Nanopartiklar av ämnet palladium
Lika med ändå olika. Chalmersforskaren Svetlana Alekseeva har tagit fram kartor av enskilda nanopartiklar. Bilderna visar åtta olika nanopartiklar av samma ämne, palladium. Varje nanopartikel består av ett antal korn, som på bilderna visas som olikfärgade fält. Egenskaperna och reaktionsmönstret hos de olika kornen skiljer sig åt, vilket i sin tur styr egenskaperna och reaktionerna hos nanopartiklarna när de kommer i kontakt med andra ämnen.
Illustration: Svetlana Alekseeva

Kartläggning av nanopartiklar banar väg för bättre nanoteknik

Forskare på Chalmers och Danmarks Tekniske Universitet har utvecklat en metod som gör det möjligt att kartlägga nanopartiklars nyckfulla beteende i olika situationer och sammanhang. Resultaten banar väg för både bättre nanomaterial och säkrare nanoteknik och publicerades nyligen i tidskriften Nature Communications.

I framtiden kommer nästan all ny teknik att bygga på nanoteknologi i någon form. Men nanopartiklar är lynniga och oförutsägbara. Även om de ser lika ut på håll, är de egensinniga individer när man zoomar in på var och en.
Chalmersforskarna Svetlana Alekseeva och Christoph Langhammer har tillsammans med danska forskare upptäckt varför polykristallina nanopartiklar av metallen palladium beter sig så nyckfullt när de kommer i kontakt med vätgas. Kunskapen behövs för att kunna utveckla bättre optiska vätgasdetektorer, som väntas spela en viktig roll när det gäller säkerhet för vätgasbilar.

– Våra experiment visade tydligt hur reaktionen med vätgas beror på detaljer i hur nanopartiklarna är uppbyggda. Det var överraskande att se hur starkt sambandet mellan egenskaper och reaktion var – och hur väl man kan räkna på det, säger Svetlana Alekseeva, postdoktor på institutionen för fysik på Chalmers. 
Påminner om en konsertpublik
En nanopartikel av ett visst ämne är uppbyggd av ett antal mindre korn eller kristalliter. Antalet korn och hur dessa sitter samman är alltså avgörande för hur partikeln reagerar i en viss situation eller med ett visst ämne. Man skulle kunna jämföra nanopartiklar med publiken på en konsert. Från scenen ser alla i folkhavet ganska lika ut, men när man tittar närmare på de olika personerna är de olika långa, har olika ögonfärg och dansar på olika sätt. Hur de beter sig i en viss situation beror på deras humör, och andra egenskaper. 
Svetlana Alekseeva har tagit fram kartor, ja nästan porträttbilder, av enskilda nanopartiklar av palladium. Bilderna visar kornen som ett antal fält som är sammanfogade till en karta. Vissa partiklar består av många korn, andra färre, och fälten gränsar till varandra på olika sätt.
Öppnar nästan oändliga möjligheter
Den nya metoden för att karaktärisera nanopartiklar bygger på en kombination av elektronmikroskopi och optisk mikroskopi. Samma individer undersöks med båda metoderna och det går att följa deras beteende och humör när de träffar på andra ämnen. Därmed kan man kartlägga nanopartiklars grundläggande materialegenskaper på individnivå, och se hur de hänger samman med partiklarnas beteende när de växelverkar med sin omgivning. Det innebär att nästan oändliga möjligheter öppnas för att forska vidare och utveckla produkter och nanomaterial som är både tekniskt optimerade och säkrare ur ett miljö- och hälsoperspektiv.
Det är detaljerna som avgör
Nanopartiklarna som har undersökts fungerar också som sensorer i sig själva. När de blir belysta berättar de om hur de reagerar med andra ämnen, såsom olika gaser eller vätskor. Just nu arbetar Christoph Langhammers forskargrupp med flera projekt inom detta område. 
Men kunskap om nanopartiklar behövs inom en rad olika områden i samhället. De finns till exempel i nya elektronikprylar, batterier, bränsleceller, katalysatorer, textilier och inom kemi- och bioteknik. Ändå är det mycket vi inte vet om hur de små partiklarna fungerar eller kommer att påverka oss och miljön på lång sikt. 
Bättre koll på riskerna
– Nanotekniken i världen utvecklas snabbt, men forskningen inom nanosäkerhet håller hittills inte samma takt. Därför behöver vi få mycket bättre koll på riskerna och vad som skiljer en farlig från en ofarlig nanopartikel, säger Christoph Langhammer, docent vid institutionen för fysik på Chalmers.
–  Vårt arbete visar att allt inte är vad det ser ut att vara, utan att det är detaljerna som avgör. För att kunna förstå om och varför nanopartiklar är farliga för människor, djur eller natur, måste vi alltså också titta på dem var och en för sig. Det blir nu möjligt att göra med vår nya metod.

Text: Mia Halleröd Palmgren, mia.hallerodpalmgren@chalmers.se


Mer information:
Svetlana Alekseeva, postdoktor, institutionen för fysik, Chalmers, 031 772 30 07, svetlana.alekseeva@chalmers.se
Christoph Langhammer, docent, institutionen för fysik, Chalmers, 031 772 33 31, clangham@chalmers.se

Publicerad: ti 24 okt 2017. Ändrad: on 25 okt 2017