Some suggested solutions to computer lab 2
Course: Introduction to R in biostatistics

February 28, 2017

1 Scripting

1.

2.

3.

4.

5. #
 # Answers to exercises
 # by Petter Mostad
 # and Jonatan Kallus (kallus@chalmers.se)
 #

 # Part 1, exercise 5:

 # Reading in the data:
 myData <- c(34, 54, 25, 53, 24, 41, 49, 32, 26, 51)

 # Some summary statistics
 print(summary(myData))

 # Printing out the standard deviation
 print(sd(myData))

 # Plotting the data values against their indices:
 plot(myData)

 # Making a boxplot:
 boxplot(myData)
2 Data structures in R

1.

2.

3. > myFrame <- data.frame(attribute1, attribute2, attribute3)
 > names(myFrame) <- c("Age", "Number", "Sex")

4. > myFrame$Age[2] <- 49
 > myFrame[1,1] <- 32

5. For example

 > myFrame <- data.frame(attribute1, attribute2, attribute3, stringsAsFactors=F)

 or

 > myFrame <- data.frame(attribute1, attribute2, I(attribute3))

6. > myList <- list(attribute1, attribute2, attribute3)

3 Input and output of data

We are finally getting to a very important point: Input and output of data. Real
data sets will most often be in the form of an output from some other program. A
general way of inputing such data to R, is to make sure it is in some kind of
text format.

1.

2. > myData <- read.delim("Example.txt")

3. > myData <- read.delim("Example.txt", stringsAsFactors = F)

4.

5. > newNewData <- newData[substr(newData$Genename, 2, 2)="-",]

6.

7.

4 R programming

1. `> myReplace(myData$Genename)`
 To actually make the replacements in myData, you have to write

 `> myData$Genename <- myReplace(myData$Genename)`

2. `function(v, oldstring="No", newstring="Yes") {
 v[v==oldstring] <- newstring
 v
}

3. `for (i in 1:10) {
 print(myData$Genename[i])
}

4. `for (i in 1:20) {
 if (abs(myData[i, 2] - myData[i, 3]) > 5000) {
 print(myData$Genename[i])
 }
}

}