Nano Solder past development

​Due to the toxicity of lead (Pb), Pb-containing solder alloys are being phased out from the electronics industry. This has lead to the development and implementation of lead-free solders. Being an environmentally compatible material, the lead-free Sn-3.0Ag-0.5Cu (wt.%) solder alloy is considered to be one of the most promising alternatives to replace the traditionally used Sn-Pb solders. This alloy composition possesses, however, some weaknesses, mainly as a result of its higher melting temperature compared with the Sn-Pb solders. A possible way to decrease the melting temperature of a solder alloy is to decrease the alloy particle size down to the nanometer range. The melting temperature of Sn-3.0Ag-0.5Cu lead-free solder alloy, both as bulk and nanoparticles, was investigated. The nanoparticles were manufactured using the self-developed consumable-electrode direct current arc (CDCA) technique. The melting temperature of the nanoparticles, with an average size of 30 nm, was found to be 213.9 C, which is approximately 10 C lower than that of the bulk alloy. The developed CDCA technique is therefore a promising method to manufacture nanometer-sized solder alloy particles with lower melting temperature compared with the bulk alloy.
Här ska bild in...
SEM image of sample B (nanoparticles manufactured in liquid paraffin).

Published: Mon 28 Oct 2013.