Nasser Mohammadiha

Adjunct docent, Data Science and AI division, Department of Computer Science and Engineering.

I am an Adjunct Docent in the Department of Computer Science and Engineering, and a Machine Learning Expert/Data Scientist at Ericsson, where I work with applied data analytics and machine learning to help developing and putting 5G in production.
Latest Publications:
2018
  •  J. Martinsson, N. Mohammadiha, A. Schliep, “Clustering Vehicle Motion Trajectories Using  Finite Mixtures of Hidden Markov Models”, International Conference on Intelligent Transportation Systems (ITSC), 2018. 
  • E. L. Zec, N. Mohammadiha, A. Schliep, “Modelling Autonomous Driving Sensors Using  Hidden Markov Models”, International Conference on Intelligent Transportation Systems (ITSC), 2018. 
  • E. Karlsson, N. Mohammadiha, “A Statistical GPS Error Model for Autonomous Driving”,  in IEEE Intelligent Vehciles Symposium (IV), 2018. 
  • E. Karlsson, N. Mohammadiha, “A Data-driven Generative Model for GPS Sensors for  Autonomous Driving”, Software Engineering for AI in Autonomous Systems (SEFAIAS),  2018.
2017
  • C. Innocenti, H. Lindén, G. Panahandeh, L. Svensson, and N. Mohammadiha, "Imitation Learning for Vision-based Lane Keeping Assistance ",  International Conference on Intelligent Transportation Systems (ITSC), 2017
  • C. Innocenti, H. Lindén, G. Panahandeh, L. Svensson, and N. Mohammadiha, "Imitation Learning for Autonomous Driving", The first Swedish Symposium on Deep Learning (SSDL), 2017.
  •  A. Bender, E. M. Thorsteinsson, P. Nordin, and N. Mohammadiha, " Object Classification using Convolutional Neural Networks with 3D Intensity Voxel Matrices", The first Swedish Symposium on Deep Learning (SSDL), 2017.
  • A. Tashvir, J. Sjöberg, N. Mohammadiha, "Sensor Error Prediction and Anomaly Detection Using Neural Networks", The first Swedish Symposium on Deep Learning (SSDL), 2017.
  • L. D. Solana, D. Scanlan, G. Panahandeh, and N. Mohammadiha, "Residual Connections in Light-Weight Convolutional Neural Network Object Detectors", The first Swedish Symposium on Deep Learning (SSDL), 2017.
  • N Mohammadiha, "A Short Review of Deep Learning Applications for Autonomous Driving", The first Swedish Symposium on Deep Learning (SSDL), 2017.
  • N. Mohammadiha, P. Nygren, M. Jasinski,  "A Comparison of Classification Methods for 3D Point Clouds", Fourth Internetional Symposium on Future Active Safety Technology Toward zero traffic accidents (FAST-zero), 2017.
  • G. Panahandeh, Erik Ek, N. Mohammadiha, "Road Friction Prediction using Supervised Machine Learning and Connected Vehicles," in IEEE Intelligent Vehciles Symposium (IV), 2017.

