifts

The following simplifies what actually happened in the proof:

Theorem (Spectral Dual-Dirac lifts) (N.)

For any G, suppose we have the following “Spectral Dual-Dirac”:

- H: a (complex, graded) G-Hilbert space;
- A: a proper nuclear C^*-algebra;
- $\beta : S \to A$ (“Bott element”);
- $\alpha : A \to S \hat{\otimes} K(H)$ (“Dirac element”);
- The composition $\alpha \circ \beta : S \to S \hat{\otimes} K(H)$
 is “homotopic” to $\text{id}_S : S \to S$.

Then, this lifts to Dual-Dirac ($\gamma_G = 1_G$) in KK-theory if there is a $b \in KK_1^G(\mathbb{C}, A)$ which “corresponds to” β.

i.e. The Spectral Dual-Dirac lifts if the Bott element lifts.

Note, in our setting, $A(\mathcal{H})$ is nuclear and the Bott element indeed lifts.
This concludes the proof of the Higson-Kasparov Theorem.
Summary

- The proof of the Higson-Kasparov Theorem is nothing but precisely making sense of a limit of Dual-Dirac method for finite dimensional case.

- A noncommutative functional calculus is needed since the naive Bott-Dirac operator in infinite dimensions does not have compact resolvent. Fixed version of this not only gives a precise formula which was not mentioned in the work by Higson and Kasparov but also shows one can apply it with respect to any bounded operators.

- The lifting of the Dual-Dirac method from E-theory to KK-theory can be simplified.
THANK YOU VERY MUCH!!
Some References

- N. Higson, G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space, E.R.A. Amer. Math. Soc. 3 (1997), 131-142
- P. Julg, Travaux de N. Higson and G. Kasparov sur la conjecture de Baum-Connes, Séminaire Bourbaki 841 (1997-98)