EXERCISES 3 (OPTIMAL TRANSPORTATION)

(1) Let ϕ be a finite convex function on \mathbb{R}^n and assume that 0 is an interior point of the image of sub-gradient of ϕ. Show that $\phi(x)$ is proper in the sense that $\phi(x) \geq \epsilon |x| - C$ for some positive constants ϵ and C (hint: use the Legendre transform)

(2) Let ϕ and ψ be finite convex functions on \mathbb{R}^n. Set $\Phi := \max\{\phi, \psi\}$. Show that Φ is a finite convex function and that for any subset U

$$(\partial \Phi)(E) \cup (\partial \phi)(E) \subset (\partial \phi)(E)$$

Deduce that $MA_{\Phi}(\Phi) \geq MA_{\phi}(\phi)$ and $MA_{\Phi}(\Phi) \geq MA_{\psi}(\psi)$, i.e. $MA_{\Phi}(\max\{\phi, \psi\}) \geq \min\{MA_{\phi}(\phi), MA_{\psi}(\psi)\}$. Draw a picture to convince yourself that this is geometrically obvious (at least in one dimension...)

(3) Show that the functional $F(\phi)$ defined in the lecture notes is concave and deduce that $J(\phi)$ is convex

(4) Show that $F(\phi)$ is continuous along monotone sequences in C_Y in the following sense: if ϕ_j is a sequence decreasing (or increasing) to ϕ in C_Y then

$$F(\phi_j) \to F(\phi)$$

(5) Use the previous exercise to give a new proof of the fact that $F(\phi)$ is lower semi-continuous on C_Y (Hint: if ϕ_i is a sequence in C_Y converging to ϕ, then there is a natural way to produce a decreasing sequence in C_Y from ϕ_i with the same limit ϕ, namely $\psi_i := \sup_{k \geq i} \phi_i$)