2016

  • N. Mohammadiha, S. Doclo, “Speech Dereverberation Using Non-negative Convolutive Transfer Function and Spectro-temporal Modeling”, IEEE Trans. Audio, Speech and Language Process., vol. 24, no. 2, pp. 276–289, Feb. 2016.
  • J. Florbäck, L. Tornberg, N. Mohammadiha, “Offline Object Matching and Evaluation Process for Verification of Autonomous Driving”, in Proc. IEEE Intelligent Transportation Systems Conference (ITSC), Rio de Janeiro, Nov. 2016.
2015
  • N. Mohammadiha, P. Smaragdis, S. Doclo, “Joint Acoustic And Spectral Modeling for Speech Dereverberation Using Non-Negative Representations,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP), Brisbane, Autralia, Apr. 2015. 
  • A. Asaei, N. Mohammadiha, M. J. Taghizadeh, S. Doclo H. Bourlard, “On Application of Non-Negative Matrix Factorization for Ad Hoc Microphone Array Calibration From Incomplete Noisy Distances,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP), Brisbane, Autralia, Apr. 2015.
  • S. Karimian-Azari, N. Mohammadiha, J. R. Jensen, and M. G. Christensen, “Pitch Estimation and Tracking with Harmonic Emphasis on the Acoustic Spectrum,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP), Brisbane, Autralia, Apr. 2015.
  • A. Juki´c, N. Mohammadiha, T. vanWaterschoot, T. Gerkmann, S. Doclo, “Multi-Channel Linear Prediction-Based Speech Dereverberation With Low-Rank Power Spectrogram Approximation ,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP), Brisbane, Autralia, Apr. 2015.
2014
  • N. Mohammadiha, P. Smaragdis, G. Panahandeh, S. Doclo, “A State-Space Approach to Dynamic Nonnegative Matrix Factorization”, IEEE Trans. Signal Process., vol. 63, no. 4, pp. 949–959, Dec. 2014.
  • P. Smaragdis, C. Févotte, G. J. Mysore, N. Mohammadiha, M. Hoffman , “A Unified View of Static and Dynamic Source Separation Using Non-Negative Factorizations”, IEEE Signal Process. Magazine, vol. 31, no. 3, pp. 66–75, May 2014.
  • N. Mohammadiha, S. Doclo, “Single-channel Dynamic Exemplar-based Speech Enhancement, in Proc. Interspeech, Sep., 2014.
  • N. Mohammadiha, S. Doclo, “Transient Noise Reduction Using Nonnegative Matrix Factorization,” in Proc. Hands-free Speech Communication and Microphone Arrays (HSCMA), May, 2014.
2013
  • N. Mohammadiha, “Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models,” PhD Thesis, 2013.
  • N. Mohammadiha, P. Smaragdis, A. Leijon, “Supervised and Unsupervised Speech Enhancement Approaches using Nonnegative Matrix Factorization,” IEEE Trans. Audio, Speech and Language Process., vol. 21, no. 10, pp. 2140–2151, Oct. 2013.
  • N. Mohammadiha, A. Leijon, “NonnegativeHMMfor Babble Noise Derived from Speech HMM: Application to Speech Enhancement,” IEEE Trans. Audio, Speech and Language Process., vol. 21, no. 5, pp. 998–1011, May 2013.
  • N. Mohammadiha, R. Martin, A. Leijon, “Spectral Domain Speech Enhancement using HMM State-Dependent Super-Gaussian Priors,” IEEE Signal Processing Letters, vol. 20, no. 3, pp. 253–256, Mar. 2013.
  • G. Panahandeh, N. Mohammadiha, A. Leijon, P. Händel, “Continuous Hidden Markov Model for Pedestrian Activity Classification and Gait Analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 5, pp. 1073–1083, May 2013.
  • N. Mohammadiha, P. Smaragdis, and A. Leijon, “Low-artifact Source Separation Using Probabilistic Latent Component Analysis,” in Proc. IEEE Workshop Applications of Signal Process. Audio Acoustics (WASPAA), oct. 2013.
  • N. Mohammadiha, P. Smaragdis, A. Leijon, “Simultaneous Noise Classification and Reduction Using a Priori Learned Models ,” IEEE Int. Workshop on Machine Learning for Signal Process. (MLSP), sep. 2013.
  • N. Mohammadiha, W. B. Kleijn, A. Leijon, “Gamma Hidden Markov Model as a Probabilistic Nonnegative Matrix Factorization ,” in Proc. European Signal Process. Conf. (EUSIPCO), sep. 2013, winner of best paper award.
  • N. Mohammadiha, P. Smaragdis, and A. Leijon, “Prediction Based Filtering and Smoothing to Exploit Temporal Dependencies in NMF,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP), may 2013, pp. 873–877.

Page manager Published: Tue 01 Dec 2020.